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ABSTRACT
Deep neural networks have achieved promising results in object

detection tasks. However, state-of-the-art networks are computa-

tionally expensive due to thousands of parameters, making them

not efficient to deploy on hardware-constrained systems such as

mobile phones or edge devices. To this end, model compression

approaches like pruning and quantization have shown promising

improvements to reduce models’ complexity with low-performance

costs. This work will address the possibilities to apply those model

compression techniques to object detection models, enabling the

models to work on edge devices. In this work, we first explore the

state-of-the-art object detection model MobileNetv2-SSD, then use

low-magnitude pruning to remove the redundant parameters in

the model. We will further convert this model to TensorFlow Lite

format with post-training quantization and deploy it to Android

devices to evaluate the latency and accuracy of the new model

on object detection tasks. The final model runs on Google Glass

Enterprise Edition 2 in 10+ FPS with 72% of parameters pruned and

the model is integer quantized without significant loss in accuracy.

KEYWORDS
prunning, quantization, object detection, compressed objects detec-

tion

1 INTRODUCTION
The computationally expensive nature of deep neural networks

poses challenges for object detection applications, particularly in

resource-constrained environments, necessitating the need to re-

duce costs and improve sustainability. Object detection applications

are often cooperated with the usage of complex deep neural net-

works. With the rise of IoT and edge devices, more and more deep

neural networks are incorporated into those systems. However,

deep neural networks are powerful yet very computationally ex-

pensive. Due to the fact that deep neural networks have several

layers with millions of parameters, they usually give good per-

formance. However, they need tons of training data and needs to

perform billions of arithmetic operations, thus making the deeps

neural networks rely heavily on high-performance hardware such

as GPUs, while real-world applications are usually restricted in

hardware resources (e.g. mobile phones and embedded devices)

[28]. Computationally expensive also means reduction in the sus-

tainability of the system. OpenAI’s GPT-3, according to the research

paper of Hugging Face, emitted around 550 tons of CO2 for its 14.8

days of training [27]. Thus, it is important to reduce the expensive-

ness of the networks to first allow the models to run on hardware-

constrained devices and second to improve the sustainability of the

system.

Numerous studies have been conducted on reducing resource con-

sumption in object detection models through compression tech-

niques like pruning and quantization ([6], [12], [24], [15]). Com-

pression techniques have shown to be a promising way to reduce

DNNs’ memory and latency with little loss in accuracy. Pruning

reduces the complexity of the model by removing non-necessary el-

ements in different layers ([23], [26]). Quantization converts 32-bit

floating point weights to a lower resolution 8-bit integer thus can

reduce computational and memory costs ([11], [17]). The experi-

mental results of those techniques mentioned on [6] suggest that

the models can be compressed with little loss in accuracy while

reducing millions of parameters, thus a lot of computation power

and memory resources saved. However, many of the researches run

and evaluate compressed models on PCs, which have way more

hardware resources than an edge device.

Thus, my research will try to address whether a compressed model

can run on hardware-restricted devices such as mobile phones and

edge devices with reasonable performances. This work will first dis-

cover the possibilities of applying low-magnitude pruning over the

MobileNetv2-SSD object detection model. Then the model(s) will

be converted to TensorFlow lite format with post-training quanti-

zation and then deployed to Samsung Galaxy S23 and Google Glass

Enterprise Edition 2 to evaluate the performance in terms of frames

per second.

The research thus contributes to guiding engineers towards choos-

ing the suitable model(s) and compress techniques for their appli-

cation noticing the trade-offs between different models and tech-

niques. It also proposes an overview of the performance of pruned

and quantizedMobileNetv2-SSD onGoogle Glass Enterprise Edition

2, which has limited studies at the time this work was conducted.

The rest of the paper will first go through the general knowledge

of object detection models and pruning on object detection models

in section 2. Section 3 discusses in detail our model in this work

MobileNetv2-SSD and low-magnitude pruning concept as well as

particular issues and how they were implemented in this work. Sec-

tion 3 further provides evaluation metrics to evaluate the models’

accuracy and performance. Next, section 4 explains post-training

quantization and converting the model to TensorFlow lite format

for mobile deployment. Section 5 points out the experimental setup

and is followed by experimental results and analysis. The paper is

concluded by section 6, containing the conclusion and future works.



2 PRUNING OBJECT DETECTION MODEL
2.1 Object detection model
There are multiple models for object detection tasks. They vary

in layers architecture, number of parameters, and performance,

typically divided into two-stage detectors which are usually slower

but more accurate due to the fact that two-stage detectors involve

two stages: region proposal and then the classification of those

regions and refinement of the location prediction while single-

stage detectors are faster but have less accuracy since they skip

the region proposal stage and yields final localization and content

prediction at once, giving them much faster speed than the former

ones. Work by Syed et al. [31] provides an overview and comparison

of different state-of-the-art object detection models, benchmarked

by accuracy and frames per second that the model can run on. Some

of the mentioned models in that paper suggest we can run on a

real-time basis with certainly high accuracy, those would mentions:

the two-stage detector YOLOv4 [2] which is more accurate but

slower, single-stage detector MobileNetv2-SSD [5] which is faster

but have less accuracy. In this work MobileNetv2-SSD is chosen for

its better inference speed which is suitable for mobile devices but

still maintains relatively good accuracy ([5], [31]).

2.2 Pruning on object detection models
Object detection models make use of convolutional neural networks

(CNN) which have multiple expensive convolutional layers. Matrix

multiplications are used to build the completely connected layers.

The convolution layer convolves k x k kernels with n feature maps

from preceding layer. If the following layer comprises m feature

maps, then n x m convolutions and n x m x ( H x W x k x k )

multiply–accumulate operations are carried out, where W and H

stand for the next layer’s feature map’s width and height. Thus it

is important to reduce the complexity of the convolutional layers

[1]. One way to achieve it is by using pruning techniques.

Pruning refers to the process of reducing the size of a neural net-

work by removing unnecessary connections (weights) between

neurons. The idea behind pruning is to identify and eliminate the

connections that contribute less to the overall performance of the

model. This helps to reduce the computational and memory re-

quirements of the network, making it more efficient. Pruning can

be traced back to early work by Le Cun et al. introducing Optimal

Brain Damage, which reduces the number of parameters in a prac-

tical neural network [19]. Later work by Babak Hassibi and David

G. Stork, Optimal Brain Surgeon further explore the possibilities

of removing redundant parameters using second-order derivative

information [14]. An illustration of pruning is given in Figure 1.

Several research studies pruning techniques on convolutional neu-

ral networks for object detection tasks ([24], [12], [13], [3], [22])

have been conducted over recent years. Recent research by Song

Han et al. (2015) [13] claims to pruned state-of-the-art CNN models

VGG16-SSD, reducing the number of parameters by 13x without

loss in accuracy.

Pruning generally decreases the accuracy of the model as they

remove parameters [32]. Thus pruning-fine tuning pipelines are

created to minimize the accuracy loss. Fine-tuning involves train-

ing the pruned network on the original dataset or a subset of it.

This step helps the network regain the performance lost during

Figure 1: Pruning before and after

Figure 2: Schematic of two types of pruning methods.

Figure 3: Typical pruning finetuning pipeline

pruning and allows the remaining connections to adapt and relearn

the important patterns in the data. This work applies the pipeline

suggested by Liang Chen et al. [4] in their work, as shown in Figure

3.

There are two main categories of pruning: structure pruning, which

refers to pruning the entire convolutional layers, channels, or fil-

ters, and unstructured pruning, which involves removing individual

connections or weights in a neural network without any specific

structure or pattern. An overview of the two categories of pruning

can be seen in Figure 2 [4].

Another novel pruning technique could mention anchor pruning,

which aims to reduce the number of anchor boxes used by the

model to detect objects on an image, thus reducing the complexity

of the network. Recent work from Maxim Bonnaerens et al. [3] well

covered this method.

In this work, we focus on low-magnitude pruning, an unstructured

pruning method that entails removing the insignificant weights,

resulting in a more sparse network that is more suitable to deploy

to Edge devices.
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Figure 4: SSD MobiletnetV2 Model Architecture, using a Mo-
bilenetV2 backbone.

3 PRUNING CANDIDATE SELECTION
3.1 SSD MobilenetV2
Single shot detector SSD MobilenetV2 was introduced by Yu-Chen

Chiu et al. [5] in their work as an attempt to replace the traditional

VGG16-SSD object detection model by replacing VGG16 backbone

network with a less computationally expensive MobilenetV2 net-

work. Figure 4 represents the architecture of the MobilenetV2-SSD

model, with the original VGG16 backbone network replaced by

a MobinetNetV2 backbone network. The backbone network is at-

tached to the Single Shot Detector SSD head. The model generates

six feature maps with different dimensions for the SSD detector

head to perform object detection.

The entire implementation of this work is implemented on Jupyter

Notebook hosted on Kaggle [18] for dedicated GPU for faster train-

ing process. SSD MobilenetV2 Object Detection model is imple-

mented using TensorflowAPIs by attaching the suppliedMobilenetV2

backbone network [29] with a Single Shot Detector head [21]. Re-

sulting in a final model consisting of 178 layers with 8,527,790

parameters, which 8,493,678 of them are trainable parameters, al-

lowing detection of up to a total of 200 objects belonging to 20

Pascal VOC classes. This model takes an image of shape 300x300x3

and result in 3 output float arrays representing the detected objects’

labels, bounding boxes and confidence scores. The model was then

initially trained on VOC 2007, VOC 2012 training datasets for 150

epochs with batch size of 32 and evaluated with VOC 2007 test

dataset. The result acts as the base model for applying pruning

techniques, which will be discussed next.

3.2 Low Magnitude Pruning
Themost common and straightforward pruning technique ismagnitude-

based pruning, aims to remove weights or filters with small magni-

tudes in one or multiple layers, forcing them to become 0 until the

layer(s) reach target sparsity levels, which is defined by:

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦_𝑙𝑒𝑣𝑒𝑙 =
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠_𝑝𝑟𝑢𝑛𝑒𝑑

𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

Low-magnitude pruning can be done by having a bit mask that has

the same size and shape as the layer, determining which weights to

be zeroed out. The calculation of the bit mask for a weights matrix

Figure 5: Illustration of how applying bit mask to zero out
insignificant weights in a 4x4 weights matrix. The lowest 25%
of weights are turned to 0.

is as follows:

𝑏𝑖𝑡𝑖 = 0 if𝑤𝑖 is set to be pruned. Otherwise 𝑏𝑖𝑡𝑖 = 1

Figure 5 further illustrate the ideas of low magnitude pruning by

multiplying bit mask matrix with the weights matrix to zero out

insignificant weights.

In order to find the appropriate amount of parameters to be pruned,

in this work, different sparsity levels of global unstructured low

magnitude pruning [8] is implemented using TensorFlow frame-

work. Pruning will be applied to every Conv2D layer [7] of the

MobileNetv2-SSD network, as they have the most parameters in the

network thus it is possible that some of the convolutional layers are

redundant. The parameters in the layers with prune low-magnitude

applied on will continuously be pruned until those layers reach a

level of sparsity. The higher sparsity level, the more parameters are

pruned out of the model, giving faster inference speed but possi-

bly lower the model’s accuracy. After pruning, the model will be

fine-tuned using the same dataset for another 20 epochs to improve

the overall accuracy of the new pruned model by retraining un-

pruned parameters from their final values, following the pipeline

as discussed in 2.2. Figure 6 visualize the weights pruning portion

of layer "3_conv_boxes_output/Conv2D", a convolutional layer in

the model, after being pruned with different levels of sparsity. Vio-

let points represent weight being 0, while Yellow points represent

weight different than 0. Since all 3 sparsity levels were pruned from

a base model, the weights were pruned at sparsity level of 0.35 is

included in the weights that were pruned in sparsity level of 0.5

and so on with sparsity level of 0.72.

3.3 Evaluation metrics
For object detection tasks, there are multiple metrics can be used to

evaluate the models’ accuracy, those could mention Intersec over

Union (IoU) measuring the overlap between the predicted bound-

ing boxes and the ground truth bounding boxes, Average Precision

(AP) measuring the precision of object detection at various levels

of recall, mean Average Precision (mAP) is the mean of average

precisions across different object classes [25], etc. In this work,
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Figure 6: Visualization of a Convolutional Layer being
pruned with 0.35, 0.72 and 0.5 sparsity with prune low-
magnitude.

mAP is used for evaluating the models’ accuracy as mAP evolves

in the usage of both IoU and AP, providing an overall measure of

the algorithm’s performance by considering the performance of

individual classes. The evaluation is performed over images data

from the Pascal VOC test dataset with the computation of mAP

implemented based on Pascal VOC Challenge article [10].

Additionally, the model size and frames per second rate of the An-

droid application will also be measured to estimate the compression

rate of the model as well as evaluate the precision-inference speed

tradeoff of the new pruned models.

4 TENSORFLOW LITE AND POST TRAINING
QUANTIZATION

TensorFlow lite is a set of tools that enable developers to execute

models efficiently on mobile, embedded and edge devices with fast

inference speed compared to normal TensorFlow models [9]. Ten-

sorFlow models can be converted into TensorFlow lite for mobile

inference with options to quantize using TensorFlow’s post-training

quantization APIs, which was first introduced in June 2019 as an

additional part for the TensorFlow’s model optimization toolkit

[30]. Quantization reduces the numerical precision of weights and

activations thus reduces the memory and computational power re-

quired, improves latency performance for TensorFlow (lite) models

while maintaining the model accuracy with minimal loss [16]. As

a result of quantizing model with floating point representation of

32-bit data type to integer which is 8-bit data type, model’s size

can be 4x smaller and inference speed significantly improves. A

study by Google Inc. team [16] shows that quantizated MobileNet

model achieves up to 50% reduction in running time with a minimal

loss in accuracy (around 1.8%), the test was made on a hardware-

constrained mobile phone with Qualcomm Snapdragon 835 core.

In this work, the pruned models were converted to tensor flow lite

format (tflite) using Tensorflow lite Converter APIs, allowing the

model’s execution on Android devices. The models were exported

as three different formats default using float32 data type, quantized

to float16 and quantized to integer8 data type. Due to the natural

size of the data types, quantized float16 model will have 2x smaller

and integer8 model will have 4x smaller size than the Float32 model,

which makes the inference speed of those models faster.

5 EXPERIMENT AND RESULTS
The aim of the experiments is to first evaluate the pruning algo-

rithms’ effects on the models’ size and accuracy and secondly assess

the accuracy-speed tradeoffs on TensorFlow lite models over mo-

bile devices to figure out at which sparsity levels and quantization

methods the application can run with relatively high accuracy and

speed.

In first step, pruning low-magnitude algorithm will be applied on

MobileNetv2-SSD model with different levels of sparsity, namely 0,

0.35, 0.65, 0.72, 0.8. For each level of sparsity, mAP and model size

will be calculated. mAP refers to the Precision of the model while

lower model size can be helpful to lower the inference speed of the

model.

Next, depending on the performance of pruned models, 2 pruned

models will be selected to be further quantized and converted into

TensorFlow lite format using TensorFlow converter APIs. Since

TensorFlow lite converter supports post-training quantization to

different data types, the quantized models will either be in default

non-quantized float32 data type, quantized to float16 data type or

in integer data type.

For each of the pruning-quantization method combinations, model

size will be measured, mAP will be calculated based on VOC test

data and FPS will be recorded while running an objects detection

application on Samsung Galaxy S23 (and Google Glass Enterprise

Edition 2) to analyze the trade-offs between model inference time

and accuracy.

5.1 Dataset and data preprocessing
Object detection models often rely on huge amounts of data in

form of images, with annotations of bounding boxes and labels for

objects inside images. Some famous datasets for object detection

tasks could be mentioned COCO, Pascal VOC, .. ([10], [20]). This

work uses Pascal VOC 2007 and VOC 2012 object detection datasets

for both training and validating as well as test data for evaluating

the predictions for its availability over TensorFlow dataset loader.

Pascal VOC consists of more than 20000 images of 20 classes. With

that amount of data, object detection model should have enough

input to be robust and with relatively high accuracy in detecting

objects belonging to those 20 classes. In order to train the model,

data needs to be preprocessed to match the input shape of the

model, which is an image of size 300x300 with 3 color channels.

Data will first be loaded using TensorFlow dataset loader, resized

to match the model input size and convert to float32 data type. The

final image data will be of shape (300, 300, 3) of data type float32,

with each of the value between range [0, 1], matching the model’s

input layer’s shape.

5.2 Devices
Both devices used for testing and evaluating the model use Android

as their operating system. Thus, an Android Studio application is

developed, allowing the evaluation of the model’s performance

visually by eyes as well as by measuring the frames per second rate.

The application was made based on the sample application given by
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Figure 7: Example of the object detection app, laptop mon-
itor is detected as class ’tvmonitor’ with bounding box and
probability displayed.

TensorFlow development team. The application itself was written

in Kotlin as Kotlin having great supports from TensorFlow for im-

porting the tflite model and executing tflite interference functions.

TensorFlow lite model’s execution graph will be loaded to memory,

allowing the application to run inference on input image of shape

300x300x3 with data type of either float32 or int8. Since the input

getting from devices’ cameras is of a different resolution, additional

input preprocessing steps need to be performed. The Android app

continuously receives camera frames as bitmap input, converting

them to TensorFlow buffers then resizes to 300x300x3 shape then

feed the TensorFlow buffer to the model for inferencing. The data

type of the buffer must be manually defined to match with the data

type of our model, which is either float32 or int8 depends on the

quantization method used. The output of the object detection model

is 3 TensorFlow buffers representing labels, bounding boxes and

confidence scores of the detected objects. Those TensorFlow buffers

are visualized on the device’s screen as blue boxes with the labels of

the objects, confidence scores bounding boxes surrounding objects.

An example is shown in Figure 7.

5.2.1 Samsung Galaxy S23. The application will first be deployed

to Samsung Galaxy S23 using Qualcomm SM8550-AC Snapdragon

8 Gen 2 Octacore (1x3.36 GHz Cortex-X3 & 2x2.8 GHz Cortex-A715

& 2x2.8 GHz Cortex-A710 & 3x2.0 GHz Cortex-A510), Adreno 740

GPU and runs on Android 13. This is one of the most powerful

commercial cellphones available in the market at the time of this

work.

5.2.2 Google Glass Enterprise Edition 2. The application will also

be installed on a Google Glass Enterprise Edition 2 for testing and

evaluating the compressed models, comes with Octa-core Kryo (2 x

2.52 GHz, 6 x 1.7 GHz) CPU, Adreno 615 GPU, runs on Android 8.1.

Google Glass Enterprise Edition 2 has lower computation power

than Samsung Galaxy S23 due to weaker CPU and GPU. Thus giving

us more input on the performance of the model over devices with

fewer resources available.

5.3 Pruning results
First, Figure 8 shows the relation between levels of sparsity with

the accuracy of the model and the model size. The horizontal line

represents the mean Average Precision of the model, higher mAP

Global sparsity level 0.00 0.35 0.5 0.65 0.72 0.80

mAP 0.489 0.508 0.52 0.479 0.472 0.429

Model size (MB) 31.83 23.77 19.54 15.11 12.84 10.22

Table 1: Pruning results.

means more accurate the model is. Vertical line meanwhile repre-

sents the size of the model measured in megabytes, lower model size

suggests faster inference speed of the models. Each sparsity level is

represented by a point in the figure, allowing a better overview of

the size-accuracy trade-off.

Sparsity levels of 0.35 and 0.5 increase model accuracy and reduce

the model size thus improving inference speed. Later levels of 0.65,

0.72 and 0.8 sparsity significantly reduce the model size however

show a small drop in mAP of 0.01, 0.017, and 0.06 respectively

compared to the base model. Pruning imposes tradeoffs between

model efficiency and accuracy in those later sparsity levels while

it is not the case on the former levels with sparsity levels equal or

lower than 0.5. Thus, we can observe from pruning experiment that

sparsity level does not always correlate with the accuracy and the

size of the model. Indeed, we need to find out a sparsity level where

the model gets the highest accuracy but with the most parameters

pruned.

Among all sparsity levels in this work, the sparsity level of 0.5

gives the best accuracy (mAP = 0.52), which is even higher than

the base non-pruned model (mAP of 0.52 versus mAP of 0.489 in

the base model), with model size of 60% compared to the base non

pruned model. It suggests that around 50% of the parameters in

convolutional layers of MobileNetv2-SSD are actually helpful for

the inference accuracy of the model, while the other parameters

are redundant, leaving them non pruned cause the model to be less

accurate. In this work, sparsity levels of 0.5 and 0.72 imposes good

tradeoff between model size and mAP as sparsity level of 0.5 gives

the highest accuracy with model size of 6̃1% of the base model and

sparsity level of 0.72 reduces the model size by 60% with minimal

loss of 0.017 in mAP compared to the base model. Those two mod-

els will be further compressed using post-training quantization to

perform experiments on Android devices.

5.4 Quantization and Android application
performance

As in Table 2, quantization shows consistent results for the models

with the same sparsity level in terms of accuracy, given that the

model is converted to TensorFlow lite format. Despite a 0̃.060.07

mAP lost in models’ mAP when converting from TensorFlow model

into TensorFlow lite format, the mean Average Precision of float16

and int8 models impose insignificant difference of 00.05 comparing

to the float32 models, regardless the model is non pruned, pruned

with sparsity level of 0.5 or pruned with sparsity level of 0.72.

In all experimented models, float32 and float16 models’ accuracy

are roughly equal while int8 models show an insignificant loss in

accuracy. Furthermore, table 2 shows that integer quantized mod-

els show a significant increase in inference speed, represented by

frames per second measured on Samsung Galaxy S23. Non-pruned
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Figure 8: mAP andModel size with different levels of sparsity

Model mAP Model size FPS (SS S23) FPS (Glass EE2)

model_nonprune_base 0.489 31.83

model_nonprune_float32_tflite 0.424 31.61 11 7.57

model_nonprune_float16_tflite 0.426 15.82 12 7.57

model_nonprune_int8_tflite 0.421 6.7 15 10.41

model_prune50_base 0.52 19.54

model_prune50_float32_tflite 0.465 19.44 13 7.64

model_prune50_float16_tflite 0.465 10.77 14 7.69

model_prune50_int8_tflite 0.461 5.18 16 10.54

model_prune72_base 0.472 12.84

model_prune72_float32_tflite 0.409 12.77 14 7.81

model_prune72_float16_tflite 0.409 7.5 15 7.91

model_prune72_int8_tflite 0.404 3.66 18 10.72

Table 2: Models accuracy, size and performance for different
sparsity levels and quantization data types.

model is speeded up by 36% when quantized to integer, while this

number is 23% and 28% for models with sparsity levels of 0.5 and

0.72 respectively. Meanwhile, TensorFlow lite models in float16

data type show small amount of frames per second rate improve-

ment of 1 comparing to the base model, regardless the pruning

amount either be 0, 0.5 or 0.72 sparsity. Thus, integer quantization

of MobileNetv2-SSD model should be performed over pruned mod-

els to first compress the size of the model and second improve the

inference speed with insignificant loss in accuracy.

While pruning and quantization show small losses in mAP, the

TensorFlow lite models’ sizes are exponentially reduced depending

on the compression techniques used. The more parameters pruned

or the more compact data types used, the smaller model size will be.

In this work, the model with sparsity level of 0.72 and quantized

to integers have a compression rate of 9x smaller than the base,

non pruned model with a minimal 0.08 mAP reduction in terms of

accuracy.

Figure 9 shows the correlation between model size and speed in

form of frames per second. The horizontal axis represents the Ten-

sorFlow lite models’ size measured in megabytes while the vertical

axis measures the frames per second rate of those models. Three

sparsity levels are displayed in this figure: 0, 0.5, 0.72.

Figure 9: Correlations between model size and FPS

Following Figure 9, the frames per second rates of object detection

application, which represent the inference speed of the (compressed)

model(s), are correlative with the size of the model. The lower the

model size is, the faster inference speed the model can run. Sparsity

level of 0 without quantization gives the worst FPS performance

and sparsity level of 0.72 with integer quantization gives the best

FPS performance due to the fact that the latter model is 9x smaller

in size than the former. Furthermore, in this work, integer quan-

tized models have advantages over others float models in terms

of frames per second rate for about 3-4 frames per second on a

Samsung Galaxy S23 with minimal trade-offs in accuracy. Table

2 shows the same trends for FPS when deployed on Google Glass

Enterprise Edition 2. Hence it suggests that object detection models

can retain relatively good accuracy when quantizing models to

different data types namely float32, float16, int8. Thus, developers

can safely quantize TensorFlow lite models to Integers to improve

models’ performance with minimal loss in accuracy.

In this work, by combining pruning with sparsity level of 0.72 and

quantization to integer data type, the new TensorFlow lite model

can be speeded up by 7 FPS which is 60% improvement comparing

to non pruned model in float32 data format, while reducing accu-

racy by 4% (0.424 to 0.404). Meanwhile, pruning with sparsity level

of 0.5 and quantization to integer data type gives improvements of

45% speed up and increase accuracy by 8%. Either way impose a

good trade-off between accuracy and inference speed. In general,

the higher level of sparsity, the faster the model is. Depending on

the requirements of the applications regarding performance and ac-

curacy, developers can thus choose the best sparsity level to match

accuracy and speed criteria before converting the model to integer

TensorFlow lite model.

We further deployed the model to Google Glass Enterprise Edition 2

to evaluate the performance on a standalone hardware-constrained

small device. As shown in Table 2, all float models can run with

over 7 FPS, integer quantized models can run with 10+ FPS. This

indeed suggests that we can replace traditional object detection

applications on edge devices, which rely on streaming the recorded
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input to a powerful server side, predicting the output and return-

ing the output back to the application side, with object detection

applications using pruned and quantized TensorFlow lite models.

This way, the performance of the application not be affected by the

network connectivity, an unpredictable variable and not always

available. With a network of average 50 milliseconds one-way de-

lay, the streaming-based applications can only have a maximum of

10 FPS due to two-way data traffic delay, which is lower than the

application using pruned and integer quantized TensorFlow Lite

models.

6 CONCLUSION AND FUTUREWORK
In this work, we pruned state of the art object detection model

MobileNetv2-SSD with different sparsity levels and quantized using

TensorFlow APIs for better performance on hardware-constrained

devices. For pruning, it is important to find the suitable sparsity

level that imposes reasonable trade-offs between accuracy and per-

formance that match developers’ needs. For quantization, models

can be safely converted to TensorFlow lite format using TensorFlow

lite converter and quantized to smaller data types to compress the

model by two times using float16 data type or four times using

8-bit integer8 data type. Using both methods, the model can be

compressed up to 9x smaller, giving around 60% improvement in

frames per second performance on Android devices with minimal

loss in accuracy. Moreover, the newmodel is deployed on hardware-

constrained Google Glass Enterprise Edition 2 giving interesting

results of 10+ frames per second.

This work can be extended to experiment with different model(s),

for instance, YOLOv5, and with different prune method(s), such

as structural pruning and pruning in specific layer(s) as for each

model, there would possibly be different sparsity level(s) as well

as pruning method(s) giving best result on accuracy-performance

tradeoff.
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