
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Asset Localization using the
Bluetooth Fingerprinting technique

Menke L. Veerman
B.Sc. Thesis

July 2023

Supervisors:
Dr. Duc Viet Le

Son Nguyen

Pervasive Systems Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7522 NB Enschede

The Netherlands



Acknowledgements

I would like to thank my supervisors, Dr. Duc Viet Le and Son Nguyen, for guiding me

through this graduation project. The meetings were helpful to ask for some elaboration or to

discuss some feedback. Additionally, I would also like to thank them for their fast responses

to email. These were really helpful when there was no meeting scheduled and I did not have

to wait before continuing.

ii



Abstract

Knowing where something is, and being able to quickly look it up on a phone. While also

having the ability to know where something has been can be of great value to evaluate and

improve workflows. A typical scenario could be in a warehouse where an employee on the

workfloor needs to locate a piece of equipment. Or that management would like to evaluate

the forklift’s usage.

Both of these can be done with the system that is developed as part of this research

project. The system described in this graduation project is divided onto two devices, a

Raspberry Pi and a remote server. The Raspberry Pi listens to Bluetooth Low Enegergy

(BLE) advertising packets that were emitted by a Thingy 52 from Nordic Semiconductor. The

Thingy 52 is a small, mobile device with many internal sensors that has a battery and can

be programmed. This device emits a BLE advertising packet every few seconds with data

such as temperature, humidity, CO2 Parts per million (PPM) and battery percentage while

remaining completely connectionless. This packet is received by a Raspberry Pi using a nRF

52 development board running the nRF BLE Sniffer software from Nordic Semiconductor.

The packet is then queued into a Redis Stream and later sent to Apache Kafka on the

remote server.

The remote server uses KSQL and Kafka Connect to join and send the packets with loca-

tion to a Time Series Database (TSDB) named QuestDB. An Express.js webserver interacts

with Apache Kafka and QuestDB, serving a Vue frontend that visualizes the Thingies on a

live map using MapBox. It also features a page where thingies can be added/deleted, whose

changes are immediately put into effect via the usage of Apache Kafka. The last page is

a historical page where Thingies can be inspected and viewed over a longer period of time

using different visualizations such as a heatmap, lines or only dots using downsampled data

from QuestDB.

The system was tested by applying a load at various aspects to find potential issues.

This identified a flaw regarding the data retrieval for the historical page on the dashboard.

iii



It also showed that the packets received by a Raspberry Pi can be sent without any data

loss to Apache Kafka. Overall, the system is not perfect, but is built to be improved and

expanded. Both in terms of features as scale.



Acronyms

ACL Access control list

AoA Angle of Arrival

API Application Programming Interface

BLE Bluetooth Low Enegergy

CRC Cyclic Redundancy Check

FOTA firmware over-the-air

IoT Internet of Things

LTS Long term support

MVC Model View Controller

MVT Model View Template

NCS nRF Connect SDK

PDU Protocol Data Unit

PPM Parts per million

RF Radio frequency

RPS Requests per Second

RSSI Received Signal Strength Indicator

RTOS Real-Time Operating System

SDK System Development Kit

v



SFLOAT Short float

SoC System on a Chip

SOC State of charge

SPA Single Page Application

TDoA Time-Difference of Arrival

TSDB Time Series Database

TWR Two Way Ranging

UWB Ultra Wide Band



Contents

Acknowledgements ii

Abstract iii

Acronyms v

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Technical background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background research 3

2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Thingy 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Bluetooth Low Energy vs Bluetooth (classic) . . . . . . . . . . . . . . 4

2.2.2 What are Bluetooth beacons . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.3 Bluetooth Low Energy advertising . . . . . . . . . . . . . . . . . . . . 5

2.3 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Dashboard layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.2 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Web frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



2.5.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.3 Styling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Current applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Current frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Methods and techniques 21

4 Conceptualization 23

4.1 Preliminary concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Dashboard concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Specification 35

5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 BLE packet transmission and reception . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Sensor readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2 Packet creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.3 Packet readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 The server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1 Apache Kafka in short . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.2 The architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.3 Splitting the location and packet into two topics . . . . . . . . . . . . . 47

5.3.4 Rasperry Pi Redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.5 Dashboard & webserver . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Implementation 50

6.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1 GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.2 Documentation & styling . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



7 Evaluation 53

7.1 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Discussion and conclusion 67

8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2.1 What is the best way to store the locations from the trackers? . . . . . 69

8.2.2 How can the dashboard be designed to be accessible and easy to use? 70

8.2.3 How can the reliability of the system be maximized? . . . . . . . . . . 70

8.2.4 What strategies can be used to optimize the scalability of the system? 70

9 Future work 72

References 74

Appendices

A GitHub repository layout 79

B Battery voltage mappings 82

C Dashboard layout 83

D Tests 87

D.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D.1.1 Testmachine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D.1.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D.1.3 Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D.2 Test configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D.2.1 K6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D.2.2 Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



D.3 Raw results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

E State of the art images 93

E.1 Localization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Chapter 1

Introduction

Indoor asset tracking can be a tool of big utility in places such as warehouses, hospitals

and other industrial sites. This tool stores the locations of assets in an indoor environment,

making it easy to locate assets. This can be useful in a variety of applications. It can be used

to find things that are lost quickly, reducing the time lost searching for it. Another application

would be to track fire extinguishers to prove conformation to safety guidelines. These are

just two examples out of the many other applications possible.

1.1 Problem statement

The system can be divided into two main parts; the localization and the visualization. Al-

though the work in this thesis will mainly focus on the visualization, it is constructed around

the localization. Because of this, there is first a technical overview of the localization. After

which the problem will be defined.

1.1.1 Technical background

The localization is the part that is responsible for actually getting a position (e.g. coordinates)

of a tracked asset. A tracker continuously broadcasts a BLE packet with some data in it, a

beacon. This beacon is received by various receivers across a room. A receiver consists of

a disc with 5 antennas, they listen for the signal strengths of the transmissions made by the

trackers. This perceived signal strength is also known as Received Signal Strength Indicator

(RSSI), which varies a bit for all antennas on a receiver. A receiver then transmits the

contents of a packet accompanied by the measured RSSI values to a centralized computer.

The usage of multiple antennas extend the operating range as well as improve accuracy

1



as there is more data to use. A receiver then transmits these perceived RSSI values along

with the beacon’s content as the centralized computer isn’t guaranteed to be in range of a

receiver, this extends the operating range of the system. Once all RSSI values of multiple

receivers have arrived at the centralized computer, machine learning is used to compute a

location of the origin of the beacon.

1.1.2 Problem definition

Once a position is computed, it is saved and passed on to the visualization part. Which is

responsible for everything onwards. The visualization of the data is an important aspect of

the system as it has the ability to make the data meaningful. As the number of trackers can

quickly grow to large numbers, it is important that the system can effectively and efficiently

show the locations of the trackers on a map. Independent of the number of trackers. This

dashboard should also be quickly accessible, allowing it to be used from anywhere where

something needs to be looked up quickly.

1.2 Research questions

With this the following research question has been defined:

How to design an accessible and efficient system that can visualize the locations

of the Bluetooth trackers?

To aid in answering the main research question, several sub research questions have been

defined:

1. What is the best way to store the locations from the trackers?

2. How can the dashboard be designed to be accessible and easy to use?

3. How can the reliability of the system be maximized?

4. What strategies can be used to optimize the scalability of the system?



Chapter 2

Background research

2.1 Hardware

A maximum of around 30 Thingy 52’s from Nordic Semiconductor were made available by

Dr. Duc Viet Le. They will be the trackers that emit the BLE beacons.

2.1.1 Thingy 52

The Thingy52 was released in 2017. It is a small development device based around their

nRF52832 Bluetooth 5 System on a Chip (SoC), which is quite similar to the popular ESP32

from Espressif, but without WiFi. The Thingy52 has a built-in battery, a few LED’s and many

built-in sensors: [1]

1. LIS2DH12 : Low power accelerometer

2. MPU-9250 : 9-axis Magnetometer, accelerometer and gyroscope.

3. HTS221 : Humidity and temperature sensor

4. BH1745NUC : Color sensor

5. CCS811 : Gas sensor

6. MP34DB02 : Digital microphone

All of which are available via the nRF Connect SDK (NCS) System Development Kit (SDK)

from Nordic Semiconductor [2]. With this SDK it is also possible to enable firmware over-

the-air (FOTA) updates.

3



2.1.2 Raspberry Pi

Not only were there many Thingy’s provided but also a Raspberry Pi 3B+. This is a small

64-bit quad-core ARM-based microprocessor. Released in 2016 and has 1GB of DDR2 ram,

WiFi and Bluetooth 4.2 (BLE). The operating systems on this that can be run are Linux such

as Raspbian and Ubuntu. [3]

2.1.3 Conclusion

There are many sensors available inside a Thingy 52 that can be used for transmitting of

auxilary data such as humidity, temperature and gas levels. A current limitation is that the

given Raspberry Pi 3B+ is limited to Bluetooth 4, limiting the amount of data that can be

transferred via advertising (see 2.2.3).

2.2 Bluetooth

As of the writing of this report, the localization aspect nor the trackers are ready and thereof

need to be programmed to emit BLE beacons as well. As both the trackers and visualization

need to interact with BLE beacons, there will be taken a look at their core functionality.

2.2.1 Bluetooth Low Energy vs Bluetooth (classic)

Bluetooth Low Energy (BLE) was included in the Bluetooth 4.0 standard released in 2010.

It was developed by Nokia, Nordic Semiconductor and a few others in search for a less

power consuming Bluetooth mode. Bluetooth (classic) is nowadays used for applications

which require a high bandwidth, such as file- and audio transmissions. However, Internet

of Things (IoT) applications have adopted BLE as it consumes less power and has a lower

bandwidth, which is often fine. As of this the project will continue with the usage of BLE, with

any occurrences of ”Bluetooth”, the Low Energy variant is intended. [4]

2.2.2 What are Bluetooth beacons

Bluetooth beacons are devices that keep transmitting Bluetooth advertising packets but do

not accept or make any connections. As they continuously transmit, they can be discovered

at any time and do not suffer from connection losses. Which is convenient for trackers that

move around a lot where maintaining a connection could be difficult [5].



2.2.3 Bluetooth Low Energy advertising

Devices can use advertising to indicate to other devices that they want to make a connection

or remain connectionless and keep transmitting data via beacons. In the Bluetooth spectrum

there are 40 channels of which 3 are dedicated to the advertising.

An advertising packet consists of 4 parts (figure 2.1):

1. Preamble

2. Access Address

3. Protocol Data Unit (PDU) (part of the Header in fig 2.1)

4. Cyclic Redundancy Check (CRC)

Figure 2.1: BLE advertising packet [6]

The preamble is 1 byte and used to synchronize the transmission and has a fixed value

of 0xAA. The Access Address is 4 bytes long and an identifier of what kind of packet it

is, advertising packets have the standard value of 0x8E89BED6. The value of the PDU

determines the purpose. A broadcasting packet can have 3 values for this; ADV IND,

ADV NONCONN IND and ADV SCAN IND. [7] [6]

Figure 2.2: PDU types for broadcasting data [6]



The payload for the PDU is the longest with the ADV NONCONN IND, it can then hold a

maximum of 31 bytes of data. The last 3 bytes of a packet is the CRC, which is used to

check the packet for errors.

However, there is a possibility to send out more data with advertising via the extended ad-

vertising feature included in Bluetooth 5. It still keeps the 37:3 data/advertising channel ratio,

but makes a distinction between primary and secondary advertising packets. The primary

advertising packets are used in the 3 advertising channels whilst the secondary packets flow

via the 37 data channels. Extended advertising uses mostly the same packet as Bluetooth 4

does, but with a different PDU (the primary advertising packet). The payload then contains

a reference to a packet that will be sent later via the data channels (secondary advertising

packet). This allows a total of 255 bytes via the secondary advertising packet. [8] [9]

2.3 Database

A lot of beacons can be generated each day depending on the emission frequency and the

number of beacons. For example, if there are 30 Thingy 52’s emitting every 5 seconds, after

24 hours are that 518.400 entries to the database. However, all this data is temporal, it

needs to be stored by timestamp and later retrieved in large amounts by timestamp. This is

where TSDB come into play. A TSDB is built from the ground up to store temporal data and

is thereof good at querying over months of data. It can also automatically downsample the

data over time [10].

2.4 Dashboard layout

As a lot of data from trackers needs to be visualized, a clear and easy way to view this

data by the operators is of great importance to create accurate analyzations of the current

operations. An effective website is essential to this. The dashboard should be aesthetic

as it defines the credibility and interaction with a website [11]–[14]. As of this, there will be

looked at how the aesthetics impact the usability (/performance) of a website. This literature

research starts with the layout of a website and continues with the colors of a website.



2.4.1 Layout

The layout of a site is the first thing people see upon entry and has impact on the usability of

a site. Once landed, the first thing people do is skimming it. Francisco-Revilla and Crow [15]

did a study and showed that this is a process that only takes a few seconds. They also argue

that a user starts skimming it from left to right, top to bottom. When skimming, a user does

not look at the content of a page, but rather at the structure and layout of it [12], [15]. People

are looking for familiar parts such as the search bar, navigation bar and ads. One thing to

note is that ads are merely used for reference points, people are aware of their presence,

but will mostly ignore their contents [15].

Once the page has been skimmed, users focus their attention on the body of a page.

Parush et al. [16] performed an experiment with 71 students who had previous experience

with Internet Explorer regarding the structure of the contents by analyzing their performance

(search time and eye movement). They tested 4 aspects of the body of a page: the grouping

of text, alignment of text, density of the text and the link quantity (figure 2.3). The experiment

concluded with 2 major factors that impact on the performance. The biggest impact on

performance was the number of links, where more links negatively affected the performance.

The secondary factor was the density of the text. The uniform density had a positive impact

on the performance. Contrastingly, good alignment did not have a positive effect. Grouping

did not have a significant effect. Bonnardel et al. [17] supports the effect of uniform density

as they claim that bullet points are easier to scan than full text. Bullet points are a uniform

set of stacked text, similar to the uniform density showed by Parush et al. [16].

All in all, Francisco-Revilla and Crow [15], and Michailidou et al. [12] showed that on

first entry, users start skimming the site for the layout and recognizable points for a few

seconds. Starting at the top left corner and continuing like reading a book. The structure of

the body is also important for the usability of the site as too many links negatively impact the

performance.

2.4.2 Color

Although the layout being a big impact on the first impression, colors also contribute and

cannot be left out. They are used in almost all sites nowadays and can be used to achieve

different things. To illustrate, Swasty and Adriyanto [18] classified colors by what behavior

they promote (figure 2.4). Mirza [19] evaluated a few sites and falls in line with the table

generated by Swasty and Adriyanto [18](figure 2.4).



Bonnardel et al. [17] executed an experiment involving 50 users and 30 expert (web)

designers to analyze the impact of website appeal by colors. The experiment was limited

to the hue of colors. Participants were shown the same site in 18 different colors in a

random order and were asked to rate it. The regular users favored the colors orange and

blue while the designers also favored gray. A secondary experiment was conducted from

the results of the first experiment. Aspects such as time spent, memorization and number

of pages visited were measured across the same group for the orange, gray and blue site.

The gray site resulted in the least engagement and memorization. The blue and orange

site were appraised more, however, more time was spent on the orange site than the blue

one. Implying that the orange site would engage the users more and that the blue site would

be more efficient. Mirza [19], and Swasty and Adriyanto [18] come to a similar conclusion

regarding blue and orange. For orange, Mirza [19] states that orange can be playful and

engaging which falls in line with uniqueness, friendliness and sensation of movement stated

by Swasty and Adriyanto [18]. As for blue, Swasty and Adriyanto [18] state safety, calmness,

strength and reliability where Mirza [19] argues dependability and strength.

Another aspect is how a color is used on a website; they should be harmonious to really

engage users [18]. Cleveland [20] analyzed the color ratios of a set of good/bad categorized

websites. He describes that in most cases, the better designed websites, used colors differ-

ently than those poorly designed. The better websites leaned more towards ‘softer’ colors

while the lesser sites had colors with stronger hue values. Another difference is present at

the usage of secondary or supportive colors. The lesser categorized sites used more dis-

tinct colors for this while the better sites used a smaller selection of colors that are mostly

close to the primarily used color.

However, they need to be used carefully as colors can have different meanings for dif-

ferent nations or continents, which can be quite challenging [11], [18]. Kondratova and

Goldfarb [11] studied the usage of colors on websites of 29 nations and were able to create

a global color palette that is safe to use internationally. This was done by analyzing the

preferences and common usage of the studied nations. From this, the palette consisting

of shades of blue and gray accompanied by yellow was formed to be safe among different

nations (figure 2.5).

So, colors can be used to set the user in a certain mood or to portray a certain site more

accurate. They can be best used in combination with other supportive colors of a similar

hue. However, one must be careful as they can be tricky due to cultural differences.



2.4.3 Discussion and Conclusion

This literature research aimed to identify aesthetic aspects of websites that affect the usabil-

ity/performance of a website. From research it is found that both layout and color have a

significant effect. Upon first entry, users skim the page in a few seconds and look for famil-

iar key elements such as search- and navigation bars. Therefore, a website should facilitate

such elements to make this easy for the user. It has also shown that a uniform density (figure

2.3), much like bullet points, enhances performance. Contrastingly, too many links decrease

it.

As layout is mostly used for performance, color has also the ability to create additional

effects. This is how an orange site is better at engaging people while a blue site is perceived

as more efficient. However, color is not perceived the same in every nation. Some colors

might have different effects/meanings, but there is a palette that is safe to use amongst most

of them (figure 2.5).

This also brings a limitation of the study. The studied papers originate from different

nations which might make papers regarding the effects of color not generalizable, and hard

to align with each other. Another limitation is that web usage and technology has evolved

over the years and that some papers might have lost a bit of their relevance towards modern

websites.

Illustrations/pictures and fonts were not included in this research. It is thereof unsure

what their effects are on a website. Further research could expand on this paper by including

the aforementioned aspect. Another point of improvement would be to include more modern

research papers to make it up to current internet standards.



Figure 2.3: 4 tested aspects of the body of a website [16]



Figure 2.4: Different colors and what they promote [18]

Figure 2.5: Internationally safe color scheme [11]

2.5 Web frameworks

A website is composed of a frontend, that what can be interacted with and is visible to the

user. And a backend which is responsible for things such as authentication, retrieval of data

from a database and more. As there are many frameworks out there to choose from, a

selection was made from known/familiar, popular or most-loved frameworks. [21] [22]

2.5.1 Backend

Django

Django is written in Python. It is a rapid full-fledged Model View Template (MVT) framework

that takes care of things as routing, authentication and the database usage.



Flask

Flask is also written in Python, but is less extensive than Django. It doesn’t come with as

many built-in features, giving the developer more freedom to choose his own packages.

Laravel

In contrast to Flask and Django, Laravel is written in PHP and using the Model View Controller

(MVC) structure. The framework also takes care of things such as routing, authentication

and database usage. Unlike Python, PHP does not have support for Bluetooth.

Spring

Spring is written in Java, using the MVC structure. It is quick to set up and modular in its

usage.

Express.js

Express.js is a web framework for Node.js which uses JavaScript. It is like Flask, a minimal

web framework.

Ruby on Rails

Ruby on Rails is a Ruby full-fledges MVC framework that takes care of routing, authentica-

tion and database usage.

ASP.NET

ASP.NET is a web framework from Microsoft written in c# using the MVC structure. Taking

care of authentication, routing and database usage.

However, not all frameworks have the same performance. Some are faster than others.

The Benchmarker [23] created a benchmarking tool so many frameworks can be tested as

equally possible. TechEmpower [24] performed also synthetic benchmarks, but on much

more recent hardware. The performed tests are not identical but the trend of scores can

still be evaluated. Figures 2.6 and 2.7 have the results for 64, 256 and 512 concurrent

connections respectively from the Benchmarker [23], the combined results are available in



table 2.1. The performance is measured through Requests per Second (RPS), which is how

many requests per second a web server is capable of, and latency, the delay it takes to

respond to a request. Looking at the results in figures 2.6 and 2.7, Spring and ASP.net are

noticeably faster than the others, topping out at about 78.000/100.000 requests per second.

It also has the lowest latency throughout the test. Laravel on the other hand is the slowest

of all, managing only about 2.800 requests per second. Ruby on rails is slightly faster with

4.500 requests per second, although its 99 percentile latency is not. They both also have

the highest latencies. Django and Flask are also steady across all three tests, managing

8.500 and 15.000 requests per second respectively. Express takes the third place at 23.000

requests per second.

TechEmpower [24] agrees that ASP.NET can have the most requests per second and

that Express.js is on the second place. However, other scores such as Django, Spring and

Flask were all over the place. Scoring suddenly a lot better or worse. Although it might

be a bit like comparing apples to pears due to the many differences in testing and setup,

ASP.NET is the fastest framework concluded by both tests.

Framework TechEmpower RPS [24] The Benchmarker RPS [23]

Django 15.038 8.500

Spring 22.478 78.000

Flask 1.869 15.000

Express.js 40.737 23.000

Ruby on Rails 9.925 4.500

Laravel 8.437 2.800

ASP.NET 394.144 100.000

Table 2.1: Web backend frameworks throughput (RPS) of TechEmpower vs The Bench-

marker



Figure 2.6: Web frameworks requests per second from The Benchmarker [23]

Figure 2.7: Web frameworks 99 percentile delay (ms) [23]

2.5.2 Frontend

The frontend of a website is visible to the user. The development experience can be a

lot easier with the inclusion of a frontend framework. There are 3 popular frameworks out

there, Vue.js, React.js and Svelte (table 2.2). In essence, they all do something similar,

making it easier to create an interactive frontend. However, some frameworks have a better

integration with a certain backend than others. In the case that the frameworks will be used

as a Single Page Application (SPA) it does not matter anymore as they then communicate

with a backend via an Application Programming Interface (API).



Framework GitHub stars (K) NPM weekly downloads Latest update

Vue.js 203+36.7 [25] [26] 3.544.594 [27] 1 day ago

Svelte 66.8 [28] 494.002 [29] 10 days ago

React 206+109 [30] [31] 18.389.003 [32] 2 days ago

Table 2.2: Weekly downloads with GitHub stars of frontend frameworks, 9-april-2023

2.5.3 Styling

CSS is responsible for the styling of a website and can be an extensive job. A framework

can ease and speed up this development experience. To do this, frameworks with the most

GitHub stars are analyzed (table 2.3).

Framework GitHub stars (K) NPM weekly downloads Latest update

Pure.css 22.9 33.916 [33] 4 years ago

Bootstrap 163 4.568.632 [34] 6 days ago

Bulma 47 206.263 [35] 1 year ago

Foundation 29.4 N/A 9 months ago

TailwindCSS 67 5.529.998 [36] 2 days ago

Materialize 38.8 N/A 4 years ago

Normalize.css 50.1 1.086.135 [37] 4 years ago

Semantic UI 50.5 6.342 [38] 6 months ago

Table 2.3: Weekly downloads with GitHub stars of various CSS frameworks, 9-april-2023

[39]

Normalize.css

Although Normalize.css sees a lot of downloads, it is not really a framework to be used for

styling, but to reset the browser’s default styling. All browsers ship by default with a bit of

their own styling. Normalize.css resets this to a consistent default for all browsers.

Bootstrap

Bootstrap is modular, making it good to create consistent pages. As it is so widely used, it

comes with a lot of community support that has been gathered over the years. A downside

is that it is not that flexible to use.



Bulma

Bulma is much like Bootstrap, but has more flexibility. It’s grid system is also based on

flexbox, which is more powerful than Bootstrap’s grid system.

TailwindCSS

TailwindCSS is a minimal class-based wrapper around CSS. It gives the developer a lot of

freedom in the usage of CSS whilst still being consistent across a page. It can also compile

smaller than Bootstrap or Bulma. Making it faster to download for users.

2.5.4 Conclusion

Section 2.5.1 has shown that most backend frameworks can be used to achieve the same,

but they are not all equally fast. It showed that ASP.NET was the fastest among 2 bench-

marks and was followed by Express.js. Regarding the styling, TailwindCSS is a popular

package (table 2.3) that gives a lot of freedom in its usage.

2.6 State of the art

2.6.1 Current applications

When googling for ”indoor asset tracking”, the first page immediately fills up with companies

and advertisements offering this service. This section will take a look at a few of them and

analyse how they do the tracking and visualization.

Inpixon and INTRANAV

Inpixon offers indoor and outdoor asset tracking. Indoor, they can track assets via their tags

or via mobile devices and phones. They use a so-called ”fixed anchor structure”, meaning

that they have a set of receivers in fixed locations that scan for devices. These anchors

can also actuate the trackers by sending out commands or firmware updates. Inpixon uses

various technologies based on the environment of their customers, as each technology has

its own dis- and advantages (figure 2.8) [40].



They also describe 5 localization techniques, getting a location from a signal. They

mention that RSSI (figure E.4) is the lowest cost option but also tends to be easily affected

by interference and thereof is not the most accurate. [40]

Angle of Arrival (AoA) (figure E.6) is recently developed technique that uses the physical

angle at which packets are received. The advantage of this that it is more accurate than

RSSI and needs less reference points. [40]

Time-Difference of Arrival (TDoA) (figure E.3) is used with Chirp or Ultra Wide Band

(UWB) tags. This technique looks at the time differences of the packet arrival between

different anchors. A challenge with this technique is that the clocks need to be synchronized

in all anchors. [40]

Two Way Ranging (TWR) (figure E.5) is similar as TDoA, but does not use a fixed in-

frastructure. With TWR, devices communicate to each other and leverage the distances

between them. [40]

Figure 2.8: Inpixon’s comparison of Radio frequency (RF) technologies [40]

Inpixon’s visualization is handled by INTRANAV, owned by Inpixon. They have a dashboard

where you can see the overview and everything of the system. From live views to heat maps

and previous locations (figure 2.9). They also have virtual zones which you can create.

Those virtual zones can then be used to trigger actions upon entering or leaving. It also logs

sensory information on from a tracker such as temperature and battery percentage. [41]

Even though they do not specify which software they use, there was a small overview in



a demo video which showed that everything is containerized through Docker. By analyzing a

few container names it is visible that they use Apache Kafka quite a lot as there are contain-

ers running named ”intranav-docker kafka-mqtt-connector 1”, ”intranav-docker kafkdrop 1”

and ”intranav-docker kafka-1 1”. Apart from that it does not say too much as most other

names are generic. Meaning that it is entirely custom or generic (such as ...db 1, db is often

referred to with database).

Figure 2.9: INTRANAV’s dashboard with a heatmap [41]

Ubisense

Ubisense aligns with the same technologies as in figure 2.8 from Inpixon. They do seem to

favor UWB as it is present in all of their shared technology. This because the UWB signals

are shorter and therefore do not overlap with reflections of the signal (figures E.2 and E.1),

reducing interference. They mention using AoA and TDoA for localization (figures E.6 and

E.3). [42]

Although they do not show pictures of their dashboard. They focus more on inventory

management with the help of asset localization. For example, a worker gets a notification

that product x needs to go to location y. The worker then searches for an available forklift on

his phone and sees the location of the product. Reducing time spent looking for one.



Nextome

Nextome’s technology can not be discussed in depth due to a restriction put on the informa-

tive paper explaining the operation of the system. Something that can be shown is that they

solely use BLE, which is present in every smartphone nowadays. They utilize this as they

allow smartphones to be the trackers. With this, users can see where they are on a map and

follow live directions to their destination. They also have small BLE wristbands that could be

put on patients for example. [43]

Conclusion

It is visible that there is already a diverse application of asset tracking applied in practice.

Using various localization techniques and methods, with UWB and BLE being the most

popular technologies. Although it was hard to get an insight into technical details as this was

often left out. It was possible to get a sneak peek into Inpixon’s services used.

2.6.2 Current frameworks

However, it is also important to consider current frameworks that can be used. This section

will therefore look into current database and indoor mapping tools. The web frameworks

have already been discussed in section 2.5.

Databases

The concept of TSDB was discussed in 2.3. There are 4 main players in this field; InfluxDB,

Prometheus, QuestDB and TimescaleDB. InfluxDB and Prometheus have a focus towards

monitoring and alerting, while QuestDB and TimescaleDB focus more on data aggregation.

InfluxDB is NoSQL, meaning that it has its own querying language. Prometheus also has

its own querying language called PromQL. On the other hand, TimescaleDB and QuestDB

both use SQL and are built from PostgreSQL. TimescaleDB allows direct querying while the

other 3 also have an API available through which data can be requested.

Indoor mapping tools

Mapping tools are tools that can be used to draw maps on a website and interact with them.

There are quite a few that allow regular mapping (of streets and such) such as Mapbox,

OpenStreetMap, Azure Maps, Google Maps and MapKitJS from Apple. All of them can



be integrated into websites through available SDK’s, although some have setup or usage

fees. For indoor mapping there are different packages available such as MapsPeople, Situm,

Visioglobe and Azure Maps.

Azure Maps is from Microsoft and allows creating and render your own indoor maps.

They have a web SDK available for easy integration with a website. They do not have

any setup fees and have a free tier for up to 5000 maps each month. After this you enter

the first tier which is ±4C for up to 100.000 maps loads [44]. However, the Azure Maps

Creator (the part that allows you to upload custom maps) is paid at a price of 0.39C/hour, or

±280C/month [44].

MapsPeople is also available for the web and extends Google Maps or MapBox to indoor

environments. They also provide indoor wayfinding. Using this is not as easy as Azure

Maps, as this is on request.

Visioglobe also offers a web SDK and can be used to create custom indoor maps. How-

ever, they also have a feature called ”Asset tracking”, this is a mapping solution that facili-

tates a dashboard for data generated from asset tracking. This solution does not come with

localization, but is solely the visualization of it. This is also only available on request.

Situm offers a web SDK as well and is also available on request. They provide indoor

mapping, indoor navigation and a tracking visualization as well. This tracking solution shows

the live location along with other data, and is integrable with any localization system. It also

features a geo management system, which gives tasks to staff as they move around.

All in all, they all feature an ability to create indoor maps and allow them to be used

through a web SDK. Although MapsPeople, Situm and Visioglobe are on request, Azure

Maps can be used by anyone.



Chapter 3

Methods and techniques

The design process created by Mader & Eggink [45] tailored for the study Creative Technol-

ogy is applicable to this project. This is a design process that consists of 4 phases; Ideation,

Specification, Realisation and Evaluation.

Ideation

It all starts with the ideation phase, this starts with a first preliminary idea, problem or creative

inspiration. In this phase background research is performed along with research into existing

solutions to build upon and inspire from. This is also where the first requirements are defined

and the context of the problem is clearly defined. This results in some preliminary ideas for

the defined context of the problem.

Specification

This phase is about exploring the design space and further refinement of the current con-

cept. The prototypes resulting from the Ideation phase are evaluated, merged and improved.

The earlier defined requirements can also be more specifically set and better fine-tuned,

possibly resulting in new ideas.

Realisation

The Realisation phase is about the implementation of the initial, refined concept according

to its specifications.

21



Evaluation

The final phase is the Evaluation. In this phase, the prototype is (functionally) evaluated to

see if it fulfills the requirements which were specified in the Ideation and Specification phase.

Lastly, there is a personal reflection on the prototype and the process.

Figure 3.1: Creative Technology design process [45]



Chapter 4

Conceptualization

The background research from chapter 2 has been transformed into an idea which has

evolved through multiple iterations to attempt to address visible flaws in such a concept.

4.1 Preliminary concept

First concept

The very first concept was to use Laravel with Vue and TailwindCSS as I am familiar with

those (which speed up development a lot), they also have a good integration with each

other (figure 4.1). The idea would then be that this is all deployed on a Raspberry Pi and

that events would be emitted inside Laravel when Bluetooth beacons arrived. However, this

concept was quickly revised as PHP (which Laravel is written in) does not support Bluetooth.

Secondly, a web framework was chosen to make it easily accessible, but that is not the

easiest to do locally on a Raspberry Pi. This because you would have to go through the

trouble of exposing it (by port forwarding it e.g.), and there might also be concerns about

data security and reliability.

23



Figure 4.1: Initial concept architecture

Revised concept

This version started its core by reducing the functionality of the Raspberry Pi, which was

transferred to be handled in the cloud (figure 4.2). The main advantage of this is that the

cloud has a high reliability if it comes to uptime and data retention. It also features a good

internet connection and there are no storage limits either. Because of this split, there would

need to be a separate application running on the Raspberry Pi. One that listens for the

Bluetooth beacons and then transmits them to the website to save them in the database. As

seen in chapter 2.5, Laravel is not the fastest framework out there. Node.js was chosen for

the backend instead for its speed, familiarity and available packages through NPM. A great

addition would be its tight integration with the Bluetooth application that would run on the

Raspberry Pi. If both applications are in Node.js (which is capable of Bluetooth), the exact

same packages can be used which ensures good compatibility and ease of maintenance.

With this, it is also still possible to implement a frontend framework which will then run in SPA



mode and use the Node.js application in the cloud as its API. Both applications however, still

need to communicate with each other. The application on the Raspberry Pi needs to upload

data, and the web application would possibly like to send commands to the Raspberry Pi.

As exposing a Raspberry Pi to the internet is not the easiest solution, an API running on

the Raspberry Pi is not an option. Instead, the Raspberry Pi could either continuously poll

the web application for updates or it could use a full-duplex communication channel, like

web sockets. With polling, the server still has to reply to each poll, regardless of there

being a command waiting or not. It also might induce a delay between the initiation and

execution of a command, based on the polling interval. Web sockets on the other hand are

full-duplex, meaning that it can both be used to upload the data and to receive commands

instantaneously. This is also another great feature to implement with Node.js as you can use

the same library in both applications.



Figure 4.2: Revised concept architecture

Proposed concept

Although the revised concept addresses a few issues, it still has a few that can be addressed.

In the current situation, the data is sent through a web socket from the Raspberry Pi to the

web application which will then store it in a relational database (MySQL, PostgreSQL etc.).

There are two main issues with this design. The first one is that all data now flows through

the web application, which will do nothing with it except for storing it. Inducing a constant



load on it while it also needs to serve its API for the website. Another thing is that the

generated data is timestamped and can grow vastly depending on the beacon intervals and

number of Thingy 52’s. If there are 30 Thingy 52’s emitting at an interval of 5 seconds. There

would be 24 * 60 * 12 * 30 = 518.400 new entries to the database per day.

This is where the main change takes place, instead of the data flowing through the web

application it will send it directly to the database (figure 4.3). Entirely omitting the web

application which initially was a proxy, it only needs to read data.

The database would also be a TSDB, this type of database is purposely built to store

time-series data. Which these beacons are.

The communication scheme also received a revision where the websockets have been

replaced with Apache Kafka. Apache Kafka works with the publish and subscribe model.

Meaning that you can send data to it, so-called producers, and subscribe to ingested data,

the consumers. Apache Kafka is an application that can have a high throughput, is easily

scalable and used by 80% of the Fortune 100 [46]. Another great feature is that it ”buffers”

data, which is great in our case as the TSDB can ingest it at its own pace, reducing packet

losses.

Once a user visits a web application, it is likely that it needs data from the TSDB. So the

TSDB is queried and responds with a dataset. However, it could be that the user reloads

the page or that another user needs to have the same dataset. This would result in the

continuous querying of the TSDB, giving nearly identical responses each time. This is where

a cache could serve well, once a query has been made, the response is cached for a few

minutes. If another similar request is made, it can be served from a quick cache. Resulting

in faster response times and a lower load on the TSDB. A downside is that the data will not

be updated until the cache expires.

A similar cache has been added to the Bluetooth application on the Raspberry Pi as well

to deal with internet interruptions. In the event that the internet connection is lost, beacons

are cached instead and later uploaded when the internet comes back online, reducing the

possibility of data loss.



Figure 4.3: Proposed concept architecture



4.2 Dashboard concept

Initial layout concept

Figures 4.4, 4.5 and 4.6 are the initial designs for the dashboard. This dashboard allows the

user to whitelist and configure Thingy’s. The main screen (figure 4.4) contains a map with the

live location where Thingy’s can be clicked to inspect them by name and see some generic

information about them. On the left-hand site are the battery percentages, temperature

stream and the packet transmission rate of the Thingy’s.

The layout page (figure 4.5) allows Thingy’s to be named, configured and added. It also

allows to identify thingy’s by clicking them. Then a command will be sent to a Thingy to light

it up.

The last page (figure 4.4) has the option to show a heatmap or to show the previous

trails. There is also a slider to select a time range. In the big box on the left specific Thingy’s

can be selected to show a smaller selection of Thingy’s.

Figure 4.4: Dashboard homepage concept where the live location is available.



Figure 4.5: Dashboard concept of the whitelisted Thingy 52’s, here Thingy’s can be added

and configured.

Figure 4.6: Dashboard concept to show previous locations of trackers via trails or a

heatmap. It also allows filtering by tracker and time range.



Revised layout concept

Although the initial concept shows a lot of information, it might be a bit too much for a single

page. As shown in figure 4.4, there are 3 graphs available with a live map. By removing

those graphs, there is more space available on the dashboard for the map. Allowing a larger

map to be displayed for live locations. These graphs have therefore been moved to a new,

dedicated page where the Thingies can be inspected individually. As of this the navigation

bar layout has also been restyled to allow the map also to grow a bit vertically. As a result

of this foundational change in the layout, the overview page (figure 4.5) and historical data

page (figure 4.6) have also been restyled to adapt to the new layout and style.

Figure 4.7: Revised dashboard homepage concept where the live location is available.



Figure 4.8: Revised thingy overview page where they can be added and searched for.

Figure 4.9: Revised Thingy inspection page where a Thingy can be analyzed individually.



Figure 4.10: Revised historical page where all thingies can be analyzed on the map.

4.3 Stakeholders

There have been identified 3 stakeholders for this project. The identified stakeholder have

been placed in an analysis matrix, which is shown in figure 4.11.

Developers

At some point this project might be continued by other developers or needs to be integrated

with the localization. Although those developers do not have a direct impact on the end

product, they should be minded during the development.

Pervasive Systems Group

The Pervasive Systems Group of the University of Twente and has set certain requirements

to the product. In the end, they will deploy the project and are therefore a major stakeholder

in this project.

End users

These users need to directly interact with the dashboard and are thereof substantial stake-

holders. However, they only interact with the dashboard and are not interested in how ev-



erything is managed.

Figure 4.11: Stakeholders matrix



Chapter 5

Specification

5.1 Requirements

First, a list of requirements is set using the MoSCoW [47] method. This is a list of re-

quirements that the product must have (Mo), those that the product cannot function without.

Should have’s (S), which should be in there, but the product could function without. Could

have’s (Co), which would be nice to have if time allows it. And won’t have’s (W) which the

project will not have.

Must have:

• A dashboard that visualizes locations on a map.

• The dashboard must be accessible from anywhere.

• The system must be reliable.

• The dashboard must be responsive.

• The dashboard must have authentication.

Should have:

• The system should be scalable.

• The system should show a live location of an asset.

• The system should collect auxiliary data such as temperature.

Could have:

35



• The system could control the Thingy 52’s from the dashboard (e.g. turn on a LED).

• The Thingy 52’s could be able to update through the dashboard (FOTA).

• The system could send out notifications on specific events, such as a low battery.

Won’t have:

• The system won’t have a functional localization system.

5.2 BLE packet transmission and reception

5.2.1 Sensor readout

The Thingy52 has 2 sensors (see 2.1.1 which need to be read out, the humidity- and tem-

perature sensor and the gas sensor. Additionally, the battery percentage also needs to

be known. However, this is not as straightforward as reading out the sensors as a battery

voltage is read, which needs to be converted to a percentage.

The battery percentage, also known as State of charge (SOC), can be calculated from

the percentage. To do this, the lower and upper voltages were measured by fully draining

the Thingy 52 until it turned off and leaving it in the charger for over a day. This resulted in a

0% voltage of 3.220V and a 100% voltage of 4.210V.

Figure 5.1: The battery’s SOC and matching battery voltage [48].



Looking at the table graphed in figure 5.1, it seems that there is a mistake at 70% where

the voltage ranges from 3.847-3.983 V. Which is a significantly higher voltage range than

the surrounding entries in the table, secondly the 80% voltage starts higher than it ends at

3.983-3.945 V. Due to these two incongruities, the assumption has been made that 3.983

is a mistake and has been corrected to 3.883 V. Looking at the plotted table in figure 5.2,

the read voltage cannot linearly represent a percentage. The trendline (in yellow) has the

following formula:

Percentage = −178, 332 ∗ V oltage4 + 2504, 83 ∗ V oltage3

+− 13077, 1 ∗ V oltage2 + 30155, 2 ∗ V oltage+−25957, 3
(5.1)

This formula needs to be adjusted to the 0 and 100% values measured above. This

results in a range of 9,3624% (see calculation B.1) until 100.9455036% (see calculation

B.2). Which can be mapped via function 5.2.

Mapping = (1, 0919045 ∗ input)− 10, 2228467 (5.2)

Figure 5.2: The battery’s SOC and matching battery voltage graph from figure 5.1 (blue)

and the trend line (yellow).



5.2.2 Packet creation

A BLE 4.0 packet has a limited space available to insert data. To better understand this, a

list is created with the data which needs to be sent in the packet:

• An identifier (MAC address)

• A packet identifier

• Firmware version

• Humidity

• Temperature

• Battery percentage

• CO2 PPM (from the gas sensor)

MAC address

The MAC address is a great identifier as each Thingy 52 has a sticker with the MAC address,

making it easy to identify them physically. It also has a designated field in advertisement

packets, the Broadcast Address (see figure 2.1).

A packet identifier

This byte-sized integer increments upon each transmission of a packet. This byte makes

it easy to identify if there are any duplicates during reading and whether any packets have

been missed. It also eases data processing in Apache Kafka (see section 5.3). This identifier

is also referred to as the rollover byte (as it will roll over from 255 to 0).

Firmware version

The packet includes a firmware version to identify how to parse the packet, as a packet

arrives in the form of an array of bytes. This byte helps to identify how to parse these

raw bytes to their original values. It could also be used for automatic updating, such that

an update could be instantiated wirelessly if a packet is received with a specific firmware

version.



Humidity, temperature and battery percentage

The humidity, temperature and battery percentage are all represented as a floating value of

4 bytes. Which would be great to store large numbers or have a great accuracy, however

this is not needed for these values. The temperature will most likely range between 10-30

degrees Celsius, but for now -40 until 85 degrees is assumed as those are the minimum and

maximum rated operating temperatures for the nRF52832 SoC (which is what the Thingy 52

uses) [49]. The battery and humidity are both values between 0-100%.

This is where the Short float (SFLOAT) comes in, it is an encoding standard as per IEEE

11073-20601-2008 [50] to encode floating values to a 16-bit value. The conversion from

a 32-bit IEEE 754 float to SFLOAT is fully supported in the nRF Connect SDK 2.2.0. This

16-bit value uses a 4-bit exponent and a 12-bit mantissa. Its encoding, however, is not the

same as that of the IEEE 754 standard. The exponent is a signed 2’s complement value

which represents the power. The mantissa is a 12-bit signed 2’s complement representation

of the original value. An example will illustrate this better. Let’s assume the value of 39,1

which needs to be parsed into a SFLOAT. This value can be represented as 391 ∗ 10−1.

Which is exactly what will be encoded into a SFLOAT, where 391 will be the exponent and

-1 the mantissa. As the exponent is 4-bit signed 2’s complement, any value ranging from

-8 until +7 is possible. The mantissa is 12-bits 2’s complement value, which ranges from

-2048 to 2047. So the SFLOAT can be used to represent the temperature, humidity, battery

percentage with a maximum of 1 decimal.

CO2 PPM

The CO2 PPM represents how many CO2 particles per million particles in the air are

present. This is on average 400 outdoor, depending on the environment it could go as

high as 40000 [51]. This value contains no decimals and would be too small for a SFLOAT.

It could be represented as an unsigned 16-bit integer which ranges from 0-65535, as the

CO2 PPM cannot be negative and will not go past 65535.

The packet

Once all data has been encoded, a packet with a payload of 10 bytes is generated (see table

5.1).



Type of data Bytes

Rollover 1

Firmware version 1

Humidity 2

Temperature 2

CO2 PPM 2

Battery percentage 2

Table 5.1: The packet construction with byte count

5.2.3 Packet readout

Two methods have been attempted to read out a BLE advertising packet on a Raspberry Pi

running Raspbian OS.

Node.js/ Python packages

The first attempt used different packages such as ’node-ble’, ’bluez’, ’bleak’ and ’noble’ on

Node.js. ’PyBluez’ was tested using Python. All attempts had one thing in common, they

would see the packets occasionally. So although it was possible to read out the data from the

packets, none of them was able to capture every packet. The documentation of BlueZ (the

official Linux Bluetooth stack), showed that it could be interfaced over the D-Bus of Linux (a

communication bus to communicate between different programs) and that it had an option

to disable duplicate advertisement detection [52]. However, this attempt was unsuccessful

as well. After further investigation, it seemed that the Linux kernel itself filters duplicate

advertisement packets [53].

nRF BLE Sniffer

For testing and development purposes, Nordic Semiconductor created a tool named the nRF

BLE Sniffer. With this tool BLE advertising packets could be read out using Wireshark. It

captures packets via all 3 advertising channels and has Bluetooth 5 support as well. This

tool consists of special firmware which needs to be uploaded to a nRF 52 Development

Kit which can then be connected via USB to any operating system. To read out this nRF

52 Development Kit they use a Python script and Python API which connects the data to

Wireshark. However, this Python API is generic and ready to be used with any other Python



code. Using this tool makes the reading of the BLE packets operating system independent

and adds support for reading Bluetooth 5 packets.

5.3 The server

The software such as the TSDB, website backend (dashboard) and Apache Kafka will be

hosted on a central server that is remotely accessible. The system’s overview is given in

figure 5.3. All the arrows represent the flow of data. The green arrows are HTTP requests.

5.3.1 Apache Kafka in short

Apache Kafka is the main connector between the data read on a Raspberry Pi and the

TSDB. In Apache Kafka so-called topics can be created. A topic is a stream of events that

have happened, similar to logs. These topics can be partitioned, which is splitting them

across brokers. A cluster can contain various brokers, this to increase the throughput, relia-

bility and scalability of a sytem. A topic is spread across multiple brokers via the partitions,

brokers also keep backups of each other in the case one broker fails. A message (an entry)

to a topic contains a key and a value, the key is used to partition a message to a broker.

Using this it is ensured that all messages with the same key end up in the same partition of

a topic. This is great to maintain the order of a given message type.

5.3.2 The architecture

In figure 5.3 the most important parts of the system architecture are shown. The section

below explains all elements visible in the figure.

1. nRF BLE Sniffer

This is the nRF 52 Development Kit that runs the nRF BLE Sniffer firmware from Nordic

Semiconductor and is connected via USB to the Raspberry Pi. This part listens for the BLE

advertising packets and sends them to no. 2.

2. Python BLE sniffing application

This is a Python application that implements the nRF BLE Sniffer API. It reads the received

BLE packets from no. 1, does some basic validation whether the packet could have been



sent from a Thingy 52. It looks at the packet length and if the Manufacturer ID has been set

to a specific value. If a packet passes the validation, it is pushed into the Redis Stream at

no. 3.

3. Redis

This is a Redis instance which is deployed on the Raspberry Pi. It serves as a queue and

buffer for the received packets by no. 4.

4. Location consumer

This Node.js application reads entries from the Redis Stream (no. 3) and sends them to

the ’raw locations’ topic in the Apache Kafka cluster (no. 17) if a packet’s MAC address

is present in the whitelist. It only sends the timestamp, rollover byte, MAC address and a

longitude and latitude. This application initially fetches the whitelist from the backend (no.

11) and receives live changes of the whitelist via the ’whitelist’ topic in the Apache Kafka

cluster (no. 18).

5. Packet consumer

This application is for the most part similar in functionality to no. 4, except that it sends all

other data that was present in the packet and not a location. It also sends it to a different

topic, ’raw beacons’ (no. 16). This application, as the Location consumer (no. 4), is horizon-

tally scalable. Meaning that multiple instances can be run parallel to each other while they

do not upload duplicates. This could have the advantage that, in the event that one replica

unexpectedly fails, that it can take over the packets of the crashed instance which it was

processing.

6. The manager

This is a Node.js application and its function is to manage the Redis Stream (no. 3). It

removes entries if they have been acknowledged by both consumers (no. 4 & 5) to free up

space. A secondary function of this is to report the metrics of the Raspberry Pi and the

packet processing. It looks at the number of incoming packets and if any of the 2 consumers

(no. 4 & 5) are lagging behind, or not processing at all. Because of these reported metrics,

it can be known if any of the consumers have failed (large lag), if the Python application has



failed (no. 2) by looking at the incoming packets or if the entire Raspberry Pi or manager

has failed by a lack of metrics at all.

7. Browser

This is any browser on a desktop, laptop or mobile phone that can access the webserver

(no. 11) via the reverse proxy (no. 8).

8. Reverse proxy

The reverse proxy is responsible for creating HTTPS certificates and forwarding/loadbalancing

an URL to a service. In this case it will forward all traffic towards the webserver (no. 11).

9. Redis

This Redis instance is used as a cache for QuestDB (no. 12) and the webserver (no. 11).

The webserver uses this cache to temporarily store downsampled historical data from the

QuestDB server (no. 12). By doing so, it reduces the load on the QuestDB server, simulta-

neously improving the response time to the browser.

10. MySQL database

This MySQL database will only be used by the webserver (no. 11) and store the username

with hashed password for users. For the thingies it will store metadata such as name, MAC

address and a description.

11. Webserver

The backend will be written in Node.js v18 (latest Long term support (LTS) at the time of

writing). This webserver is the only application on the server that is exposed to the public

internet and accessible via a reverse proxy (no. 9). This backend will serve the website and

handle interactions with the website such as data requests and authentication. The backend

can also send out whitelist commands

12. QuestDB

QuestDB is the TSDB which will store all received packets including a location. It receives

the data from the Apache Kafka QuestDB sink connector (no. 13). The webserver (no. 11)



accesses this TSDB via the PostgreSQL protocol.

13. QuestDB sink connector

A connector in Apache Kafka is a program that can be installed in an Apache Kafka cluster

and can be considered similar to a plugin, it facilitates a pre-defined set of tasks. In this case

it is a sink connector (it extracts data), it extracts data from the ’merged location beacon’

topic (no. 14) and inserts that into the QuestDB TSDB (no. 12).

14. ’merged location beacon’ topic

This Apache Kafka topic is the output topic from the ksqlDB JOIN query that is executed in

no. 15. Messages on this topic are consumed by the QuestDB sink connector (no. 13).

15. ksqlDB location beacon join

The Apache Kafka cluster also runs a ksqlDB server. KSQL can be used to interact with

topics to filter, join or detect anomalies. It is used similar to SQL, actions are defined via SQL-

like queries. This is therefore used to merge the ’raw locations’ (no. 17) and ’raw beacons’

(no. 16) topic and output that to the ’merged location beacon’ topic (no. 14). It does this by

creating a key based on the MAC address and the rollover bytes. It then merges the 2 raw

topics into one if the index matches and the timestamp of the messages is within 1 minute

of each other. It also has a grace-period set to 5 minutes. Meaning that a packet with a

matching MAC and rollover byte index can arrive within 5 minutes of each other in either of

the raw packet topics (no. 16 & 17).

16. ’raw beacons’ topic

The beacons from the Packet consumer (no. 5) are pushed to this topic. It also has a

schema defined via the schema-registry. A schema in the schema-registry server defines

the format and types of data that needs to be present in a message. This schema-registry is

used by all consumers and producers that interact with the Apache Kafka cluster. By doing

so, it allows for consistent data entries (as invalid entries will not be pushed) and versioning

of messages.



17. ’raw locations’ topic

This topic is identical in functionality as the ’raw beacons’ topic (no. 16) except that it does

not store the packet data but the location.

18. ’whitelist’ topic

The whitelist topic contains of MAC addresses and a boolean stating it is whitelisted or not.

The Packet- and location consumer (no. 4 & 5) consume from this topic. Meaning that they

will receive instantaneous updates when the webserver (no. 11) makes any changes to the

whitelist.

19. ksqlDB whitelist

Another function of ksqlDB is to create a so-called KTable. This is a table with all the latest

values from messages pushed to the ’whitelist’ topic (no. 18). So a new whitelist event can

be sent to the whitelist topic and this automatically updates current whitelist statuses to the

table shown in no. 20.

20. Whitelist status KTable

This table contains all the latest whitelist commands that were pushed onto the ’whitelist’

topic (no. 18). It is queried by the webserver (no. 11)

21. ’pi metric’ topic

This topic contains the metrics that are generated from the Manager (no. 6). KsqlDB can be

used to detect anomalies on this topic (and therefore issues with the Raspberry Pi).

22. Thingy 52

These are the BLE beacons that send out beacons with information of their sensors. The

rollover byte is increased with 1 on every transmission.



Figure 5.3: The system’s architecture overview



5.3.3 Splitting the location and packet into two topics

The received BLE packets are read from the Redis Stream (no. 3) by 2 applications (no. 4

& 5). These are then pushed onto separate Kafka topics (no. 16 & 17) to only be joined

back together by ksqlDB (no. 15). The main reason for this is to ease the integration with

the localization part of the system. The localization is going to be a Machine Learning

model which is going to be deployed on the Raspberry Pi. However, its parameters and

requirements are currently not yet that well-defined. It could be that it needs to be written

in a different language than Node.Js. Meaning that an entire application would need to be

transferred to extend it with the Machine Learning model, meaning that a lot of work has to

be re-done. By splitting this, it saves a lot of work in such an event. All a future application

would have to do is to read from Redis and send messages to Apache Kafka without having

to worry about the packet’s contents. Another argument is that it is more expandable. A

Raspberry Pi has limited computational power and depending on how the model is trained,

it could be that the Machine Learning model is too complex to handle many beacons per

second. In this event it could also be computed elsewhere. The packet’s information could

be consumed from the ’raw beacons’ topic in the Apache Kafka cluster (no. 16) and a

location could be pushed into the ’raw locations’ topic (no. 17). Adding the option that the

Machine Learning model has the ability to run elsewhere without having to modify the current

packet reading and processing that is done on the Raspberry Pi.

5.3.4 Rasperry Pi Redis

It might seem a bit cumbersome to first store a BLE packet to a Redis Stream (no. 3) and

then read it again to send it to the Apache Kafka cluster. The main reason for this is reliability.

The reading application is kept as light as possible to reduce the possibility of any crashes or

unexpected failures. It also does not have to wait for packets to have been acknowledged by

a broker in Apache Kafka and worry about data-loss. The application can listen for the BLE

packets without interruptions and send them to the locally-running Redis (no. 3). Because of

this it can also keep collecting when there is a network loss as the packets can be sent later

by the Packet- and Location consumer (no. 4 & 5) when the connection is back up again. It

also acts as a buffer, the nRF BLE Sniffer (no. 1) is read periodically which could come with

bursts of data rather than a continuous stream of packets.

The reading from a Redis Stream (no. 3) happens in 3 stages:

• Unread



• Pending

• Acknowledged

The packets are inserted in the ’Unread’ state. They are ready to be processed and wait-

ing for a Packet or Location consumer (no. 4 & 5). Once a packet is retrieved from the

Redis Stream it enters the ’Pending’ state until the Packet or Location consumer actively

acknowledges it that this packet has been processed. Only then it will be updated to the

’Acknowledged’ state. A packet is only acknowledged by a Packet or Location consumer if

it has been pushed successfully to the corresponding topic in Apache Kafka (meaning that

it was acknowledged by at least 1 broker in the cluster). In the event that the connection

times out, application crashes or any other event that does not trigger an acknowledgement.

The packets will remain in the ’Pending’ state. As the application reads from a Redis Stream

it is horizontally scalable, multiple instances of a Packet or Location consumer can run si-

multaneously to improve reliability and/or throughput. In the event that a Packet or Location

consumer fails, it could leave certain messages at the ’Pending’ state. Due to this possibility,

the Packet or Location consumer periodically checks if a message has been in a ’Pending’

state for too long (e.g. longer than 10 seconds). If it finds any, it reassigns those packets to

itself.

However, acknowledged packets are not automatically deleted. Without the Manager

(no. 6), the Redis Stream would keep already pushed packets, which take up storage and

are of no use on the Raspberry Pi. This is why the Manager periodically deletes all acknowl-

edged entries until the first ’Pending’ or ’Unread’ entry.

5.3.5 Dashboard & webserver

The dashboard is a Vue.js frontend that communicates to with a backend, the webserver

(no. 11). The webserver only allows authenticated users to interact with the website. The

authentication is handled by ’passport.js’, which has over 2 million weekly downloads [54].

Live map

Once a user is logged in they will see a live map where they can find Thingies and watch

their live movement. The mapping tool that the dashboard will use is MapBox as it has a

free tier and extensive documentation and support for features such as markers, popups and

heatmaps [55]. The movement is updated through polling (periodically requesting data from



the same endpoint). If a Thingy 52 has not published a packet within the last 10 seconds it

turns gray, otherwise it is blue to indicate that it has emitted a packet recently.

Thingy overview & inspection

On the overview page thingies can be searched and added. Before a Thingy is added, there

is some validation to not allow duplicate names or MAC addresses. Once it is added to

the MySQL database (no. 10) an ’add to whitelist’ entry is pushed to the ’whitelist’ topic in

Apache Kafka (no. 18). This then triggers instant updates of the whitelist at the Packet and

Location consumers (no. 4 & 5). The same happens upon deletion of a Thingy.

In the inspection page of a Thingy, the last received packet is displayed along with graphs

showing the change of the sensor readings over time.

Historical map

The historical map has various options to visualize the locations of the thingies. Thingies

can be downsampled by every minute, every 5, 10, 15, or 30 minutes. All data within a

sample is taken into account by taking the average value of it. This reduces the amount of

data that needs to be sent and visualized in the frontend. There are 3 visualization options,

a heatmap, individual data points (which can be hovered to inspect them into further detail)

and a line that shows the movement of a Thingy. Each visualization can be toggled on or off

individually. There is also a time slider present to select the desired time range of which the

data needs to be shown. Each Thingy 52 can be selected individually.

All three visualizations can be customized by changing the sensitivity of the heatmap

and changing the radius/thickness of the lines or data points.

To reduce the load on the webserver (no. 11) and QuestDB TSDB (no. 12), a Redis

cache is present (no. 9). This cache is used to temporarily store previously requested data

samples to quickly serve them to the client. This also improves the latency as a request

does not have to be generated from the TSDB, but instead can be directly served to the

client. Using this strategy, it could be that the data that is visible is not 100% up to date as a

cached response is used. However, its functionality is not to provide a live map.



Chapter 6

Implementation

Multiple programs need to be coded and deployed in order to collect and visualize data. This

section describes how this is implemented.

6.1 Code

The entire project consists of code and thereof needs to have some attention.

6.1.1 GitHub

GitHub is used for versioning and keeping track of changes to the codebase. This allows

collaboration by other users and insights in what exactly is changed. It also serves as

a backup as the code is now also stored at GitHub’s servers and not only locally at the

developer.

Repository

The repository (available at https://github.com/Menkveld-24/GP-Bluetooth-asset-localization—

2023) consists of multiple folders which contain all the software and configuration files to

deploy this project. The file tree is in figure A.1 of the appendix, each directory also contains

a README markdown file that has instructions on how to develop/deploy that part of the

system.

50

https://github.com/Menkveld-24/GP-Bluetooth-asset-localization---2023
https://github.com/Menkveld-24/GP-Bluetooth-asset-localization---2023


6.1.2 Documentation & styling

As the code for this project is over 9000 lines (excluding comments), it is good practice

to add comments to code and add function descriptions in order to make the code eas-

ier to understand by yourself and other programmers. As of this, all functions written in a

Node.Js application will have descriptions according to the TypeDoc specification [56]. The

comments and function descriptions in Python are written according to the PEP8 specifica-

tion [57].

Node.Js

In Node.Js there are two options available to program in, TypeScript and CommonJS (regular

JavaScript). TypeScript is the same as CommonJS except that it is a lot stricter with typing.

Using CommonJS it would be an allowed action to assign an integer to a variable that was

initially a string. However, it is unlikely that a string should be assigned to a variable that

was initially an integer. With TypeScript the type of variable can be declared so the IDE

and compiler throw errors on such actions. Additionally to this strict typing, ESLint and

Prettier have been configured for the website (both frontend and backend) as well as for the

consumer applications that run on the Raspberry Pi. ESLint and Prettier force consistent

styling across the codebase, a program does not compile if there is a styling error such as a

missing ’;’ or a newline or space too much or too little.

Python

The only application that is written in Python runs on the Raspberry Pi and reads the packets

from the nRF BLE Sniffer. This code is written according to the PEP8 standard which also

shows in the IDE where there are styling errors.

6.2 Deployment

Quite a few additional programs need to be run on top of the self-written applications. To

deploy these Docker is used, Docker is a containerization platform. A container can be

thought of similarly like a virtual machine, it is an operating system that is separated from the

host. Containers however, do not boot their own operating system, but rather use the host’s

operating system and are therefore not 100% separated like virtual machines. Making them

more performant than a traditional virtual machine. Containerizing applications with docker



has the advantage that there is no need to install dependencies and setup the environment

on every deploy. Making it easy to deploy an application on a different machine or operating

system, or to scale up an application.

An environment is defined once using a ’Dockerfile’, this file describes what to install,

which versions and what commands to execute. A Dockerfile generates an image, this im-

age can be pushed to an image registry (Docker Hub) or kept locally. A ’docker-compose’

file specifies which images and version of that image needs to run along with which ports,

volumes (like a USB stick to persist storage from a container) and environment variables.

These images are all available for all used Kafka services; ksqlDB, Kafka Brokers, Con-

fluent Control Center, Zookeeper, Kafka Connect and the Schema Registry. Not only are

they available for Apache Kafka, but also for the other applications/services: Reverse proxy

(nginx), QuestDB, MySQL, Redis.

The Dockerfiles for the self-written applications, docker-compose files and other config-

uration files are present in the corresponding GitHub repositories.

All detailed instructions for deploying and developing with this graduation project are

available in the GitHub https://github.com/Menkveld-24/GP-Bluetooth-asset-localization—2023

6.3 Security

Ideally all applications should have authentication and encryption to identify each other and

prevent network sniffing. Applications that run on the Raspberry Pi which need to access

the brokers should ideally verify the brokers, and the brokers should verify the applications.

Connections made to the Apache Kafka cluster should also use Access control list (ACL)s,

restricting access to only topics required by a given application. However, setting this up

takes time to do it properly and verify it while it does not impact the functionality of the

system. As of this, the decision is made to restrict access to the entire sytem and expose

as little as possible to the public internet. The server will be in its own private network along

with the Raspberry Pi’s that should use the system. The only remote access will be to the

webserver through the reverse proxy. As the dashboard will be remotely accessible (from

internet connected device), this has authentication in the form of login-protected routes. A

disadvantage of this approach is that a Raspberry Pi cannot connect from another network,

however a workaround for this is to use a VPN.

https://github.com/Menkveld-24/GP-Bluetooth-asset-localization---2023


Chapter 7

Evaluation

The system has been evaluated on various aspects to validate or to attempt to find con-

straints in the current implementation. This has mainly been done by applying a load at

various aspects of the system which were then analyzed. All raw measurements from the

performed tests along with the refined datasets are present in the GitHub repository.

7.1 Dashboard

The webserver (backend of the dashboard) has been load tested using k6 [58]. With k6 a

JavaScript script can be created which defines what endpoints should be tested and how

intensively.

7.1.1 Procedure

First, a list of endpoints had been defined of actions which a user could do:

• Visit the dashboard and retrieve live locations

• Go to the thingy overview page and inspect thingies

• Go to the historical page and inspect historical data

From this set of actions the following request scheme could be constructed:

• Visit the home page

– Request the index.html

– Request the index.css

53



– Request the index.js

– Request the last live locations

• Visit the overview page

– Request all available Thingies

– Inspect 3 random Thingies (3 requests)

• Visit the historical page

– Request a random sample

This request schema was then configured to be used with k6 and run with various ’virtual

users’. These users all approach the site following the defined scheme above, this simulates

intensive usage of the website which can be used to define bottlenecks in the system. The

test has been run in 3 modes; accessing the site via the proxy, accessing the site directly

and accessing the site directly without cache. Each performed test has been run twice of

which the average data has been used. All test modes were run with 5, 10, 25, 50, 100, 250,

500, 1000, 2500, 5000 and 10000 virtual users. Each run had a duration of 60 seconds. All

tests used HTTP instead of HTTPS as a direct connection to the webserver only accepts

HTTP connections.

Initially testing begun with 50 whitelisted Thingies and a dataset of 500 000 locations/packets

present in QuestDB. However, upon start a flaw was quickly identified where the dataset was

too large, causing the webserver to crash. As of this the dataset was significantly reduced

(see section 7.1.2). Also was found that the network connection was limiting the tests due

to the loading of the index.js and index.css files. These have been left out for all tests (see

section 7.1.2).

7.1.2 Results

Network limits

The network connection from the k6 testmachine (see all specifications and raw results in

appendix D) to the server was a Gigabit Ethernet connection. This network connection has

a theoretical limit of 125MB/s and maxed out when running k6. To verify that the network

connection was throttling the test, the test was also run on the server, yielding faster results

in terms of MB/s and RPS (see upper half of 7.1). Looking into the network traffic it was



found that the index.js file was uncompressed and was 2MB large. After further analysis it

revealed that unused parts of dependencies were also compiled into it, removing this shrunk

the file with ±25%. However, 1.5 MB is still quite large. This file was then also gzipped and

compressed down with ±65% to 0.5MB. Running tests with the gzipped files showed that the

network connection was no longer bottlenecking the tests, but the testmachine itself. When

running more than 100 virtual users, CPU utilization approached 100% causing the tests

to experience throttling limits which in term could affect the results [59]. Further tests were

executed without loading an index.js and index.css as a result.

Figure 7.1: The impact of css/js compression and network throttling is visible (100 virtual

users, http connection without proxy)

Historical data limitation

When running the first tests, with a dataset of 500 000 records spread out over 2 years, the

tests quit almost instantly. Looking at the resource utilization of the system it was noticed that

the RAM usage shot up and dropped down. Implying that something inside the webserver

starts to consume a lot of ram and then crashes the webserver. This was supported by

the logs generated from the webserver. All individual requests were traced in the browser,

requests from the historical page took exceptionally long (±10 seconds) and their responses

were almost 100MB large.

The frontend requests data for all thingies from a given sampling interval (1m, 5m, 10m,

15m or 30m). The webserver loads the raw data from the database into a variable and does

some modification to it before it stores it in the cache and returns a response. However, if

you speed this process up it could be that there are multiple virtual users simultaneously



requesting a dataset causing multiple identical datasets to be loaded into the RAM. Quickly

causing the webserver to run out of memory.

Potential solution

A test was also run with 10 virtual users (due to a RAM limitation) on the server, fetching the

data from a static JSON file instead of loading it through the cache/webserver. Revealing

that the webserver can serve data at a rate of ±1.4 GB/s, saturating a 10 Gigabit connection.

As of this result, a potential solution would be to serve the historical data through stored

JSON files instead of via the cache/webserver. This reduces the CPU power and RAM the

webserver requires to operate while still being able to serve the data for the historical page.

However, this solution should be accompanied with sending less data as well. This could be

done through more aggressive downsampling, having the user to select a time-range before

they fetch data and lastly by sending the data per Thingy instead of them all together.

Caching

The webserver implements caching in multiple locations with QuestDB; at requesting the

latest locations (live page) of the Thingies, inspecting Thingies and the data for the historical

map. Looking at figure 7.2, the tests with caching enabled scored nearly double among

all tests. Having a cache enabled improves throughput while also reducing the load on

QuestDB.

Figure 7.2: The impact of using a cache vs continuous request to QuestDB



Proxy

The proxy serves to direct traffic encrypted traffic from the internet to the webserver. Figure

7.3 shows that all requests sent directly to the webserver are accepted while those via the

proxy experience a failure rate of over 50% for all tests. However, looking at figure 7.4

shows that all tests, except the first one with 5 virtual users, sends out more HTTP requests.

Especially the tests concerning 2500 or more virtual users for requests via the proxy.

Additionally, looking at the HTTP request timings in figure 7.5 it is visible that the mini-

mum response times for the direct requests shoot up from that point on, while the requests

via the proxy have minimum values of 0. On the other hand, the maximum request durations

shoot up for requests via the proxy while they do so much less for direct requests.

Figure 7.6 shows the same data as in figure 7.5, but is visualized differently. Looking at

the requests with 5000 virtual users for the requests via the proxy, it can be seen that the

median (243ms) sits below the mean (907ms). Indicating a left-skewed distribution. The

95th percentile response time is 3300ms, meaning that there are few outliers that reach up

to 36794ms. These distributions apply for the tests run directly to the proxy using 2500,

5000 and 10000 virtual users.

The requests that were made directly to the webserver all look similar except for the

scaling between them. Deeper analyzation of 5000 virtual users it reveals that the median

(2236ms) is also lower than the mean (2972ms). Indicating a left-skewed distribution, similar

to the requests via the proxy. However, the 95th percentile is also nearly double at 5690ms.

Despite that there were made significantly more requests during testing via the proxy

than directly. It seems that due to the presence of the high failure rate combined with the

left-skewness, presence of a minimum request duration of 0ms. Combined with considerably

lower means, medians and 90/95th percentiles than the requests made directly, that most

failures were due to a rejection by the proxy.



Figure 7.3: The failure rate of requests via the proxy or directly to the webserver

Figure 7.4: Proxy vs direct connection to the webserver failed/successful requests per test



Figure 7.5: Proxy vs direct connection to the webserver HTTP request timings per test.



Figure 7.6: Proxy vs direct connection to the webserver HTTP request timings per test.

7.2 Raspberry Pi

The software running on the Raspberry Pi such as the consumer, location consumer, BLE

Sniffer and manager has been tested for its throughput and reliability. The behavior of the

consumers can be influenced in three ways;

• By running multiple consumers in parallel (consumer count)

• By changing the read interval (iteration speed)

• by changing the number of packets read per iteration (read size)

7.2.1 Procedure

The first test that was run is to evaluate the maximum throughput of both the consumer

and location consumer (the applications that consume packets from the Redis Stream and



upload them to Apache Kafka, see 5.3.4 for more details). This is done by running the tests

in multiple stages, each having a different read size. The first set of tests was run using 1

replica of each consumer while the second run was performed with 2 replicas. During each

read from Redis, the code would read a maximum of 10, 100, 1000, 2500, 5000 or 7500

packets at a time and upload them to Apache Kafka. In total 100.000 packets are inserted

in each run by a simulator where the results of the manager were used to collect metrics,

both not running on the Raspberry Pi.

The second test was to validate the integrity of the system using 2 replicas of the con-

sumer (the location consumer shares the same source code responsible for reading and

uploading, hence the location consumer was not tested separately). This was done by re-

ducing the iteration speed to 1Hz and a read size of 10. The minimum time for a packet to

be in the ’pending’ state was configured to 5s before it could be (auto)claimed. One instance

would have a bit of code injected where it would have a random chance to abruptly crash

between reading from Redis, and pushing the packets to Apache Kafka. After which the

other consumer should pick up those ’pending’ packets and push them instead (see 5.3.4

for more details).

7.2.2 Results

The detailed environment specifications along with raw test results for both can be found in

appendix D. All runs were executed three times of which the average values were taken.

Throughput

Looking at graph 7.7, the gray line is the number of packets pushed to the Redis Stream.

There is a significant difference when the read size is set as low as 10 per iteration. However,

this difference becomes minor for anything above 1000 packets per iteration. It also shows

that there is no significant difference between the upload speed of a consumer or location

consumer.



Figure 7.7: The packets that were pushed over time by the (location) consumer (1 replica)

When comparing the consumers using one or two replicas in figure 7.8, the lines describe

the number of packets that are in the Redis Stream, but not yet read by any consumer. It

shows that there is less lag using 2 replicas. However, the lines are a lot less fluent. This

could be because the consumers were all running at max speed while there was also a

Redis instance running, which would be 5 applications that now have to share 4 CPU cores.

This claim would be supported by figure 7.9. In this figure, the packets pushed to Redis from

the simulator running on a remote device experience a reduced and less stable throughput

as the lines’ slope decreases and becomes less fluent. It would not be a limitation because

of Redis as this behavior is not present during low read sizes, which access the Redis at a

much higher rate than larger read sizes.



Figure 7.8: The number of packets the consumers lag behind for 1 or 2 replicas



Figure 7.9: The packets pushed to Apache kafka or Redis per read size and type of con-

sumer

Autoclaiming

The second test result is visible in figure 7.10. This test started with 200 packets present

in the Redis Stream and the consumers were reduces to a read size of 10 with an iteration

speed of 1Hz. The second consumer was intentionally crashed at ±11 seconds from the

start. At this timestamp, the packets were read by the second consumer, but not further



processed. Leaving them at pending until the first consumer claims these unacknowledged

packets and uploads them to Apache Kafka at ±16 seconds.

Figure 7.10: The validation of the auto claiming when one consumer fails

7.3 Conclusions

The requirements from section 5.1 are visible below and mostly met.

Must have:

• A dashboard that visualizes locations on a map.

• The dashboard must be accessible from anywhere.

• The system must be reliable.

• The dashboard must be responsive.



• The dashboard must have authentication.

Should have:

• The system should be scalable.

• The system should show a live location of an asset.

• The system should collect auxiliary data such as temperature.

Could have:

• The system could control the Thingy 52’s from the dashboard (e.g. turn on a LED).

• The Thingy 52’s could be able to update through the dashboard (FOTA).

• The system could send out notifications on specific events, such as a low battery.

Won’t have:

• The system won’t have a functional localization system.

From the ’must have’, only the reliability and responsitivity requirements are partially

met. The reliability is a hard factor to fully meet and has many points of failure. Although the

reliability of sending packets once they have been received until they are present in Apache

Kafka has been validated in section 7.2.2. There are still many more aspects that come into

play after the Raspberry Pi such as the observed failure rate that requests have through the

reverse proxy (section 7.1.2), SSD storage, brownouts and network stability. Making this a

hard box to fully tick. The responsitivity still has some flaws at the historical page which need

to be worked out before this can be checked, a potential solution was suggested in 7.1.2.

The ’should have’s’ shows auxilary data and a live location, ticking 2/3 boxes. The scala-

bility however, was only tested of the consumer and location consumer running on the Rasp-

berry Pi. Although running multiple Raspberry Pi’s was not explicitly tested, it should work

as Apache Kafka itself can take connections from many devices. One foreseeable issue

would be that in the case of multiple Raspberry Pi’s, it could be that one packet is received

by both, pushing the data twice to Apache Kafka. This can be resolved by filtering duplicates

with the help of KSQL. Regarding Apache Kafka and QuestDB, both are enterprise grade

software which have full support to distribute data and load.

Although none of the ’Could have’s’ or ’won’t have’s’ were met, low battery notifications

could be implemented by adding anomaly detection inside Apache Kafka on the incoming

packets stream.



Chapter 8

Discussion and conclusion

8.1 Discussion

All tests in chapter 7 were run independently of each other. So when the Raspberry Pi was

evaluated, there was no other load on the system generated by incoming requests from the

dashboard or other Raspberry Pi’s. Although this allows for a good evaluation of individual

components, it could be different from what might happen in a real-world scenario where

the system has other loads applied too. Another limitation is that the server running all the

software was continuously at a rather high memory pressure of ±80% or above. This could

have had an effect on the results. It should also be noted that the requests in section 7.1.2

were all run on an i7 processor dating from 2014. As this is not the most recent processor,

results could vary for that tests when run with a more modern and powerful processor. The

tests were also not run with more than 10000 virtual users as this would not run, despite k6

claiming that a single instance should be capable of running tests with 30000-40000 virtual

users [59]. Currently, all tests were run without HTTPS and without encryption between

components of the system. Which could have a negative impact on the measured results in

chapter 7 once this will be configured.

The results from the test in section 7.2.2 regarding the throughput of the consumers on the

Raspberry Pi were all run without the BLE Sniffer and manager. Although it now shows a

clear difference between the number of replicas, in a real-world scenario the manager and

BLE Sniffer would always be running and consuming resources. Resources that were now

used by the consumers and Redis. The results also showed that there was no significant

67



difference between the throughput when using read sizes larger than 1000 packets per it-

eration. This, combined with the results in figure 7.9, could open up a good middle ground

where the consumers dynamically scale their iteration speed and read size depending on

the number of packets pending and the rate they come in. The main advantage of this would

be that the Raspberry Pi remains responsive for other processes when they (temporarily)

need more CPU power, while still being able to process many packets when required. An-

other advantage of the reduced CPU load is a reduction in power consumption and thereof

generated heat.

Results of the proxy in section 7.1.2 showed that the proxy is limiting the throughput of

what the webserver can handle. Although a specific issue was not identified, it could be

as simple as a lack of configuration, or even that this proxy is not the best one out there to

handle this job.

Working with Apache Kafka proved to be quite a challenge due to its size and complex-

ity. It had many new concepts such as consumers, producers, topics, partitions which first

needed to be studied. However, there is more to Apache Kafka as there is also KSQL and

Connectors, parts that were responsible for data processing inside Apache Kafka.

Now is this only a part of the entire system, a complete website containing a frontend

and a backend needed to be integrated with other components of the system and MapBox.

Although this was partially familiar, it does not take away the fact that it was quite some work

to set up.

There was the challenge concerning the Thingy 52’s and BLE packets. The nRF Connect

SDK using Zephyr Real-Time Operating System (RTOS) is quite different from an ESP32 or

Arduino. This, combined with the age of the Thingy 52’s and number of sensors that needed

to be read out, posed its challenges. However, sending the packets is just the first half.

Figuring out a way to reliably receive these BLE advertising packets turned out to be quite

the challenge.

Lastly, the software also needed to be deployed on a server in order to learn, develop

and run tests. This also took its necessary time before all 18 Docker containers on the server

were properly configured along with build and initialization scripts.



Quickly into the evaluation it became clear that the data retrieval for the dashboard was

flawed (section 7.1.2). Upon request all data would be sent to the user which became a

problem for the user and server as it was just too much data. The results were that too much

ram was used on the server causing the backend to crash when a bit of load was applied

and that the response times were long for the users (±10 seconds).

Overall the evaluation showed that this system has potential (to expand), but also needs

some (re)work on aspects such as data retrieval for the dashboard and the reverse proxy.

These aspects will be discussed in chapter 9.

8.2 Conclusion

This graduation project aimed to design a system that visualizes locations of Bluetooth track-

ers, from the source to the user. To do this, the following main research question was iden-

tified:

How to design an accessible and efficient system that can visualize the locations

of the Bluetooth trackers?

4 sub research questions were identified to help answer this main research question.

8.2.1 What is the best way to store the locations from the trackers?

Section 2.3 partially answers this question. It states that a TSDB is designed for temporal

data, which the data from the trackers is. This has the advantage that time-based querying

and downsampling is part of its nature, making queries fast whilst receiving ’lightweight’

responses that still take all data into account. Another aspect of storing the locations is

the format of it. Although not discussed specifically, locations are stored in longitude and

latitude. This makes it easy to implement them in the frontend as no translation layer is

required. It also makes it easy for other parts of the system to read and work with this data

as the location it receives is really the location without having to apply some offset.



8.2.2 How can the dashboard be designed to be accessible and easy to use?

The dashboard has been made accessible by creating it as a website. This website is

exposed via a reverse proxy which handles HTTPS encryption. Making the site accessible

from anywhere by any internet connected device without having to install something first.

8.2.3 How can the reliability of the system be maximized?

The reliability of the system is dependent on many factors, both internally as externally. The

code that runs on the Raspberry Pi such as the consumer and location consumer were de-

signed to run in parallel. In the event that a replica experiences a critical error or other failure,

they have proven in section 7.2.2 that no loss of data has occurred. Reliability is also the

main reason that the code was split up and that all received packets first go through a Redis

Stream, this acts as a buffer in case Apache Kafka is unreachable, no received packets will

get lost. Reliability can also be improved by quickly detecting when something goes wrong.

This is where the manager on the Raspberry Pi comes into play. It continuously reports

metrics to the Apache Kafka cluster about the throughput of the Redis Stream. By looking at

these results (or whether the metrics even arrive at Apache Kafka), anomaly detection could

be used to quickly detect failure of any part of the Raspberry Pi. To tackle environmental

issues such as network losses, brownouts and hardware failure, it was chosen to deploy and

store most parts on a server remotely in the cloud. Running the webserver in the cloud also

has the advantage that it is easy to connect to the dashboard as it will have a fast internet

connection and static ip address.

8.2.4 What strategies can be used to optimize the scalability of the system?

Not only does running the software remotely on a server improve reliability, but it improves

the scalability as well. When using a remote server, it is easy to expand in terms of RAM,

storage or computational power. However, expanding resources should be accompanied

by scaling the software too by using enterprise grade software such as Apache Kafka and

QuestDB, both of which are designed to scale. Also, the usage of a cache for retrieving data

from QuestDB had a positive effect on throughput, reducing the need to scale up. However,

the system should not only scale in the cloud but also on the ground, by deploying more

Raspberry Pi’s for example. Although the current implementation does not actively support

it (there is no packet deduplication if a packet is picked up by 2 or more Raspberry Pi’s e.g.),



it should work fine as Apache Kafka allows many producers and consumers to connect to

topics.

The answers to the sub research questions together provide a guideline to the main research

question. Due to the extensiveness and wide variety of the entire system, it is hard to give a

concise answer to the main research question. To conclude, a distributed system deployed

over multiple devices is designed around Apache Kafka that maximizes reliability, scalability

and accessibility.



Chapter 9

Future work

The first and foremost recommendation is to revise the historical data retrieval from the dash-

board. The current implementation retrieves all data at once which is fundamentally flawed

as shown in section 7.1.2. A potential solution consists of various changes to reduce the

amount of data sent in the first place. This could be done by more aggresive downsampling

and sending the data upon request per Thingy instead of sending all data at once. However,

sending less data through the current implementation still loads the same data many times

through the RAM, not fully fixing the crashing that was observed. Therefore the system

could be expanded by a new, additional dedicated application that only prepares data upon

request. In the case that some historical data is requested, the request for data is put into

a queue for the other dedicated application while the webserver returns a url at which the

data will be available as a static json file, the frontend will keep polling this url. When the

dedicated application has finished processing the file, it will store it for a limited duration.

Doing so would keep the webserver free to handle other tasks instead.

A second improvement would be to look into, and set up security such as authentication, en-

cryption and ACL’s between all components in the system. Currently, authentication is only

required to access the dashboard, which is also the only component that is exposed to the

public internet. Apache Kafka does have support for a variety of authentication mechanisms

such as LDAP, SASL/SCRAM and SSL. This would greatly improve the system’s security

and integrity.

72



Another improvement would be to implement anomaly detection using KSQL in Apache

Kafka. This could have many system-wide improvements, such as low-battery notifications

for the Thingies and fault detection for the Raspberry Pi’s. It could also be used in specific

scenarios where the environment’s temperature should be monitored, or where all tracked

devices could function as additional security by flagging changes in position when the ware-

house is closed.

Lastly, the dashboard’s designs were only based on a literature research. These designs

along with the user experience could be evaluated (and improved) by doing tests with users.

This has the potential to address design flaws and improve the usability and effectiveness

of the system.



Bibliography

[1] “Nordic Thingy:52 User Guide.” [Online]. Available: https://infocenter.nordicsemi.com/

pdf/Thingy UG v1.1.pdf

[2] “Welcome to the nRF Connect SDK! — nRF Connect SDK 2.3.99 documentation.”

[Online]. Available: https://developer.nordicsemi.com/nRF Connect SDK/doc/latest/nrf/

index.html

[3] “Buy a Raspberry Pi 3 Model B+ – Raspberry Pi.” [Online]. Available: https:

//www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/

[4] “The Difference Between Classic Bluetooth and Bluetooth Low

Energy.” [Online]. Available: https://blog.nordicsemi.com/getconnected/

the-difference-between-classic-bluetooth-and-bluetooth-low-energy

[5] “Intro to Bluetooth Beacons — Bluetooth® Technology Website.” [Online]. Available:

https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-beacons/

[6] J. Lindh, “Bluetooth ® low energy Beacons,” 2015. [Online]. Available: https:

//www.ti.com/lit/an/swra475a/swra475a.pdf

[7] “Bluetooth Low Energy -It Starts with Advertising — Bluetooth®

Technology Website.” [Online]. Available: https://www.bluetooth.com/blog/

bluetooth-low-energy-it-starts-with-advertising/

[8] “Bluetooth 5 Advertisements: Everything you need to know — Novel Bits.” [Online].

Available: https://novelbits.io/bluetooth-5-advertisements/

[9] “Bluetooth 5 Advertising Extensions.” [Online]. Available: https://blog.nordicsemi.com/

getconnected/bluetooth-5-advertising-extensions

74

https://infocenter.nordicsemi.com/pdf/Thingy_UG_v1.1.pdf
https://infocenter.nordicsemi.com/pdf/Thingy_UG_v1.1.pdf
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/index.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/index.html
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://blog.nordicsemi.com/getconnected/the-difference-between-classic-bluetooth-and-bluetooth-low-energy
https://blog.nordicsemi.com/getconnected/the-difference-between-classic-bluetooth-and-bluetooth-low-energy
https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-beacons/
https://www.ti.com/lit/an/swra475a/swra475a.pdf
https://www.ti.com/lit/an/swra475a/swra475a.pdf
https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://novelbits.io/bluetooth-5-advertisements/
https://blog.nordicsemi.com/getconnected/bluetooth-5-advertising-extensions
https://blog.nordicsemi.com/getconnected/bluetooth-5-advertising-extensions


[10] “The best way to store, collect and analyze time series

data — InfluxData.” [Online]. Available: https://www.influxdata.com/

the-best-way-to-store-collect-analyze-time-series-data/

[11] I. Kondratova and I. Goldfarb, “Color Your Website: Use of Colors on the Web,”

in Usability and Internationalization. Global and Local User Interfaces, N. Aykin,

Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 123–132. [Online].

Available: https://www.researchgate.net/publication/221098779 Color Your Website

Use of Colors on the Web

[12] E. Michailidou, S. Harper, and S. Bechhofer, “Visual complexity and aesthetic

perception of web pages,” in Proceedings of the 26th annual ACM international

conference on Design of communication. New York, NY, USA: ACM, 9 2008, pp.

215–224. [Online]. Available: https://dl.acm.org/doi/10.1145/1456536.1456581

[13] L. Thorlacius, “The Role of Aesthetics in Web Design,” Nordicom Review, vol. 28,

no. 1, pp. 63–76, 5 2007. [Online]. Available: https://www.researchgate.net/publication/

238106570 The Role of Aesthetics in Web Design

[14] O. Wu, Y. Chen, B. Li, and W. Hu, “Evaluating the visual quality of web pages using

a computational aesthetic approach,” in Proceedings of the fourth ACM international

conference on Web search and data mining. New York, NY, USA: ACM, 2 2011, pp.

337–346. [Online]. Available: https://dl.acm.org/doi/10.1145/1935826.1935883

[15] L. Francisco-Revilla and J. Crow, “Interpreting the layout of web pages,”

in Proceedings of the 20th ACM conference on Hypertext and hypermedia.

New York, NY, USA: ACM, 6 2009, pp. 157–166. [Online]. Available: https:

//dl.acm.org/doi/10.1145/1557914.1557943

[16] A. Parush, Y. Shwarts, A. Shtub, and M. J. Chandra, “The Impact of Visual Layout

Factors on Performance in Web Pages: A Cross-Language Study,” Human Factors:

The Journal of the Human Factors and Ergonomics Society, vol. 47, no. 1, pp. 141–

157, 3 2005.

[17] N. Bonnardel, A. Piolat, and L. Le Bigot, “The impact of colour on Website appeal

and users’ cognitive processes,” Displays, vol. 32, no. 2, pp. 69–80, 4 2011. [Online].

Available: https://www.researchgate.net/publication/256970347 The impact of colour

on Website appeal and users’ cognitive processes

https://www.influxdata.com/the-best-way-to-store-collect-analyze-time-series-data/
https://www.influxdata.com/the-best-way-to-store-collect-analyze-time-series-data/
https://www.researchgate.net/publication/221098779_Color_Your_Website_Use_of_Colors_on_the_Web
https://www.researchgate.net/publication/221098779_Color_Your_Website_Use_of_Colors_on_the_Web
https://dl.acm.org/doi/10.1145/1456536.1456581
https://www.researchgate.net/publication/238106570_The_Role_of_Aesthetics_in_Web_Design
https://www.researchgate.net/publication/238106570_The_Role_of_Aesthetics_in_Web_Design
https://dl.acm.org/doi/10.1145/1935826.1935883
https://dl.acm.org/doi/10.1145/1557914.1557943
https://dl.acm.org/doi/10.1145/1557914.1557943
https://www.researchgate.net/publication/256970347_The_impact_of_colour_on_Website_appeal_and_users'_cognitive_processes
https://www.researchgate.net/publication/256970347_The_impact_of_colour_on_Website_appeal_and_users'_cognitive_processes


[18] W. Swasty and A. R. Adriyanto, “Does Color Matter on Web User Interface Design,”

CommIT (Communication and Information Technology) Journal, vol. 11, no. 1, p. 17, 8

2017. [Online]. Available: https://journal.binus.ac.id/index.php/commit/article/view/2088

[19] A. Mirza, “Emotional Impact of Colors Using Web-Design,” International Research

Journal of Engineering and Technology (IRJET), vol. 10, no. 1, pp. 944–947, 1 2023.

[Online]. Available: https://www.researchgate.net/publication/367656544 Emotional

Impact of Colors Using Web-Design

[20] P. Cleveland, “Colour and Dynamic Symmetry,” PCA/ACA 2011 Conference, 2011.

[Online]. Available: https://research-repository.griffith.edu.au/bitstream/10072/46215/1/

70834 1.pdfhttps://research-repository.griffith.edu.au/handle/10072/46215

[21] “The 11 Best Backend Frameworks – 2023 — CodingNomads.” [Online]. Available:

https://codingnomads.co/blog/best-backend-frameworks/

[22] “10 Most Popular Web Frameworks to Use in 2023 — Monocubed.” [Online]. Available:

https://www.monocubed.com/blog/most-popular-web-frameworks/

[23] “Web Frameworks Benchmark.” [Online]. Available: https:

//web-frameworks-benchmark.netlify.app/compare?f=django,laravel,flask,spring,

express

[24] “Round 21 results - TechEmpower Framework Benchmarks.” [Online]. Available:

https://www.techempower.com/benchmarks/#section=data-r21&test=fortune

[25] “vuejs/core: Vue.js is a progressive, incrementally-adoptable JavaScript framework for

building UI on the web.” [Online]. Available: https://github.com/vuejs/core

[26] “vuejs/vue: This is the repo for Vue 2. For Vue 3, go to https://github.com/vuejs/core.”

[Online]. Available: https://github.com/vuejs/vue

[27] “vue - npm.” [Online]. Available: https://www.npmjs.com/package/vue

[28] “sveltejs/svelte: Cybernetically enhanced web apps.” [Online]. Available: https:

//github.com/sveltejs/svelte

[29] “svelte - npm.” [Online]. Available: https://www.npmjs.com/package/svelte

[30] “facebook/react: The library for web and native user interfaces.” [Online]. Available:

https://github.com/facebook/react

https://journal.binus.ac.id/index.php/commit/article/view/2088
https://www.researchgate.net/publication/367656544_Emotional_Impact_of_Colors_Using_Web-Design
https://www.researchgate.net/publication/367656544_Emotional_Impact_of_Colors_Using_Web-Design
https://research-repository.griffith.edu.au/bitstream/10072/46215/1/70834_1.pdf https://research-repository.griffith.edu.au/handle/10072/46215
https://research-repository.griffith.edu.au/bitstream/10072/46215/1/70834_1.pdf https://research-repository.griffith.edu.au/handle/10072/46215
https://codingnomads.co/blog/best-backend-frameworks/
https://www.monocubed.com/blog/most-popular-web-frameworks/
https://web-frameworks-benchmark.netlify.app/compare?f=django,laravel,flask,spring,express
https://web-frameworks-benchmark.netlify.app/compare?f=django,laravel,flask,spring,express
https://web-frameworks-benchmark.netlify.app/compare?f=django,laravel,flask,spring,express
https://www.techempower.com/benchmarks/#section=data-r21&test=fortune
https://github.com/vuejs/core
https://github.com/vuejs/vue
https://www.npmjs.com/package/vue
https://github.com/sveltejs/svelte
https://github.com/sveltejs/svelte
https://www.npmjs.com/package/svelte
https://github.com/facebook/react


[31] “facebook/react-native: A framework for building native applications using React.”

[Online]. Available: https://github.com/facebook/react-native

[32] “react - npm.” [Online]. Available: https://www.npmjs.com/package/react

[33] “purecss - npm.” [Online]. Available: https://www.npmjs.com/package/purecss

[34] “bootstrap - npm.” [Online]. Available: https://www.npmjs.com/package/bootstrap

[35] “bulma - npm.” [Online]. Available: https://www.npmjs.com/package/bulma

[36] “tailwindcss - npm.” [Online]. Available: https://www.npmjs.com/package/tailwindcss

[37] “normalize.css - npm.” [Online]. Available: https://www.npmjs.com/package/normalize.

css

[38] “semantic-ui - npm.” [Online]. Available: https://www.npmjs.com/package/semantic-ui

[39] “troxler/awesome-css-frameworks: List of awesome CSS frameworks in 2023.”

[Online]. Available: https://github.com/troxler/awesome-css-frameworks

[40] “Real-Time Location Systems & Hardware - Inpixon RTLS.” [Online]. Available:

https://www.inpixon.com/technology/rtls

[41] “INTRANAV.IO The Enterprise IoT RTLS Platform for the Digital-

Twin - INTRANAV.” [Online]. Available: https://intranav.com/en/iot-rtls-suite/

intranav-io-the-enterprise-iot-rtls-platform-for-the-digital-twin/

[42] “How Real-Time Location Systems Work - Ubisense.” [Online]. Available: https:

//ubisense.com/location-technology/

[43] “How it works - Nextome.” [Online]. Available: https://nextome.com/how-it-works

[44] “Pricing - Azure Maps — Microsoft Azure.” [Online]. Available: https://azure.microsoft.

com/en-us/pricing/details/azure-maps/

[45] A. Mader and W. Eggink, “A DESIGN PROCESS FOR CREATIVE TECHNOLOGY,”

2014. [Online]. Available: https://www.researchgate.net/publication/265755092 A

DESIGN PROCESS FOR CREATIVE TECHNOLOGY

[46] “Apache Kafka.” [Online]. Available: https://kafka.apache.org/

https://github.com/facebook/react-native
https://www.npmjs.com/package/react
https://www.npmjs.com/package/purecss
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bulma
https://www.npmjs.com/package/tailwindcss
https://www.npmjs.com/package/normalize.css
https://www.npmjs.com/package/normalize.css
https://www.npmjs.com/package/semantic-ui
https://github.com/troxler/awesome-css-frameworks
https://www.inpixon.com/technology/rtls
https://intranav.com/en/iot-rtls-suite/intranav-io-the-enterprise-iot-rtls-platform-for-the-digital-twin/
https://intranav.com/en/iot-rtls-suite/intranav-io-the-enterprise-iot-rtls-platform-for-the-digital-twin/
https://ubisense.com/location-technology/
https://ubisense.com/location-technology/
https://nextome.com/how-it-works
https://azure.microsoft.com/en-us/pricing/details/azure-maps/
https://azure.microsoft.com/en-us/pricing/details/azure-maps/
https://www.researchgate.net/publication/265755092_A_DESIGN_PROCESS_FOR_CREATIVE_TECHNOLOGY
https://www.researchgate.net/publication/265755092_A_DESIGN_PROCESS_FOR_CREATIVE_TECHNOLOGY
https://kafka.apache.org/


[47] “Making Your UX Life Easier with the MoSCoW —

IxDF.” [Online]. Available: https://www.interaction-design.org/literature/article/

making-your-ux-life-easier-with-the-moscow

[48] “(PDF) Optimizing State of Charge (SOC), temperature, and

State of Health (SOH) of lithium-ion batteries.” [Online]. Avail-

able: https://www.researchgate.net/publication/340777901 Optimizing State of

Charge SOC temperature and State of Health SOH of lithium-ion batteries

[49] “nRF52832 Product Specification,” 2017.

[50] “11073-20601-2008 - IEEE Health informatics - Personal health device communication

- Part 20601 : Application profile - Optimized exchange protocol.” 2008.

[51] “Carbon Dioxide — Wisconsin Department of Health Services.” [Online]. Available:

https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm

[52] “adapter-api.txt ≪ doc - bluez.git - Bluetooth protocol stack for Linux.” [Online].

Available: https://git.kernel.org/pub/scm/bluetooth/bluez.git/tree/doc/adapter-api.txt

[53] “bluez: Linux kernel always de-duplicates advertisements · Issue #235 · hbldh/bleak.”

[Online]. Available: https://github.com/hbldh/bleak/issues/235

[54] “passport - npm.” [Online]. Available: https://www.npmjs.com/package/passport

[55] “API Reference — Mapbox GL JS — Mapbox.” [Online]. Available: https:

//docs.mapbox.com/mapbox-gl-js/api/

[56] “TypeDoc.” [Online]. Available: https://typedoc.org/

[57] “PEP 8 – Style Guide for Python Code — peps.python.org.” [Online]. Available:

https://peps.python.org/pep-0008/

[58] “Load testing for engineering teams — Grafana k6.” [Online]. Available: https://k6.io/

[59] “Running large tests.” [Online]. Available: https://k6.io/docs/testing-guides/

running-large-tests/

https://www.interaction-design.org/literature/article/making-your-ux-life-easier-with-the-moscow
https://www.interaction-design.org/literature/article/making-your-ux-life-easier-with-the-moscow
https://www.researchgate.net/publication/340777901_Optimizing_State_of_Charge_SOC_temperature_and_State_of_Health_SOH_of_lithium-ion_batteries
https://www.researchgate.net/publication/340777901_Optimizing_State_of_Charge_SOC_temperature_and_State_of_Health_SOH_of_lithium-ion_batteries
https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm
https://git.kernel.org/pub/scm/bluetooth/bluez.git/tree/doc/adapter-api.txt
https://github.com/hbldh/bleak/issues/235
https://www.npmjs.com/package/passport
https://docs.mapbox.com/mapbox-gl-js/api/
https://docs.mapbox.com/mapbox-gl-js/api/
https://typedoc.org/
https://peps.python.org/pep-0008/
https://k6.io/
https://k6.io/docs/testing-guides/running-large-tests/
https://k6.io/docs/testing-guides/running-large-tests/


79



Appendix A

GitHub repository layout

/

server-deployment/

dashboard/

kafka-initializatino/

README.md

dashboard/

frontend/

backend/

README.md

pi/

python-sniffer/

consumers/

nRF BLE Sniffer/

README.md

tesing

k6/

pi/

README.md

thingy52-src

README.md

README.md

LICENSE



Figure A.1: The file tree of the GitHub repository

Note that all code is too large and complex to be added to the appendix. Therefore it is

available at https://github.com/Menkveld-24/GP-Bluetooth-asset-localization—2023.

https://github.com/Menkveld-24/GP-Bluetooth-asset-localization---2023


Appendix B

Battery voltage mappings

The formulas below describe the transformations of the voltage mapping to a battery per-

centage as described in section 5.2

V oltage = 3.220

Percentage = −178, 332 ∗ 3, 2204 + 2504, 83 ∗ 3, 2203

+−13077, 1 ∗ 3.2202 + 30155, 2 ∗ 3, 220 +−25957, 3 = 9, 3624

(B.1)

V oltage = 4.210

Percentage = −178, 332 ∗ 4, 2104 + 2504, 83 ∗ 4, 2103

+−13077, 1 ∗ 4, 2102 + 30155, 2 ∗ 4, 210 +−25957, 3 = 100, 9455036

(B.2)

Range = 100, 9455036− 9, 3624 = 91, 583101

Desired range = 100

Slope = 100/91, 583101 = 1, 0919045

Y offset = 0− (1, 0919045 ∗ 9, 3624) = −10, 2228467

Mapping = (1, 0919045 ∗ input)− 10, 2228467

(B.3)

82



Appendix C

Dashboard layout

This part of the appendix contains screenshots of the final version of the dashboard including

some sample visualizations.

Figure C.1: The login screen of the dashboard

83



Figure C.2: The live map of the dashboard, here Thingies will more around live. They can

be clicked to inspect them. If they have been active within the last 10 seconds,

the marker will color blue.

Figure C.3: The overview page containing all Thingies. Here thingies can be further in-

spected or added.



Figure C.4: The inspection page of a Thingy. Here the individual data of a thingy can be

seen including the last known information.

Figure C.5: The historical page of a Thingy using downsampled data for 10 minutes. The

bottom left-hand corner has a slider where the time range can be defined. Hov-

ering over a point shows the information of that (downsampled) packet.



Figure C.6: The heatmap of downsampled data of 30 minutes. The top right-hand corner

shows a configuration screen where visualizations can be altered.

Figure C.7: The individual downsampled packets. They can be hovered for further inspec-

tion.



Appendix D

Tests

D.1 Specifications

Most k6 tests were run from the ’testmachine’ to the server. See the versions of the specific

software run in

D.1.1 Testmachine

• CPU: Intel i7-4980HQ

• RAM: 16GB DDR3-1600

• Network: Gigabit Ethernet

• OS: MacOS Big Sur 11.6.6

• K6 version: v0.45.0

D.1.2 Server

• CPU: Intel 12100F

• RAM: 16GB DDR4-3200

• Network: Gigabit Ethernet

• Storage: 1TB SN750 WD Black

• Docker version: 23.0.4

• OS: Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-73-generic x86 64)

87



D.1.3 Raspberry Pi

• Model: Raspberry Pi 4gb

• RAM: 4GB

• Network: Gigabit Ethernet

• Docker version: 23.0.5

• OS: Raspbian 5.15.84-v8+

D.2 Test configurations

D.2.1 K6

The script used for K6 along with the results can be found in the GitHub repository at test-

ing/scripts/[virtual users] [test name].js.

Directly (7.1.2)

• Source: Testmachine

• Destination: Server

• Network: Local, Gigabit ethernet

• URL: http://unimatrix52.nl:3000

• Virtual users: 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000

• Runs per ’Virtual users’: 2

Via proxy (7.1.2)

• Source: Testmachine

• Destination: Server

• Network: Local, Gigabit ethernet

• URL: http://unimatrix52.nl

• Virtual users: 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000



• Runs per ’Virtual users’: 2

Cache test (7.1.2)

• Source: Testmachine

• Destination: Server

• Network: Local, Gigabit ethernet

• URL: http://unimatrix52.nl:3000

• Virtual users: 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000

• Runs per ’Virtual users’: 2

• Options: Cache: disabled

D.2.2 Raspberry Pi

Single consumer (7.2.2)

• Source: Testmachine

• Manager runs on: Testmachine

• Packets pushed to Redis: 100000

• (Location) consumer on: Raspberry Pi

• Iteration speed: 0 (as fast as possible)

• Consumer count/replicas: 1

• Read sizes: 10, 100, 1000, 2500, 5000, 7500

• Runs per ’Read sizes’: 3

Two consumers (7.2.2)

• Source: Testmachine

• Manager runs on: Testmachine

• Packets pushed to Redis: 100000



• (Location) consumer on: Raspberry Pi

• Iteration speed: 0 (as fast as possible)

• Consumer count/replicas: 2

• Read sizes: 10, 100, 1000, 2500, 5000, 7500

• Runs per ’Read sizes’: 3

Consumer validation (7.2.2)

• Source: Testmachine

• Manager runs on: Testmachine

• Packets pushed to Redis: 200

• (Location) consumer on: Raspberry Pi

• Iteration speed: 1000ms / 1Hz

• Consumer count/replicas: 2

• Read size: 10

D.3 Raw results

All other raw results are available in the testing/results folder on GitHub.



Figure D.1: The raw measurements for the cache comparison 7.1.2.



Figure D.2: The raw measurements for the proxy comparison 7.1.2.



Appendix E

State of the art images

Figure E.1: UWB arrival of a signal [42]

93



Figure E.2: Reflections of a signal [42]

E.1 Localization techniques

Figure E.3: TDoA localization [40]



Figure E.4: RSSI localization [40]

Figure E.5: TWR localization [40]



Figure E.6: AoA localization [40]


	Acknowledgements
	Abstract
	Acronyms
	Introduction
	Problem statement
	Technical background
	Problem definition

	Research questions

	Background research
	Hardware
	Thingy 52
	Raspberry Pi
	Conclusion

	Bluetooth
	Bluetooth Low Energy vs Bluetooth (classic)
	What are Bluetooth beacons
	Bluetooth Low Energy advertising

	Database
	Dashboard layout
	Layout
	Color
	Discussion and Conclusion

	Web frameworks
	Backend
	Frontend
	Styling
	Conclusion

	State of the art
	Current applications
	Current frameworks


	Methods and techniques
	Conceptualization
	Preliminary concept
	Dashboard concept
	Stakeholders

	Specification
	Requirements
	BLE packet transmission and reception
	Sensor readout
	Packet creation
	Packet readout

	The server
	Apache Kafka in short
	The architecture
	Splitting the location and packet into two topics
	Rasperry Pi Redis
	Dashboard & webserver


	Implementation
	Code
	GitHub
	Documentation & styling

	Deployment
	Security

	Evaluation
	Dashboard
	Procedure
	Results

	Raspberry Pi
	Procedure
	Results

	Conclusions

	Discussion and conclusion
	Discussion
	Conclusion
	What is the best way to store the locations from the trackers?
	How can the dashboard be designed to be accessible and easy to use?
	How can the reliability of the system be maximized?
	What strategies can be used to optimize the scalability of the system?


	Future work
	References
	GitHub repository layout
	Battery voltage mappings
	Dashboard layout
	Tests
	Specifications
	Testmachine
	Server
	Raspberry Pi

	Test configurations
	K6
	Raspberry Pi

	Raw results

	State of the art images
	Localization techniques


