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Data and data visualization play crucial roles in the field of technology.
However, data visualization is not always a simple and quick process, and
it often involves a learning curve. To address this challenge and enhance
the efficiency of creating graphical displays, one approach is to utilize a
GPT (Generative Pre-trained Transformer). GPTs are trained to understand
natural language prompts and generate responses, including code snippets.
By providing specific instructions in natural language, the GPT can generate
code tailored to a data visualization library, which can then interpret and
create the desired visual representation of the data.

It’s important to note that while GPTs are powerful tools, they are not
without flaws and may make mistakes. However, by fine-tuning a GPT, we
can improve its performance and reduce the occurrence of errors. There-
fore, this project aims to investigate the effectiveness of fine-tuning GPT-3
specifically for data visualization tasks. By evaluating its capabilities and
limitations, we can gain insights into the potential of leveraging GPTs for
more efficient and accurate data visualization processes.

Additional Key Words and Phrases: GPT-3, Fine-tuning, Data visualization,
Code generation, LLM

1 INTRODUCTION
In the ever-growing world of technology, one factor is always impor-
tant: data. Data is used everywhere, from social media applications
suggesting the best possible videos to the users [2] to medical data
analysis in order to advance medical research [5]. In order for people
to analyze data in a meaningful way, data visualization is a key part
of understanding the data in the first place.
Making graphical displays, like graphs and charts, can be done

in a variety of ways. Microsoft Excel, or any other spreadsheet-type
application, is the first that comes to mind, which is a program used
for data management and visualization. The spreadsheet creates a
table-like structure that is good for data input. This input can be
selected and converted into graphical displays. This is a great way
of making data visualizations, but Excel has a bit of a learning curve
attached to it and making the graphs with the correct data and axis
can be a challenge. To achieve mastery in Excel, or an application
like it, will require time and effort. More data visualization tools
exist, like Tableau, Dundas BI, and Google Charts, to name a few,
but they are similar to Excel, as they also require time and effort to
learn them.

A different manner of creating graphs from data is to use a Gen-
erative Pre-trained Transformer(GPT), for example ChatGPT [9]. A
GPT is an autoregressive large language model meant for generative
artificial intelligence. A large language model is a language model,
which is a probability distribution over a sequence of words, con-
sisting of a large neural network usually containing billions or more
weights. This network is then pre-trained using semi-supervised
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learning or self-supervised learning on a large quantity of text. The
model is trained to predict the continuation of a natural language
prompt. For example, the prompt 'It is healthy to ' would
result in the response 'exercise'. Despite a GPT’s ability to be
very powerful, code generation based on large language models,
like ChatGPT, is not perfect, resulting in errors [3][6].

This project aims to find a way to make data visualization easier
and faster, while still being reliable. A GPT could be an excellent
alternative for data visualization, as a user can simply tell it what
they want in natural language. Because a GPT is error-prone and
fine-tuning trains the model further, the following hypothesis is
constructed. Fine-tuning a GPT, like GPT-3, will improve the cor-
rectness of code generated for data visualization. In order to test
the hypothesis, the subsequent research questions are proposed.

• To what extent can fine-tuning GPT-3 code generation from
natural language interpretation improve accurate code output
for data visualization and reduce time spent on data visual-
ization?

• How to create a valid dataset that enables fine-tuning for
GPT-3?

In order to address the first research question, it is necessary to
answer the second research question first. This is because the pro-
cess of fine-tuning GPT-3 requires the availability of data. The data
should consist of prompts and corresponding responses. For the
purpose of data visualization, the Python library Plotly is utilized,
as it offers visually appealing and customizable graphs that are re-
sponsive. Before creating the dataset, specific criteria for selecting
the data are discussed. Subsequently, a portion of the dataset is
utilized to test GPT-3 without any fine-tuning. Another portion of
the dataset is employed to fine-tune GPT-3. Once the fine-tuning
process is completed, a different segment of the dataset is used to
evaluate the performance of the fine-tuned GPT-3 model, and the
results are then analyzed.

2 RELATED WORK

2.1 Data visualization from natural language
Chat2VIS is a program that is able to produce data visualization
based on a natural language input [10]. The code generation is
done using three different large language models: ChatGPT, GPT-
3, and CODEX, although CODEX has now been deprecated and
can therefore not be used anymore. However, the language models
Chat2VIS uses have not been fine-tuned, thus this project adds to
this implementation by analyzing the effects of fine-tuning on GPT-
3 data visualization. In addition, Chat2VIS engineers its prompts
to get a better result, which is not what this research seeks to do.
Instead, sending the user-created prompt directly to GPT-3 and,
through fine-tuning, receiving the needed code directly.
Another program that interprets natural language to generate

data visualizations is NL4DV [7]. NL4DV uses the Vega-Lite Python
library to render the visualizations. Furthermore, to get the intended
result from the query, they go through a four-step phase they call
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query interpretation. This means that they did not use large lan-
guage models to generate their visualization code. We take a differ-
ent approach by using large language models and fine-tuning those
models to generate visualization code.
Quite a few other examples can be found of natural language

interpretation for data visualization. A survey paper was written on
a lot of these examples [11]. The important thing to note from this
survey is that none of the examples used a large language model
for the generation of the code that results in data visualization.

2.2 Fine-tuning
Research on fine-tuning has been done before, yet the situations
were different. A study was conducted on solving math word prob-
lems with GPT-3 [12]. This study showed an increase in accuracy of
30%-40% with fine-tuning. This comparison was made to few-shot
learning prompts, however. Few-shot learning is achieved by includ-
ing example queries and completions in the prompt with which the
GPT can already grasp what a potential answer looks like. Further-
more, they created their own dataset for testing and fine-tuning as
well. However, we aim to compare the fine-tuned model to the base
model and add more variety to the manufactured dataset.

3 METHOD SPECIFICATION

3.1 Dataset
The first step in this process is the manufacturing of the dataset.
GPTs are usually trained on huge datasets that are collected from
the internet [4]. A dataset of this size and content ensures variety
and a lot of information for the model to train. With fine-tuning,
however, datasets require more specification and control over the
data itself. There are examples of fine-tuning that still use datasets
mined from the internet [8].
There are ways to collect data from the internet for the use of

data visualization, although fine-tuning needs data that also includes
a prompt. This aspect alone makes it difficult to create a dataset
for fine-tuning data visualization. There are a few possibilities. Ex-
amples include StackOverflow and GitHub for prompt and code
extraction. Nevertheless, this project is focused on creating Python
Plotly visualizations, so that would also have to be filtered out of the
massive amounts of data found on StackOverflow and GitHub. For
the reason of control, a dataset was manufactured using a variety of
techniques. First of all, the base of the dataset was constructed using
a program with the following variables defined at the beginning.

1 prompt = "I have a dataset {dataset} with columns {

columns }. Please make a {plot_type} plot that has the

{x} on the x-axis and the {y} on the y-axis. Please

color the plot based on the {category }{ options }.\n"

2 response = "import pandas as pd;import plotly.express as

px;df = pd.read_csv('{dataset}');fig = px.{ plot_type

}(df, x='{x}', y='{y}', color='{category}'{options });

fig.show()\n"

Listing 1. Base variables: prompt and corresponding completion.

Each part of these base sentences that is contained using curly
brackets can be formatted into the final prompt and corresponding
response. The program has specific data structures that can be
used to combine different options with one another and format

the prompt and response accordingly. Only the following basic plots
are tested and fine-tuned and are therefore the only ones that occur
in the dataset.

• Scatter plot
• Bar plot
• Line plot
• Area plot

These plots are rather simple to create using the Plotly Express
library, as every figure in Plotly Express can be created using a
single function. To extend the basic figure, the functions can be
called with extra options as arguments:

1 df = read_csv('iris.csv') # The dataset in the form of a

pandas DataFrame

2 fig = px.scatter(df, x='sepal_width ', y='petal_length ',

color='species ', trendline='ols')

Listing 2. Basic scatter plot function with two extra options as parameters.

It is important to note that the dataset, x, and y are required param-
eters to form a plot. Extra options come after these three and are a
coloring and a trend line option in this case.

The second phase of the dataset increases the number of dataset
entries drastically. The different options and example data from the
first phase provided a manufactured dataset of around 125 entries.
The first step of the generation had one sentence as a base for
the prompt, yet natural language prompts can be very different
to this base sentence. As a result, the second part of the creation
process is paraphrasing the prompt sentence for every entry, while
keeping the completion the same. This was achieved by sending
every prompt to the AI21Studio [1] paraphrasing API and mapping
the responses from the API to the same completion. The AI21Studio
paraphrasing API takes a piece of text, paraphrases it multiple times
and sends back around ten options. After this phase, the count of
dataset entries went up to 1400.

1 # Paraphrased prompt:

2 prompt = "This dataset is iris and has columns such as

sepal_width , sepal_length , petal_length , petal_width ,

species. You will need to create a scatter plot with

the sepal width on the x-axis and the sepal length

on the y-axis. The plot should be colored according

to species , with a rug marginal on the x axis and a

histogram marginal on the y axis. The x and y should

represent sepal width and sepal length , respectively.

"

3 # Completion:

4 import pandas as pd

5 import plotly.express as px

6 df = pd.read_csv('iris.csv')

7 fig = px.scatter(df, x='sepal_width ', y='sepal_length ',

color='species ', marginal_x='rug', marginal_y='

histogram ', labels ={'sepal_width ':'sepal width ','

sepal_length ':'sepal length '})

8 fig.show()

Listing 3. An entry from the dataset with a complete prompt and completion.
The prompt from this entry has been paraphrased.

3.2 GPT Code Generation
3.2.1 Basemodel. An important aspect of the completion generated
by a GPT is the temperature. The temperature is a floating value
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Fig. 1. The longest dataset entry inserted in the OpenAI Tokenizer

between 0 and 1, which dictates how diverse the completion of the
prompt is. A lower value will result in more deterministic responses,
while a higher value will bring about variety in the completions. For
the base curie model, a higher temperature of 0.9 is used in order
to get a higher chance of the responses being code and not plain
text.
Another option included in the API request is the maximum

amount of tokens that the GPT can respond with. Tokens are se-
quences of characters that occur regularly in text. These tokens and
the statistical relations between them are how the model can predict
further tokens. In this research, the maximum token count is set
to 150. This number was chosen by taking the longest completion
in the created dataset and inserting it into the OpenAI Tokenizer
(Figure 1). Then, a margin was added to this token amount for longer
column names and potentially more options within the function
call.
After creating the dataset, it is time to test the capabilities of

the base GPT-3 curie model from OpenAI without fine-tuning. To
do this, the dataset was divided into a training set and a testing
set with a nine-to-one split, respectively. Then, the base model is
tested by using API calls and saving the responses. The evaluation
metric consists of calculating the accuracy by dividing the number
of correct graphs by the total number of entries in the test set:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑟𝑎𝑝ℎ𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑒𝑛𝑡𝑟𝑖𝑒𝑠

3.2.2 Fine-tuning. After randomly distributing the dataset into
around take nine parts training set and one part test set, the numbers
of entries are 1261 and 133, correspondingly. The test collection can
then be utilized to evaluate the base curie model, as formerly men-
tioned. Next, the model is fine-tuned with the training set. This was
achieved by uploading the training file onto OpenAI and instructing
OpenAI to fine-tune the curie model with this file. When the file is
uploaded, hyperparameters can be adjusted to fit the fine-tuning
task. This research does not go in-depth into the hyperparameters,
however, so the default values were used.

3.2.3 Fine-tuned model. Finally, the test set is used again to assess
the fine-tuned model in a similar fashion to the base model eval-
uation. However, the temperature for the fine-tuned model was
set to 0.1 instead, as the model should be deterministic about the
completions it generates. The accuracy is measured and compared
to the base model in order to answer the first research question.

4 RESULTS

4.1 Base Curie Model
The base model test resulted in zero data visualizations out of the
133 entries. So:

Accuracy :
0
133

= 0

This result is not surprising, however, as the base model was trained
on mostly text and not code. Consequently, the model usually tried
to finish the prompt with extra text. We can classify the responses
it wrote into one of a few categories:

• Prompt continuation: These completions further continue
the prompt by adding more instructions or questions to the
prompt instructions. Another form of continuation was the
addition of a user running into problems or not knowing
what to do, so GPT was acting as a user that would ask what
to do.

• Explanation: In this category, the GPT responded with an
explanation of how one could end up with the visualization
asked for in the prompt. This explanation will more often
than not lead to a different result than the prompt requested,
however.

• Coding attempts: A few completions provided some form
of code. This code was always from a different language, yet
never Python. On top of that, the code never functioned.

• Nonsense: The responses in the last category are incomplete
or contain nothing of meaning.

Examples of the responses can be found in appendixA

4.2 Fine-tuned Curie Model
The fine-tuned model was more successful, however, was still disap-
pointingly inaccurate. From the 133 test entries, only four provided
a graph that was correct in correlation to the prompt. So:

Accuracy :
4
133

= 0.030

Interestingly, all the responses given by the fine-tuned model were
Python code. This already shows huge improvements over the base
model. Noticeably, 54 out of the 133 tests returned a response of
only one line of code:

1 import pandas as pd

When taking a look at the data sent by the API call, we can see that
the reason it finished after one sentence was because of the stop
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sign. The stop sign is utilized by GPT-3 to end the generation for
the completion, which is ### in the case of the first dataset (Figure
1). A number of entries were tested without adding a stop sign in
the API call, which resulted in a piece of text followed by more code,
divided by another stop sign. This means that the fine-tuned model
still tried to generate text, even though none of the dataset entries
contained text in the completions.

The results showed a definitive improvement, yet the model still
made errors in the code. Examples include calling the Plotly Express
function using the Pandas library or by using the defined Pandas
DataFrame to call the function. Several responses tried calling the
graphing function multiple times, meaning that these results were
abruptly stopped due to the token limit that was set.

5 SECOND EXPERIMENT

5.1 The changes
After reviewing the results from the first experiment, we set out
to change the dataset slightly to encourage GPT-3 to complete the
prompts correctly. From the results gathered in the primary experi-
ment, it was noticeable that the GPT would abruptly stop generating
after the import of the Pandas library. This was due to the occur-
rence of the stop token after the first sentence. To attempt to combat
this in the second experiment, the stop sign was changed to be
fig.show(), which is the last piece of code present in every entry.
Secondly, the import statements were removed completely. The
import could be seen as a prefix, as they were always required to
create a proper graph. Therefore, instead of letting GPT-3 generate
them, the import statements were automatically added to every
result as a prefix after receiving the completion from the model.
Furthermore, the first dataset had module imports defined as two
characters each: pd for Pandas and px for Plotly Express. To improve
clarity, this was changed to be pandas and express respectively.
In addition, the variable for the Python DataFrame was renamed
from df to dataframe. Lastly, the first dataset included newlines
in the completion between the Python functions. To avoid that the
fine-tuned model adds words in between the lines, the newlines
were replaced with semicolons in the second dataset.

1 dataframe = pd.read_csv('iris.csv')

2 fig = px.scatter( dataframe , x='sepal_width ', y='

sepal_length ', color='species ', marginal_x='histogram

')

3 fig.show()

Listing 4. "Example of the improved prompt completion in the second
dataset. In the dataset the newlines are semicolons (changed here for
readability)."

All the dataset prompts remained the same as the first set.
To further improve the second experiment result, the second

dataset was cross-validated with two folds. Only two folds are cho-
sen, as fine-tuning a GPT is a time and computationally expensive
endeavour. The splits from the dataset into train and test sets were
done by randomly distributing every entry with a 9/10 chance and
a 1/10 chance respectively. These two folds will result in two accu-
racy values that will be compared to one another and averaged to
produce a final accuracy to compare to the base model.

5.2 Fine-tuning
With these changes in place, the base model can be fine-tuned again.
This was done using nearly the same method and parameters as
the first experiment. The difference in the second experiment is a
temperature of 0 in the API calls, making the model as deterministic
as possible.

5.3 Code generation test
After fine-tuning the two differentmodels with the improved dataset,
the test sets are evaluated on their respective fine-tuned models.
The results are analysed, compared to the base model, and compared
to the first fine-tuning experiment.

6 IMPROVED EXPERIMENT RESULTS

6.1 Base model
The responses received from the base model tests in both folds
were very similar to the base model in the first experiment. This is
logical, as the prompts were not changed in the improved dataset.
In addition, the API call settings remained the same.

6.2 Fold one
The second experiment, which has improved metrics, was signifi-
cantly more successful than the first. Out of 133 entries in the test
set of the first fold, all 133 produced a graphical output. However,
this does not mean the graphs are accurate. A program was written
to compare the expected completion with the actual completion.
122 actual completions corresponded perfectly with the expected
result. So:

Accuracy :
122
133

= 0.917

The remaining eleven entries can be categorized as follows:

• Marginal option error: These errors occurred most often.
The prompt in these errors asks for amarginal with the graphs.
The expected result and actual result differ only in the axis
the marginal is placed on. Another incident is for the GPT to
add a marginal on both sides.

• Labeling/Title error: The generations received from the
model confuse the labelling and titling option at times. This
happens due to the prompt asking the model to label the
graph with the title, and the model confuses this for axis
labels.

• Ambiguity error: The prompts in these errors are too am-
biguous and the results are therefore not accurate.

Examples of these errors can be found in Appendix C

6.3 Fold two
The test set of the second fold contained 144 entries, so the training
set is reduced to 1250 entries. This fold also visualised graphs for
every test entry. However, as was the case in the first fold, not all the
cases resulted in the expected result. 129 responses were precisely
equal to the expected output. So:

Accuracy :
129
144

= 0.896
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The differences between expected results and actual results of the
other fifteen entries fall mostly into the same categories. Examples
of more apparent errors can be found in this fold, however, where
the generation is wrong even though the prompt is not ambiguous.

6.4 Combined
Analyzing both of the folds shows that the fine-tuning process
produces similar results. Overall, the improved experiment resulted
in the following accuracy:

Accuracy :
0.917 + 0.896

2
= 0.904

This is a huge improvement compared to the base model.

7 DISCUSSION
The results clearly indicate an increase in the accuracy of the data
visualization code generation after fine-tuning the model compared
to the base GPT-3 curie model. This result suggests the possibility
to use a GPT for data visualization, at least for simple data visual-
ization tasks. In addition, this fine-tuned model performed better
than the fine-tuned math word problems solver [12], showing an
improvement in accuracy of around 10%.
While previous research has focused on structured prompts for

data visualization [7], this research shows that a GPT can be used
to negate the need for structured prompts. However, this research
has focused on a set of simple forms of data visualization, due to
the scope of the study.

8 FUTURE WORK
To improve on this research, one could look into further fine-tuning
the model by adding new plot types and situations to the dataset.
Another point of interest would be to build an application around
a working model, which would enable users to make graphical
displays easily. Finally, creating a model that can search through the
internet for the datasets the user requires for their data visualization
could be an interesting research subject.

9 CONCLUSION
Training a GPT-3 model is a necessity for the generation of code for
the natural language prompts created during this research. Without
training, the base model will complete the prompt with text or
incorrect code. To guide the GPT towards generating correct code,
fine-tuning is an effective action to take. Even though the first
experiment did not result in any significant change in the accuracy of
the creation of graphical displays, the first fine-tuned model showed
a substantial improvement in the manner it completed the natural
language prompts. The second and improved experiment showed
more promising results, as the accuracy increased a remarkable
amount with fine-tuning. The fine-tuned model created during this
research is definitely able to reduce time spent on data visualization,
as the prompts can be quickly and easily written for simple graphs.
The wrong completions generated by the fine-tuned models in the
second experiment are mostly due to unclear prompts, meaning that
the model will perform extraordinarily well if the prompt is clear
about the desired graph.

The dataset manufactured during this research is a valid dataset
and the results showed it enabled the model to be fine-tuned prop-
erly. An important aspect of the dataset is the variety of natural
language prompts. This was achieved using a template prompt and
adjusting it and the corresponding completion, creating a set of
around 100 entries already. To introduce more variety, a paraphras-
ing tool was used, taking the total size of the dataset to 1334. This
is an ample size to fine-tune the model.
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A BASE MODEL RESULTS
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ated by the base GPT-3 curie model.

1 # Prompt:

2 I have a dataset iris with columns sepal_width ,

sepal_length , petal_length , petal_width , species.

Please make a scatter plot that has the sepal width

on the x-axis and the petal length on the y-axis.

Please color the plot based on the species. Add a rug

marginal on the x axis. Add a histogram marginal on

the y axis. Label x and y as sepal width and petal

length.

3

4 # Completion:

5
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Fig. 2. The result of the working code from the first fine-tuned model examples (Listing 9).

5 Do a scatter plot and draw a boxplot on your scatter plot

. Use the boxplot to find the quartiles. Label first

quartile as median , second quartile as quartile 1,

third quartile as quartile 2. Do the same for the box

plot. The box plots should look like the histogram

below. Use the data to answer the questions.

6

7 Please create a scatter plot with the x-axis being the

population of a region in percent and y-axis being

the gender. They should be separated by the gender

line. The two lines should be similar. Label the

scatter plot with the gender of the population and

the percent of that population.

8

9 Make a histogram to show the relationship between age and

height

Listing 5. Prompt continuation.

1 # Prompt:

2 A dataset iris has the columns sepal_width , sepal_length ,

petal_length , petal_width , species. On the x-axis ,

please show the sepal width , and on the y-axis , petal

length. Color the plot accordingly. Add a histogram

marginal to the y axis and label x and y as sepal

width and petal length.

3

4 # Completion:

5 Plotting the second dataset sums (iris (2):iris) is fun.

But not very scientific , right? Let 's think of a few

things to include and remove. First , the dataset iris

belongs to the species mouse irises. It makes sense

to remove this information from a plot. What would

you want to include on a plot of the data set iris?

6

7 Use add() to add a title using the title() function from

the base package. Let 's make a plot of the data set.

Proceed with the following steps (Phew!):

8

9 First , remove the species class , and the iris label:iris

<- unique(iris) # Iris data set iris <- select(iris ,

sepal

Listing 6. Explanation.

1 # Prompt:

2 There are columns for strength , frequency , and direction

in my dataset. I would like a scatterplot that shows

the strength on the x-axis , the frequency on the y-

axis , and a histogram marginal on the y-axis.

3

4 # Completion:

5 Here is the code.

6

7 def visualization(myTA): x = reshape(myTA[['x'], axis=1],

amount =40000 * myTA['x']. mean(), row_span =4) y =

myTA[['y'], axis =1] plot(x,y, '.', xy=hist(x,y,

binwidth =.05), xlim =(-50000, 50000) , ylim=(0, 20000) ,

xaxs='i', yaxs='i', xlab='Strength (X)', ylab='

Frequency (Y)', main='ScatterPlot of Strength(X) vs.

Frequency (Y)',

Listing 7. Coding attempt.

1 # Prompt:

2 My dataset has column strengths , frequencies , directions.

Please plot the strength on the x-axis and the

frequency on the y-axis. Add a trend line for OLS.

Add a violin marginal on the x-axis.

3

4 # Completion:

5 OLS

6

7 Do this.

8

9 Libs (with no violin marginal):

10

11 Do this.

12

6
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13 Who to blame for the high drop out rates?

Listing 8. Nonsense.

B FINE-TUNED MODEL RESULTS
Below are some examples of the completions generated by the fine-
tuned GPT-3 curie model.

1 # Prompt:

2 "I have a dataset iris with columns sepal_width ,

sepal_length , petal_length , petal_width , species.

Create a scatter plot centered on the sepal width and

petal width. Colorize the plot according to species.

Include an OLS trendline. Place the violin marginal

on the x axis. Place the histogram marginal on the y

axis. Title the plot: Scatter plot of the iris."

3

4 # Completion:

5 import pandas as pd

6

7 df = pd.read_csv('iris.csv')

8 import plotly.express as px

9 fig = px.scatter(df, x='sepal_width ', y='petal_width ',

color='species ', trendline='ols', marginal_x='violin '

, marginal_y='histogram ', title='Scatter plot of the

iris')

10 fig.show()

Listing 9. Completion that produced a graphical display.

1 # Prompt:

2 "With columns strength , frequency , and direction in a

dataset , please draw a scatter plot with the strength

on the x-axis and frequency on the y-axis and color

the plot accordingly. Add a histogram marginal to the

y axis. Add a rug marginal to the x axis."

3

4 # Completion:

5 import pandas as pd

Listing 10. Completion with only one line.

C SECOND EXPERIMENT ERRORS
Below are a number of prompts and wrong completions that were a
result of the fine-tuned model from the improved experiment.

C.1 Fold one

1 # Prompt:

2 "There are five columns in my dataset iris: sepal_width ,

sepal_length , petal_length , and petal_width. A

scatter plot based on sepal width and petal width

should be made. Color the plot according to the

species. Add a histogram marginal to the plot. Label

x and y as sepal width and petal width."

3 # Expected result:

4 import pandas

5 import plotly.express as express

6 dataframe = pandas.read_csv('iris.csv')

7 fig = express.scatter(dataframe , x='sepal_width ', y='

petal_width ', color='species ', marginal_x='histogram '

, labels ={'sepal_width ':'sepal width ','petal_width ':'

petal width '})

8 fig.show()

9 # Actual result:

10 import pandas

11 import plotly.express as express

12 dataframe = pandas.read_csv('iris.csv')

13 fig = express.scatter(dataframe , x='sepal_width ', y='

petal_width ', color='species ', marginal_y='histogram '

, labels ={'sepal_width ':'sepal width ','petal_width ':'

petal width '})

14 fig.show()

Listing 11. Marginal option error.

1 # Prompt:

2 "With columns species , sepal_length , sepal_width ,

petal_length , and petal_width , I have a dataset iris.

You will need to plot the species on an x-axis and

the petal width on a y-axis and color the plot

accordingly. Put a violin marginal next to the plot.

Label it: Bar plot of the iris."

3 # Expected result:

4 import pandas

5 import plotly.express as express

6 dataframe = pandas.read_csv('iris.csv')

7 fig = express.bar(dataframe , x='species ', y='petal_width '

, color='species ', marginal='violin ', title='Bar plot

of the iris')

8 fig.show()

9 # Actual result:

10 import pandas

11 import plotly.express as express

12 dataframe = pandas.read_csv('iris.csv')

13 fig = express.bar(dataframe , x='species ', y='petal_width '

, color='species ', marginal='violin ', title='Bar plot

of the iris', labels ={'petal_width ':'petal width '})

14 fig.show()

Listing 12. Labeling/Title error.

1 # Prompt:

2 "There is a dataset with the following columns: year ,

lifeExp , pop , gdpPercap , continent , country. You need

to plot the year on the x-axis and the lifeExp on

the y-axis."

3 # Expected result:

4 import pandas

5 import plotly.express as express

6 dataframe = pandas.read_csv('population.csv')

7 fig = express.area(dataframe , x='year', y='lifeExp ',

color='continent ')

8 fig.show()

9 # Actual result:

10 import pandas

11 import plotly.express as express

12 dataframe = pandas.read_csv('population.csv')

13 fig = express.area(dataframe , x='year', y='lifeExp ',

color='country ')

14 fig.show()

Listing 13. Ambiguity error.

C.2 Fold two

1 # Prompt:

2 "I have a dataset iris with columns sepal_width ,

sepal_length , petal_length , petal_width , species.

Please make a scatter plot that has the sepal width

on the x-axis and the petal length on the y-axis.

Please color the plot based on the species. Add an

ols trendline. Add a histogram marginal on the x axis

. Give the plot the title: Scatter plot of the iris.

Label x and y as sepal width and petal length."

3 # Expected result:

7
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4 import pandas

5 import plotly.express as express

6 dataframe = pandas.read_csv('iris.csv')

7 fig = express.scatter(dataframe , x='sepal_width ', y='

petal_length ', color='species ', trendline='ols',

marginal_x='histogram ', title='Scatter plot of the

iris', labels ={'sepal_width ':'sepal width ','

petal_length ':'petal length '})

8 fig.show()

9 # Actual result:

10 import pandas

11 import plotly.express as express

12 dataframe = pandas.read_csv('iris.csv')

13 fig = express.scatter(dataframe , x='sepal_width ', y='

petal_length ', color='species ', trendline='ols',

marginal_x='histogram ', marginal_y='histogram ', title

='Scatter plot of the iris', labels ={'sepal_width ':'

sepal width ','petal_length ':'petal length '})

14 fig.show()

Listing 14. With a very specific and clear prompt the generated completion
is wrong.

8
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