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With theworld recently having suffered from the global COVID-19 pandemic,

it created a necessity to predict the spread of this virus and that of possible

future epidemics. Predicting the spread of the virus, and understanding the

way a virus interacts within individuals of a population, can contribute to its

understanding as well as the effectiveness of counter measures. In an attempt

to make these predictions it is possible to use the existing COVID-19 data,

including time series of infection counts gathered during the pandemic. A

method to infer an interaction network from this data, and make predictions

on the future dynamics of this network, is the Network Inference-based

Prediction Algorithm (NIPA). This paper aims to infer the COVID-19 inter-

action network from the daily infection data of the states of Mexico using

NIPA. The SIR (Susceptible Infected Removed) epidemic model is applied to

capture the dynamics of the COVID-19 spread within each state. We exploit

the inferred interaction network in an attempt to estimate the interaction

patterns between states, and compare those with the observations from past

COVID-19 outbreaks. Finally, we assess the results produced by the inferred

infection matrix, and explain how they reflect on different aspects of a virus

spreading in the real world, such as via international visitors and tourism.

Additional keywords and phrases: Epidemic Predictions, Network Inference-

based Prediction Algorithm (NIPA), SIR compartmental model, COVID-19,

Interaction Networks, Time Series

1 INTRODUCTION
Around November 2019, the corona virus or COVID-19 emerged in

Hubei, China, and quickly spread to every continent [1]. COVID-19

was declared as a pandemic by the World Health Organisation in

March 2020. In the aim to contain the spread, be it nationwide or

worldwide, it became necessary to develop predictive models and

other forecasting methods to predict the spread of this virus. These

many epidemic forecasting methods done in earlier studies include

deep learning models, neural network powered models, compart-

mental models and many more epidemic models or spread phenom-

ena forecasting algorithms [2–5], such as the Susceptible-Infected-

Susceptible (SIS) model and the Susceptible-Infected-Recovered (SIR)

model [2, 5, 6].

In 2020 Prasse and Van Mieghem researched a new way to predict

the dynamics of a network apart from the network topology. They

proposed the Network Inference-based Prediction Algorithm (NIPA):

a method to infer a network of interactions from time series data,

resulting in highly accurate predictions of the network dynamics in

their test cases [5]. Six models on dynamic networks were studied

as an ’interaction function’ for the adjacency matrix, including

Susceptible-Infected-Susceptible epidemics (SIS), which can describe

the spreading phenomena of epidemics [6].
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Building on the network reconstruction done with the SIS model,

a case study was made for the Chinese province Hubei by Prasse

et al. where they applied a "network-based SIR epidemic model to

predict the outbreak of the COVID-19 virus for each city" [7]. NIPA

could successfully forecast the spread of COVID-19 in the province,

but the underlying infection matrix could not be inferred [5, 8].

A comparison of the accuracy of NIPA against NIPA variations

and other prediction algorithms was made on two case studies: the

spread of COVID-19 in cities of the province Hubei, China, and in

provinces in the Netherlands [8]. It was concluded that the original

NIPA performed better in prediction accuracy than any of the other

compared algorithms.

Considering the promising results of the NIPA case studies [7, 8],

a next step in the research of NIPA’s prediction accuracy is following

the procedure described by Prasse, Achterberg et al. on a COVID-19

infection network that has not been studied yet with this method.

Therefore, a new case study will be conducted in this paper on the

infection counts of the states of Mexico. This case study investigates

the following research questions:

RQ1 Can the NIPA algorithm be used to infer an infection matrix of
Mexico’s COVID-19 time series?

RQ2 To what extend does the inferred Mexican COVID-19 infection
matrix generated by the NIPA algorithm in RQ1 reflect on the
true data from the COVID-19 virus spread in Mexico?

As such, the purpose of this research is to apply the NIPA al-

gorithm to infection count time series from Mexico, to find if an

infection matrix can be inferred for the COVID-19 spread in the

states of Mexico. This will be done by following and replicating the

procedures and methods followed by Prasse et al. as described in

their paper [7].

This paper is structured as followed. Firstly, some background

on epidemic predictions and network inference algorithms will be

provided in section 2. In section 3, the methods and approach of

replicating the SIR based NIPA procedure and inferring the infection

matrix will be described. The results of the case study predictions are

presented in section 4. The discussion in section 5 will describe the

performance and limitations of the algorithm, including potential

future work. Finally, section 6 concludes this paper.

2 RELATED WORK
This research focuses on the fields of epidemic predictions and

spread phenomena, using mathematical optimisation algorithms.

In order to gather the related literature Mendeley, Scopus, Google

Scholar and IEEE were used.

In 1927, Kermack and Mckendrick mathematically described the

progress of an epidemic in a homogeneous population in the form of

a mathematical investigation [9]. They described several aspects of

the epidemic dynamics in regard to the population including infec-

tivity rate, transmission rate, population density and susceptibility

of the population.
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Their work eventually led to the Susceptible-Infected-Recovered

(SIR) epidemic model [10, 11], in which the dynamics of a spreading

virus within a population of individuals can be described, where

these individuals were divided into three compartments of the pop-

ulation. The spread of COVID-19 can be described with this model

as well, albeit not exactly [8, 12]. One of the aspects that was found

lacking was accurate predictions over longer periods of prediction

times. This is partly because the SIR model evolves in discrete time,

whereas the COVID-19 pandemic evolves in continuous time. An-

other problem found with the model was that it is unable to describe

phenomena like lockdowns or the availability of vaccinations. How-

ever, several studies show that the SIR model can still be applied to

COVID-19 with appropriate parameter selection including the us-

age of optimisation algorithms, the realisation of introduced model

errors and considering different scenarios [2, 8, 13].

In the field of making epidemic predictions from inferred interac-

tions networks we already described the work of Prasse and Van

Mieghem. They concluded that with the right methodology, predic-

tions about the general dynamics of a network could be made on an

estimated network generated from the original, true network [5].

Even when the estimated network bares no topological similarity

to the true network, the predictions on the dynamics were found

to be accurate. The research managed to apply the SIS epidemic

model as a dynamic modelling function of the NIPA method, but it

was suggested that observing a sufficiently great number of time

series for a virus like COVID-19 might not be viable. However, based

on the work with NIPA and COVID-19 provided by Achterberg et

al. [8], we will make the assumption that it is possible to observe

enough time series in the Mexico data set to reconstruct the inferred

adjacency matrix.

3 METHODOLOGY & APPROACH
This section describes the selected approach and underlying princi-

ples to this research.

3.1 Definitions of algorithms
3.1.1 SIR model. The Susceptible-Infected-Recovered (SIR) epi-

demic model describes the behaviour and spread of an infectious

virus within a population of individuals [7, 14, 15]. Each individual

from the population can be divided in one of three states, otherwise

called compartments, at a point in time:

Susceptible The individual is healthy and not yet infected, but

they could become infected. As the virus spreads, the individ-

ual may become infectious over time.

Infectious The individual has been infected, and has now be-

come infectious to other susceptible individuals.

Recovered These individuals have recovered from the virus,

either by removal (being immune, resistant or having received

a cure), or having died.

The contact amongst the individuals of each fraction influences

the spread and cure of the virus to the other fractions and individu-

als with a certain probability. These network characteristics can be

expressed as parameters 𝛽 (infection probability) and 𝛿 (removal or

curing probability), as illustrated in fig. 1 [7, 15].

𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝐼𝑛𝑓 𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑
𝛽 𝛿

Fig. 1. SIR epidemic model transition graph

For every group 𝑖 at every point in discrete time 𝑘 ∈ N, we
can denote the three components as fractions of susceptible 𝑆𝑖 [𝑘],
infectious 𝐼𝑖 [𝑘] and recovered 𝑅𝑖 [𝑘] individuals, for which holds:

𝑆𝑖 [𝑘] + 𝐼𝑖 [𝑘] +𝑅𝑖 [𝑘] = 1. In our case study, we denote a group as the

population of a Mexican state or region. Following the group-based,

discrete time SIR epidemic model of Prasse and VanMieghem [7, 16],

we denote the 3 x 1 viral state vector for every state 𝑖 at time 𝑘 as:

Definition 1. For every region 𝑖 , the viral state

𝑣𝑖 [𝑘] =
©«
𝑆𝑖 [𝑘]
𝐼𝑖 [𝑘]
𝑅𝑖 [𝑘]

ª®¬ = (𝑆𝑖 [𝑘], 𝐼𝑖 [𝑘], 𝑅𝑖 [𝑘])𝑇

evolves over discrete time 𝑘 = 1, 2, ..., 𝑛.

At any time 𝑘 , an individual of region 𝑖 can change from com-

partment 𝑆𝑖 [𝑘] to compartment 𝐼 𝑗 [𝑘], which denotes the infected

fraction of individuals of region 𝑗 . This transition can happen with

probability

∑𝑁
𝑗=1 𝛽𝑖 𝑗 𝐼 𝑗 [𝑘]. Therefore, the viral state 𝑣𝑖 [𝑘] evolves

over discrete time according to:

Definition 2. SIR epidemic model [7, 15, 16]. For every region 𝑖 ,
the viral state 𝑣𝑖 [𝑘] evolves in discrete time 𝑘 = 1, 2, ... according to:

𝐼𝑖 [𝑘 + 1] = (1 − 𝛿𝑖 )𝐼𝑖 [𝑘] + (1 − 𝐼𝑖 [𝑘] − 𝑅𝑖 [𝑘])
∑𝑁

𝑗=1 𝛽𝑖 𝑗 𝐼 𝑗 [𝑘],

𝑅𝑖 [𝑘 + 1] = 𝑅𝑖 [𝑘] + 𝛿𝑖 𝐼𝑖 [𝑘],

𝑆𝑖 [𝑘] = 1 − 𝐼𝑖 [𝑘] − 𝑅𝑖 [𝑘].

Here, 𝛽𝑖 𝑗 denotes the infection probability from region 𝑖 to region 𝑗 ,
and 𝛿𝑖 denotes the curing probability of region 𝑖 .

Neither the curing probabilities 𝛿𝑖 nor the infection probabilities

𝛽𝑖 𝑗 are known for the COVID-19 epidemic, so we consider no a

priori knowledge on both of them in this research. Using NIPA and

LASSO, estimations
ˆ𝛿𝑖 and ˆ𝛽𝑖 𝑗 of the unknown spreading parameters

𝛿𝑖 and 𝛽𝑖 𝑗 will be made to reconstruct the infection network, based

on the reported number of infected individuals.

3.1.2 NIPA algorithm. NIPA, or the Network Inference-based Pre-

diction Algorithm, is used to process the SIR time series and produce

the estimates
ˆ𝛿𝑖 and ˆ𝛽𝑖 𝑗 of the unknown spreading parameters. The

SIR time series 𝑣𝑖 [1], ..., 𝑣𝑖 [𝑛] are obtained by processing raw data

of the confirmed number of infection counts of every Mexican state.

NIPA exists of three steps [5, 7, 8]:

(1) Data preprocessing The raw data of confirmed numbers of

infected individuals are processed to obtain an SIR time series

𝑣𝑖 [1], ..., 𝑣𝑖 [𝑛] of the viral state for every region 𝑖 . We denote

the discrete time as 𝑘 = 1, 2, ...𝑛, where 𝑛 is the total number

of observed days, and the first reported infection case as day

𝑘 = 1.
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Fig. 2. Reported infections per day per Mexican state

(2) Network inference Based on the time series 𝑣𝑖 [1], ..., 𝑣𝑖 [𝑛]
obtained by the data processing, the estimates

ˆ𝛿𝑖 and ˆ𝛽𝑖 𝑗 of

the unknown spreading parameters 𝛿𝑖 and 𝛽𝑖 𝑗 are obtained.

These estimates are obtained by network inference, where

the goal is to estimate and construct the infection matrix 𝐵 of

infection probabilities from the SIR viral state observations.

The details of our network inference approach are illustrated

in section 3.4. The network or true adjacency matrix B is

inferred by the LASSO [5, 8, 17].

(3) Iterating SIR model Finally, the estimates
ˆ𝛿𝑖 and ˆ𝛽𝑖 𝑗 from

the inferred infection matrix result in an SIR model. This

model is iterated for future times 𝑘 to predict the evolution

and thus the spread of the virus.

Pseudo-code for the NIPA algorithm is provided in Appendix A.

3.2 Infection counts data set
For the raw infection counts data, we are working with the daily

reported infection numbers for every Mexican state provided by

Mexican research center Conacyt [18]. The reported infections from

the data set start at 26-02-2020 and end on 15-05-2023, covering the

32 states of Mexico over a 3 year time period. Therefore, the initial

time 𝑘 = 1 corresponds to February 26, 2020. The data set also con-

tains the population size 𝑝𝑖 of every state. Additional visualisation

of the data set is provided in Appendix B.

3.3 Preprocessing data
The next step is obtaining the reported fraction of infections time

series in every region 𝑖 = 1, ..., 𝑁 from the reported infected individ-

uals 𝑁𝑟𝑒𝑝,𝑖 [𝑘], needed for the viral state vector from definition 1.

We obtain the fraction of infected individuals 𝐼𝑟𝑒𝑝,𝑖 [𝑘] in region 𝑖

at time 𝑘 as follows:

𝐼𝑟𝑒𝑝,𝑖 [𝑘] = 𝑁𝑟𝑒𝑝,𝑖 [𝑘]/𝑝𝑖

As shown in figure 2, the data exhibits fluctuations around every

7 day cycle. We make the assumption that this is caused by fewer

reports of COVID-19 infections during the weekend, as every dip is

on average around weekend days. To compensate for these fluctua-

tions, we apply a rolling average with a 7 day period on the reported

Fig. 3. The infection counts graph for the state Aguascalientes over time,
with the true data points in blue and the averaged data points in red.

time series, using the rolling mean command from the Python

library Pandas. The effect is illustrated in figure 3.

Based on the reported number of infection counts 𝑁𝑟𝑒𝑝,𝑖 [𝑘], our
goal is to obtain an SIR viral state vector for every region 𝑖 as defined

in (1). Because 𝑆𝑖 [𝑘] = 1−𝐼𝑖 [𝑘]−𝑅𝑖 [𝑘] and the fraction of infectious
individuals 𝐼𝑖 [𝑘] follows from 𝐼𝑟𝑒𝑝,𝑖 [𝑘] [7], it suffices to determine

the fraction 𝑅𝑖 [𝑘]. However, 𝑅𝑖 [𝑘] is not known. We can assume

that at the initial time 𝑘 = 1 𝑅𝑖 [1] = 0 holds. And from definition

2 we can calculate 𝑅𝑖 [𝑘] for any time 𝑘 ≥ 2 as long as the curing

probability 𝛿𝑖 is known, which it is not.

Hence, following the procedure of Prasse et al. [7], we consider

50 equidistant candidate values for 𝛿𝑖 , ranging from 𝛿𝑚𝑖𝑛 = 0.01 to

𝛿𝑚𝑎𝑥 = 1. The set of candidate values is defined asΩ = {𝛿𝑚𝑖𝑛, ..., 𝛿𝑚𝑎𝑥 },
and for every candidate value 𝛿𝑖 ∈ Ω the fraction 𝑅𝑖 [𝑘] follows
from (2), leading to 50 potential sequences 𝑅𝑖 [1], ..., 𝑅𝑖 [𝑛]. The cur-
ing probability 𝛿𝑖 and its corresponding sequence 𝑅𝑖 [1], ..., 𝑅𝑖 [𝑛]
is estimated as the element in Ω that resulted in the best fit of the

SIR model (2), and therefore the first step in the network inference

phase.

3.4 Network inference
Our goals is to infer the adjacency matrix, otherwise called infection

matrix, from the observed infection counts for all the regions 𝑁 .

As the infection probability 𝛽𝑖 𝑗 specifies the contacts of individuals

between region 𝑖 and region 𝑗 , the contact network or infection

adjacency matrix is given by the following 𝑁 × 𝑁 matrix:

Definition 3. 𝐵 =
©«
𝛽11 𝛽12 . . . 𝛽1𝑁
.
.
.

.

.

.
. . .

.

.

.

𝛽𝑁 1 𝛽𝑁 2 . . . 𝛽𝑁𝑁

ª®®¬
Prasse et al. observe from the SIR equations in (2) that even though

𝛽𝑖 𝑗 appears linearly, the SIR state variables 𝑆𝑖 , 𝐼𝑖 and 𝑅𝑖 do not [5, 7].

Therefore, from (2), the infection probabilities 𝛽𝑖 𝑗 satisfy:
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Definition 4. 𝑉𝑖 = 𝐹𝑖
©«
𝛽𝑖1
.
.
.

𝛽𝑖𝑁

ª®®¬ for all regions i = 1, ..., N.

The (𝑛 − 1) × 1 vector 𝑉𝑖 and the (𝑛 − 1) × 𝑁 matrix 𝐹𝑖 are given

by:

Definition 5. 𝑉𝑖 =
©«

𝐼𝑖 [2] − (1 − 𝛿𝑖 )𝐼𝑖 [1]
.
.
.

𝐼𝑖 [𝑛] − (1 − 𝛿𝑖 )𝐼𝑖 [𝑛 − 1]

ª®®¬
and

𝐹𝑖 =
©«

𝑆𝑖 [1]𝐼𝑖 [1] . . . 𝑆𝑖 [1]𝐼𝑁 [1]
.
.
.

. . .
.
.
.

𝑆𝑖 [𝑛 − 1]𝐼𝑖 [𝑛 − 1] . . . 𝑆𝑖 [𝑛 − 1]𝐼𝑁 [𝑛 − 1]

ª®®¬
3.4.1 Least absolute shrinkage and selection operator (LASSO). As
this paper takes a network inference approach based on the research

done by Prasse and Van Mieghem [5], we apply a variation of the

LASSO to the linear system as described in (4) [7, 17]. For each given

row 𝑖 , we solve the LASSO to find the set 𝛽𝑖1, ..., 𝛽𝑖𝑁 that minimizes

the quadratic error of the linear system (4):

Definition 6. 𝑚𝑖𝑛
𝛽𝑖1,...,𝛽𝑖𝑁

𝑉𝑖 − 𝐹𝑖
©«
𝛽𝑖1
.
.
.

𝛽𝑖𝑁

ª®®¬

2

2

+ 𝜌𝑖
∑𝑁

𝑗=1, 𝑗≠𝑖 𝛽𝑖 𝑗

The sum in the objective of (6) is an _1-norm regularisation term

to avoid overfitting [7, 17]. The regularisation parameter in the

LASSO is given by 𝜌𝑖 . To determine the correct regularisation pa-

rameter, we consider 100 candidate values, specified by the set

Θ𝑖 = {𝜌𝑚𝑖𝑛,𝑖 , ..., 𝜌𝑚𝑎𝑥,𝑖 }. For every value of 𝜌𝑖 ∈ Θ𝑖 , we compute

the Mean Squared Error𝑀𝑆𝐸 (𝛿𝑖 , 𝜌𝑖 ) by 3-fold-cross-validation.

The rows of𝑉𝑖 and 𝐹𝑖 are divided into a training set 𝐹𝑖,𝑡𝑟𝑎𝑖𝑛,𝑉𝑖,𝑡𝑟𝑎𝑖𝑛
and a test set 𝐹𝑖,𝑡𝑒𝑠𝑡 ,𝑉𝑖,𝑡𝑒𝑠𝑡 . The test set is set to be 30% of the orig-

inal data set. Under these parameters, we compute the infection

probability solution 𝛽𝑖1, ..., 𝛽𝑖𝑁 to the LASSO (6) on the training set

of every fold 𝐹𝑖,𝑡𝑟𝑎𝑖𝑛,𝑉𝑖,𝑡𝑟𝑎𝑖𝑛 . This yields a𝑀𝑆𝐸 (𝛿𝑖 , 𝜌𝑖 ) that equals:

Definition 7. 𝑀𝑆𝐸 (𝛿𝑖 , 𝜌𝑖 ) =

𝑉𝑖 − 𝐹𝑖
©«
𝛽𝑖1
.
.
.

𝛽𝑖𝑁

ª®®¬

2

2

The final estimate 𝛽𝑖1 (𝛿𝑖 ), ..., 𝛽𝑖𝑁 (𝛿𝑖 ) for the infection probabil-

ities of infection matrix B (3) is obtained by solving the LASSO

(6) on the whole matrix 𝐹𝑖 and vector 𝑉𝑖 . To solve the LASSO, the

Scikit-learn library’s linear_model Lasso is used with the reg-

ularisation parameter 𝜌𝑖 as the alpha value [19].

4 RESULTS
We used the preprocessed data set as described in section 3, with

𝑁 = 32 states, 𝑛 = 875 days and 𝑘 = 1 set to February 26, 2020.

Running the NIPA algorithm over this dataset to infer the adjacency

matrix B took ≈ 8.5 hours. The candidate values for 𝛿𝑖 and 𝜌𝑖 were

set as described in section 3. The algorithm presented us the follow-

ing estimates 𝛽𝑖1 (𝛿𝑖 ), ..., 𝛽𝑖𝑁 (𝛿𝑖 ) with 𝑁 = 32:

Fig. 4. Infection interaction network between all the states of Mexico, with
the infection probability 𝛽𝑖 𝑗 added as weight to the edges.

Fig. 5. Relative infection counts over time for each mexican state.

𝐵 =

©«

0 0 0, 01539715 . . . 0

0 0 0, 01316153 . . . 0

0 0 0, 17103391 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0, 0169794 . . . 0

ª®®®®®®¬
where B is an 32×32matrix. The full estimated rows are presented

in a heatmap in figure 6.

We put these results back into the context of the infection net-

work, where the infection probabilities in infection matrix B form

the weight of the edge between two region nodes 𝑖 and 𝑗 . It is pos-

sible for a node to have an edge directed to itself. The network is

shown in figure 4.

4
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Fig. 6. Heatmap of all estimated infection probabilities 𝛽𝑖1, ..., 𝛽𝑖𝑁 for each state 𝑖 .

5 DISCUSSION & FUTURE WORK
Some observations can be made from the inferred interaction net-

work in figure 4, as well as the results in the infection matrix B in

figure 6. First of all, the three states Baja California Sur, Colima and

Distrito Federal have by far the most incoming edges from other

states, with Baja California Sur having incoming infection rates

from almost every other state, including itself. Furthermore, the

state Quintana Roo has 6 outgoing edges to other states, which is

more than all the other states. If we compare these weights to the

true, relative data in figure 5, we observe that all these aforemen-

tioned states have reported relatively high infection counts over

time. This observation therefore supports the assumption that high

numbers of infection counts in a region are reflected in the generated

infection matrix, and thus in the final interaction network.

Moreover, the aforementioned states have a high touristic attrac-

tion, as well as international airports. Even though local govern-

ments in Mexico took measures like suspending flights and restrict-

ing the tourism industry over the course of the pandemic [20], there

are also many cases reported where there were little restrictions

to (international) tourism [21]. Moreover, there were cases where

these restrictions were present locally, but business and tourism still

thrived, albeit at a lower scale. It was also shown that international

tourism increased noticeably at the end of 2020 [21, 22], and that

touristic visitors from the US continued to arrive at Mexican touris-

tic destinations over the course of the pandemic. Therefore, we put

forward that the shown infection interactions from states like Baja

California Sur and Quintana Roo might be explained by the inter-

actions and dynamics of (international) visitors during COVID-19,

therefore reflecting on the true situation.

Another observation is that most of these states have a 0 infection

probability weight calculated for the other states, and that all the

weights of the infection matrix B from the results are very small.

This might be explained by the observation that we begin with very

small fractions caused by small infection numbers in large state

populations. Even though an infection matrix could be inferred for

these fractions, a solution for these small fractions might have to be

found in the future.

Furthermore, it was expected that most states would have an

infection interaction > 0 with themselves, but in the results this is

only the case for Baja California Sur. This might also be explained by

the observation that we are working with very small fractions, and

that these interaction parameters therefore cannot be fully estimated

by the LASSO.

6 CONCLUSION
In this research, we attempted to infer the infection matrix B from

the Mexican COVID019 infection count time series using NIPA. We

were able to infer an infection matrix from this data, although a

lot of the infection probabilities in the matrix were 0. We attribute

these results to the small numbers we are working with during the

network inference. More research is needed to find out how to infer

these very small fractions with better results.

Furthermore, from the data that the infection network provided

us, it could be concluded that the observed patterns were a reflection

ofMexico’s true interactions between regions. Therefore, we suggest

that NIPA is still a promising way to infer the dynamics of a virus

on a larger set of time series.
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Fig. 11. Relative infection counts

Fig. 12. Relative infection counts per 100.000 people
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A NIPA ALGORITHM PSEUDO-CODE
Both algorithms from the pseudocode figures 7 and 8 were provided

by the procedure in the research from Prasse et al. [7]. The LASSO

was done with the Python library scikit-learn LASSO [19]. Line 4
of the NIPA algorithm was exchanged by the rolling mean Pandas
function.

B VISUALISATION OF THE INFECTION COUNTS DATA
SET

These files are a visualisation of the data set in the form of absolute

and relative numbers on both a linear and logarithmic scale.
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