Design of an Efficient Map-Based Programming Language

NIELS KRUK, University of Twente, The Netherlands

There are a lot of different kinds of programming languages and paradigms.
None of them seem to focus solely on maps. Here, map refers to the math-
ematical definition of a map: a function that associates the elements from
one set with another. The goal of this study is to explore the idea of a
map-based programming language and understand what its advantages and
disadvantages could be. For this study, we designed a prototype program-
ming language called MPL (Map Programming Language), where the only
composite types are maps. Then we compared the language to other lan-
guages by the time and space complexity of common data structures and
ease of use. The comparison of common data structures indicates that even
though there is some overhead for some structures, the amortised time and
space complexity are equivalent to optimal implementations in other lan-
guages. These results indicate that map-based languages are a viable option
when enough time is spent optimising them until the overhead compared to
other languages is reduced.

1 INTRODUCTION

The development of programming languages over the past few
decades has been driven by the need to address existing limita-
tions or explore alternative approaches to programming. This has
resulted in numerous paradigms and strategies aimed at improving
programming.

In mathematics, a map is a function that associates each element
of a set with an element of another set. In computer science, the
concept is used in a quite similar manner: a map can be used along
with an index element to access the element the map associates
the index with. When also taking the memory of a computer into
account, a map is a region of memory and a function that indexes
into that region of memory.

Despite the large number of programming languages, there do
not seem to be any that have been specifically designed to fully
optimise the use of maps. To address this gap, this paper proposes
the design of a map-based programming language prototype. We
evaluate this prototype on its map-based paradigm by limiting the
use of composite data types to only maps. This study explores the
capabilities of a map-based language and identifies how this para-
digm might improve programming and for which types of problems
other paradigms are better. To explore the idea of a map-based pro-
gramming language, we answered the following research question:

RQ: What should a map-based programming language look like,
and what are the advantages and disadvantages of using a
map-based programming language?

We answered the research question by answering the following
sub-questions:

RQ1: Which types of problems benefit from being solved with
a map-based programming language?

TScIT 39, July 7, 2023, Enschede, The Netherlands

© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Supervisor: Peter Lammich

RQ2: For which types of problems are highly optimised maps
less efficient than conventionally used data structures?

RQ3: How does the time and space efficiency of common op-
erations compare to that of other mainstream imperative
languages?

RQ4: What syntax, semantics, and features are needed for a
map-based programming language to be usable and readable?

RQ5: What are the advantages and disadvantages of using a
map-based programming language instead of a library that
adds map optimizations to a language?

To answer these sub-questions, we wrote a compiler for a map-based
language prototype called MPL[7] using the LLVM infrastructure.
Using this compiler, we were able to test the language with various
programming problems and do empirical tests to aid in answering
the questions.

2 RELATED WORK

Related literature was gathered using Google Scholar, and IEEE
using search terms such as “map”, “map based”, “programming lan-
guage”, “perfect hashing”, “dynamic perfect hashing” and “runtime
analysis”.

In mathematics and computer science, a lot of research has been
done on how to use maps efficiently. In 1977, there was already an
article published about perfect hash functions and how they could
be computed for small static key sets [10]. Over the years, a lot of
research has been done. In 2007, a study found a method to find
perfect hash functions for larger static key sets. Now it is feasible to
find a perfect hash function for a static key set that contains more
than a billion keys [3]. There has also been research on the case
where the key set is not static. In 1984, a study found a method to
do dynamic perfect hashing [5].

Even though a lot of research has been done into maps, we have
not been able to find a study about the advantages and disadvantages
of a map-based programming language.

Research has been done on the use of maps to solve specific
problems and how maps compare to other methods, some examples
are [2, 6, 8]. These examples are proof of the usefulness of maps. As
research continues to be done on maps, the usefulness of map-based
programming languages will continue to increase as well.

3 LANGUAGE DESCRIPTION

MPL is a map-based programming language prototype that is de-
signed to have an easily understandable syntax. In this language,
the amount or type of white space is not significant. The top-level
scope of a program is reserved for definitions. A program needs one
main function, which will be the entry point.

3.1 Types

MPL is a strongly typed language. The whole program is type
checked during compilation and will give errors if types are used
incorrectly. The primary types in the language are: int, bool, char,

TScIT 39, July 7, 2023, Enschede, The Netherlands

float and void (unit type). Besides these primary types there are 3
types of maps.

Map: The default map. It is similar to hashmaps in other lan-
guages. The amortised time complexity for inserting and
retrieving is O(1), and the space complexity of the map is
O(n). The specific implementation is not optimised yet in
MPL. In a real map-based language, a highly optimised map
would be important, but this falls outside the scope of this
prototype and is not of importance to the conclusions of this
research.

Perfect Map: A map with constant keys known at compile time
and a fast, minimal, perfect hash function. When keys are
known at compile time, a collisionless minimal size map can
be constructed, reducing the allocated space and lookup time.

Multi variable type map: A map with variable value types. It
is useful for bundling associated values together when they
are of different types.

The notation of the normal map type is the key set with a right
arrow to the value set, all enclosed in square brackets. The normal
map type is often used with the void (unit) type. When the value
set is void, the map will function like a set. If the key set is void, the
map either has void as a key and holds a value, or the map is empty
and does not hold a value. This is functionally similar to a nullable
pointer.

The notation of the perfect map is similar to the normal map, the
difference is the perfect keyword in front of the map type. What in
other languages would be a string is in MPL a collisionless minimal
size map that maps indices to characters.

Lastly, the notation of the multi variable type map is an identifier
enclosed in square brackets; before it can be used, it needs to be
defined somewhere in the top level of the program.

[int -> int]

[int -> void]

[void -> int]
perfect [int -> char]
[LinkedListNode]

Example top level definition of the LinkedListNode map type:

[LinkedListNode] = [
NEXT -> [LinkedListNode]
VALUE -> int

3.2 Variables

A variable is created by writing a type, identifier, equal sign, and
expression. All primary types are allocated on the stack. All Maps
are allocated on the heap; this means that map-type variables on
the stack only hold pointers. After a variable is defined, it can be
reassigned by writing the identifier of the variable, an equal sign,
and an expression for the new value.

Niels Kruk

int i =1
bool b = true
char ¢ = 'c'

float f = 1234.5436
perfect [int -> char] myString = "hello"
i=2

3.3 Expressions

Expressions follow the default mathematical order of precedence.
All variables in expressions are passed by value. The map-type
variables only hold references to the heap where the map data is
stored. This means that the map data is not copied, only the memory
address of the map data.

3.4 Control flow

MPL has if-else statements, while loops, and for each loops. If state-
ments and while loops have standard syntax.

if ifBoolExpression {

} el;e.elseIfBoolExpression {
} else (

}

while whileBoolExpression {

b

The syntax for the for loop is the for keyword, a variable name for
the keys, an arrow, a variable name for the values, the in keyword,
a map, and a code block.

for keyVariable -> valueVariable in myMap {
}

3.5 Memory management

MPL uses manual memory management. Only maps are heap-allocated
and have to be manually managed. New memory can be allocated
by using the new keyword, the type, and a variable name to bind
the newly allocated map to.

new [int -> int] myMap
new [LinkedListNode] myLinkedList

To free memory, the free keyword is used in combination with a
map variable.

free myMap
free myLinkedList

This will only free that specific map. If a map contains other maps
as keys or values and you want to free those as well, then you need
to free those maps manually:

Design of an Efficient Map-Based Programming Language

new [int -> [int -> int]] myMapMap

for _ -> innerMap in myMapMap {
free innerMap

}
free myMapMap

3.6 Functions

Functions need to be defined at the top level of the program. They
are defined and called like this:

fn int fib(int a){
ifa<2{
return 1
3
return fib(a-2) + fib(a-1)
3

When functions have more arguments, comma-separated lists are
used in the function definition and when calling the function.

3.7 Map methods

Map variables can be used to call the following methods:

int size() : Returns the number of key-value pairs in the map.

void insert(Key, Value): Updates or inserts a key-value pair
into the map.

void clear(): Clears all entries from the map and resizes to the
minimum size.

Value get(Key): Return the value associated with the key if the
key exists in the map, otherwise this function has undefined
behaviour.

bool remove(Key): tries to removes a key-value pair from the

map and returns whether it could remove the key-value pair.

(This function does not work with perfect maps)

[void -> Value] getMaybe(Key): If the map contains this key,
get the value, store that value in another map that has key
type void, and return this map. If the map does not contain
this key, return an empty map with key type void.

3.8 Perfect maps

Currently, there are two methods of constructing perfect maps. The
first one is a trivial perfect map made from a string literal, as seen
before. The second one describes all the keys and values, and the

compiler will brute-force a perfect hash function with those keys.

The syntax for finding a perfect map from strings to integers is the
following:

find perfect [perfect [int -> char] -> int] words = [

nin _> g
uamn -> 1
"hashing" -> 2

"strings" -> 3

TSclT 39, July 7, 2023, Enschede, The Netherlands

Now, throughout the whole program, the global map variable 'words'
can be used like any other map.

3.9 Comments

Comments are written between slashes and asterisks like this:

/* this is a
multi line comment */

4 METHODOLOGY

This section details the steps taken to answer each of the research
questions. First, a compiler that compiles the simple map-based
language prototype MPL to LLVM IR was programmed.

4.1 Answering RQ1, RQ2 and RQ3

In order to answer the first three research questions, we solved as
many programming problems as time allowed. We cover problems
with different intended solution strategies; this way, we will be
able to identify the strengths and weaknesses of the language. We
then compared the solution with another language that uses LLVM,
specifically Rust. After this, a time complexity analysis of both
solutions was done, checking for execution speed and memory
usage. We combined the result of the quantitative analysis with the
personal experience of solving the problems in both languages to
answer RQ1 and RQ2.

To also answer RQ3, we benchmarked the operations used in the
solutions against the equivalent operations in the other language.
We answered RQ3 by comparing the relative difference between the
results from the benchmarks.

4.2 Answering answer RQ4

In order to answer RQ4, experience programming in the language
was needed. This made it possible to see which features were missing
or unnecessary, and how the syntax and semantics could be changed
to make the language more readable and usable.

While answering the other sub-research questions, a lot of time
was spent programming in the map-based programming language.
During this period, we had the opportunity to refine the feature set,
syntax, and semantics. This allowed us to answer RQ4.

4.3 Answering RQ5

To answer RQ5, we tried out pthash[9] and rust-phf[4], two popular
libraries that apply the same optimizations that have been added
in the map-based language prototype: the compile-time perfect
minimal hash map. After trying these libraries, we will explain the
differences we perceived.

5 RESULTS

In this section, we give the collected data relevant to the specific
research questions and some of our thoughts and interpretations of
the results.

5.1 Results for RQ1

Most programming languages have some sort of map type and can
implement a solution to a problem in the same way a map-based

TScIT 39, July 7, 2023, Enschede, The Netherlands

language can. This means that map-based programming languages
do not bring revolutionary methods to solving problems. The small
advantages that map-based languages could have are good defaults
and a high level of optimisation for maps, making the map-based
language faster or more memory efficient than other languages
when the usage of maps is an efficient strategy for the problem. An
example of a better default is choosing a fast hashing function as
opposed to a cryptographically secure hashing function. Rust, which
uses a cryptographically secure hashing function by default, has a
lot of overhead when using a hashmap in cases where it does not
need to be cryptographically secure. An example of an optimisation
is the perfect map type in MPL, which is faster and more memory
efficient compared to languages that do not have such maps.

5.2 Results for RQ2

In MPL, all problems that are usually solved using arrays in other
languages have some overhead. The same holds for data structures
that are internally represented by an array, such as stacks, heaps, or
dynamically sized arrays. This overhead is caused by the need to
hash the keys, check if the keys are equal, and check if the key-value
pair is still valid. This overhead could be removed by allowing the
creation of trivial, perfect minimal hash maps at runtime; these have
the key set {0, 1, - - - , n — 1} and the identity function as a hash func-
tion. This removes the need to check if the keys are equal and if the
key-value pair is still valid. After compiler optimisations, the iden-
tity hashing function will be optimised out. Then indexing into a
trivial, perfect, minimal hash map will be equivalent to indexing into
an array. This can then be used to implement other data structures
that are internally represented by an array without incurring over-
head. This means that there are no programming problems where
highly optimised maps are less efficient than conventionally used
data structures because these data structures can be implemented
using maps without overhead.

5.3 Results for RQ3

In this research, we benchmarked the following operations on a 64-
bit Windows 10 computer in a WSL Ubuntu 20.04.6 LTS environment
with an AMD Ryzen 5 2600 Six-Core Processor and 8 GB of RAM.
Both MPL and Rust were compiled with the highest optimisation
level.

e Map and set insertion (Table 1 & 2)

e Map lookup (Table 3)

e Linked list and vector push and pop (Table 6, 7 & 8)

e Sorted binary tree insertion and removal (Table 4 & 5)

Because the amortised time complexity of insertion and lookup

using a hash map is O(1) and the space complexity of using a hash
map is O(n), all other data structures can be created by substitut-
ing the underlying arrays that languages usually use with a hash
map in a map-based language. This means that if all operations are
implemented optimally, they will have the same time complexity
as optimal implementations of these data structures in other lan-
guages. The following benchmarks are still useful for measuring
the overhead caused by the use of maps instead of arrays.

5.3.1 Map and set insertion. Table 1 verifies that insertion has an
amortised O(1) time complexity. The main causes of variance in

Niels Kruk

the speed for a different number of keys are the percentage of the
capacity filled at the end of the benchmark and cache misses. If the
time is measured just before and just after a rehashing, the latter
will include the time for allocating more memory and for copying
over all the data. This will make a big difference in the average time
per insertion. The chance of cache misses will grow as the capacity
of the maps grows. This will slowly increase the average time per
insertion.

It is interesting to note that our language prototype is a lot faster
than Rust, even though our maps are not really optimised yet. This
is caused by the fact that Rust’s default hash function is SipHash 1-3
[1], which is a cryptographically secure hash function that protects
against HashDoS attacks, which can be useful but is most of the
time not necessary.

Table 2 can be used to estimate how long it has been since the
last rehash. The table shows that MPL’s set and map just finished a
rehash after 107 keys and are about to do another rehash after 108
keys. This information can aid in understanding the results from
Table 1.

5.3.2 Map lookup. Table 3 verifies that MPL’s map has an amortised
O(1) time complexity. Here it can again be seen that Rust’s default,
SipHash 1-3, is not optimal for speed benchmarks.

5.3.3 Linked list and vector push and pop. The MPL map benchmark
in Table 6 and Table 7 use a map that inserts the value that needs
to be pushed and uses as key the current size of the map. When
popping, it returns the value at key = size — 1 and removes that
key-value pair from the map.

For the linked lists, pushing seems to be two and a half times as
slow for MPL’s FILO and about five times as slow for MPL’s FIFO.
For popping, both MPL’s FILO and FIFO are slightly more than
four times as slow. We speculate that this is caused by the lack of
a pointer type in MPL. This forces the programer to use maps for
referencing memory addresses, which is substantial overhead when
there has been no effort spent on optimising this usage of maps.
MPL’s map benchmark uses a data structure functionally similar
to Rust’s VecDeque benchmark; however, as also seen in Table 1,
inserting into MPL’s maps has substantial overhead compared to
Rust’s Vecs.

In Table 8 we can see that MPL’s linked lists need more than four
times as much space. This could also explain why it is significantly
slower compared to Rust’s linked list. This table also verifies that
all the data structures have O(1) space complexity, as expected.

5.3.4 Sorted binary tree insertion and removal. Rust does not have a
sorted binary tree data structure by default. So we programmed the
same implementation in both Rust and MPL. This gives a good com-
parison of the relative speed between the two languages when they
execute the same algorithm. On average, inserting and removing
from a binary tree should be O(log n). In Table 4, both implementa-
tions seem to follow this time complexity. MPL’s tree is slower for
the same reason that its linked lists are slower. Maps are not that
well optimised yet to serve as pointers, and Table 5 shows that more
memory needs to be allocated for MPL’s binary trees.

Design of an Efficient Map-Based Programming Language

TSclT 39, July 7, 2023, Enschede, The Netherlands

Table 1. Fill Benchmark (ns/key)

Keys | MPL set | MPL map | MPL set float | Rust Vec | Rust Set | Rust Map
102 | 17.87 19.01 33.17 7.48 47.81 48.15
103 | 9.16 10.04 37.23 3.20 58.18 62.52
10% | 9.81 13.76 37.59 2.77 56.59 58.42
10° | 13.26 21.86 36.44 2.60 52.37 52.14
10 | 18.34 36.61 68.88 4.19 92.91 111.52
107 | 25.59 44.17 104.06 4.66 150.93 157.67
108 | 19.66 32.06 98.88 4.81 195.02 214.68

Table 2. Space Benchmark (byte/key)

Keys | MPL set | MPL map | MPL set float | Rust Vec | Rust Set | Rust Map
10 | 12.37 23.09 12.37 10.48 9.44 18.40
10°] 14.93 28.17 14.93 8.22 1438 | 2872
10% | 17.09 32.28 17.09 13.11 11.47 22.94
10° | 19.48 36.79 19.48 10.49 9.18 18.35
10 | 22.19 41.91 22.19 8.39 14.68 29.36
107 | 25.27 47.74 25.27 13.42 11.74 23.49
108 | 12.79 24.17 12.79 10.74 9.40 18.79

Table 3. Lookup Benchmark 50% hit (ns/key)

Keys | MPL map | Rust map
102 | 44.18 21.14
103 | 52.33 15.59
10% 3736 15.99
10° | 35.91 21.25
10° | 38.46 64.70
107 | 39.04 111.75
108 | 39.21 157.04

Table 4. Sorted Binarytree Benchmark (ns/key)

Keys | MPL insert | MPL remove | Rust insert | Rust remove
107 | 320.69 469.52 37.51 265.80
10° | 449.26 774.51 68.51 392.29
10% | 695.79 1352.46 135.15 574.11
10° | 1469.73 1984.38 418.12 862.65
10° | 3087.29 2320.85 1205.55 1129.48

Table 5. Sorted Binarytree Space Benchmark (byte/key)

Keys | MPL | Rust
102 | 43.49 | 24.08
103 | 43.05 | 24.01
10% | 43.00 | 24.00

5.4 Results for RQ4

Almost all The features that are currently implemented aid in the
usability or readability of the language. The only currently imple-
mented feature about which we are not sure whether it is a good

addition to the language is the 'getMaybe’ method. The initial pur-
poses of "getMaybe’ were to protect against a key not existing in a
map and to avoid having to index into a map twice, which happens
in the common programming pattern of first checking for the key’s
existence and then looking up the value. Another big advantage
of ’getMaybe’ is that the method ’get’ can be reserved for the case
when the key is assumed to be in the map. This makes the key
equality check unnecessary when called using a perfect hash map.
There are two problems with the current approach. The first is that
because 'getMaybe’ creates a new map, which makes memory man-
agement inconvenient. It is easy to forget to free the result, and
when reassigning a variable with ’getMaybe’ you will most of the
time first need to free the current value to avoid memory leaks. Here
is an example:

fn int problemsWithGetMaybe([int->int] A){
new [void->int] maybevalue
if condition {
/* free a just created map */
free maybevalue
maybevalue = A.getMaybe(1234)

}

if maybevalue.size() == 0 {
maybevalue.insert(Q)

}

/* Instead of just returning first copy the value,
then free the map and only then return %/
int returnvalue = maybevalue.get()
free maybevalue
return returnvalue

TScIT 39, July 7, 2023, Enschede, The Netherlands

Niels Kruk

Table 6. Push Benchmark (ns/key)

Size | MPL linked list FILO | MPL linked list FIFO

MPL map | Rust LinkedList | Rust VecDeque

102 | 37.59 71.24 13.10 15.67 10.72

103 | 40.77 66.25 12.42 15.76 5.01

10% | 38.51 80.02 15.64 15.85 4.13

10° | 37.06 71.58 13.38 15.37 3.76

10° | 39.07 81.64 17.82 15.88 4.57

107 | 41.97 81.88 26.74 15.96 5.95
Table 7. Pop Benchmark (ns/key)

Size | MPL linked list FILO | MPL linked list FIFO

MPL map | Rust LinkedList | Rust VecDeque

102 | 62.93 48.99 4.88 11.45 3.91
103 | 59.77 47.39 3.95 11.43 3.48
10% | 60.19 53.98 4.97 13.07 3.44
105 | 63.13 57.81 3.90 10.87 3.52
10° | 66.26 69.14 3.92 16.95 3.62
107 | 64.51 62.51 4.84 14.72 3.70

Table 8. Push-Pop Data Structures Space Benchmark (bytes/key)

Size | MPL linked list FILO | MPL linked list FIFO | MPL map | Rust LinkedList | Rust VecDeque
10% | 34.49 34.34 23.09 8.24 10.56

10% | 34.05 34.03 28.17 8.02 8.22

10% | 34.00 34.00 32.28 8.00 13.11

10° | 34.00 34.00 36.79 8.00 10.49

10° | 34.00 34.00 41.91 8.00 8.39

10 34.00 34.00 47.74 8.00 13.42

One way to improve this is by allowing if and else statements to
evaluate to a value in expressions like a ternary operator. You could
have the value equal to the result of the last line, like this:

[void->int] maybevalue = if condition {
A.getMaybe(1234)
} else {
new [void->int]

}

Another possibility is to modify the arguments of ’getMaybe’ to
take the map object it will insert the value into if it exists; this will
then prevent new map allocations. This would look something like
this:

new [void->int] maybevalue
if condition {

A.getMaybe (1234, maybevalue)
}

The last possibility we came up with that specifically addresses
this issue is that you could add another type to the language that
can hold the returned value of ’getMaybe’ and allocate it on the
stack. If this option is chosen, it is important to pay attention to

clarifying which maps are stack allocated and which maps are heap
allocated and need to be manually freed.

The other problem with 'getMaybe’ is that even though it solves
the problem of indexing multiple times in the specific scenario where
you want to check for existence and then return the value, it does
not help with the other scenarios where you would index twice, such
as retrieving and deleting or retrieving and updating a key-value
pair. One way to solve this is to add a method for all combinations of
actions you could want to do to a key-value pair like: ’getRemove’,
’getMaybeInsertWith’, 'updateWithLambdaFunctionGet’,
’insertIfEmptyOtherwiseRemove’, etc. Although technically fea-
sible, this is probably not the best way to handle this issue. A better
way is to bind a variable to a code block that represents the key-
value pair and add some methods to update, remove, or retrieve the
data. This could look something like this:

with pair from map[key] {
if pair.isValid(){
pair.insert(pair.get() + 1)
Yelse{
pair.insert(0)

Design of an Efficient Map-Based Programming Language

With both this solution and the previous one when using a func-
tion like ‘updateWithLambdaFunctionGet’ it is important to think
of a way to handle the case where the map gets updated in other
locations than the pair. This could trigger a rehashing and invalidate
the pair pointer. The safest way is to disallow updating the map
within this code block. Another strategy could be to keep track of
rehashes and update the pair pointer after a rehash.

5.4.1 Potential improvements. We were considering extending the
syntax for finding a perfect hashmap with the following:

"programming" -> 14
"language" -> 15
1 with (strKey) {strKey.get(@), strKey.size()}

This syntax would indicate that the combination of the first charac-
ter and the size can uniquely identify all keys. This means that it is
possible to use only these values to calculate the hash, which will
make hashing faster. It is also sometimes possible to let the com-
piler calculate how to optimally and uniquely identify the keys.
This is impossible when a complex expression is needed, such
as {strKey.get((strKey.size()-1)/2)} to retrieve the middle
value from the string. Another disadvantage of having the compiler
calculate this is that it makes assumptions about what valid keys
are. In the case of {strKey.get (@), strKey.size()} the assump-
tion is that there exists a zeroth element. This is true for all strings
except the empty string. As a programmer, you can then keep this
in mind while using the map. If the compiler finds a set of values it
can extract to uniquely identify the keys, you do not have control
over the requirements for valid keys. This is not a problem when
you only look up keys that are in the map, but a lookup with keys
that are not inside the map could cause undefined behaviour.

5.5 Results for RQ5

After having tried out both pthash and rust-phf we can say that
there are no big disadvantages to using these libraries instead of a
map-based language. When you use a library, it needs to be manually
installed as a dependency instead of already having the features
accessible. This is not a big disadvantage in the case of pthash and
rust-phf because the installation process is quite easy for both of
these libraries. Another potential disadvantage could be that the
maps are constants. The only things that have to stay constant are
the keys because the hash function depends on them. If you wanted
to count specific words in a text, you could use the hash function
and the array of keys from the static program memory and allocate
a separate array to store the values in dynamic memory. This could
look something like this:

find perfect [perfect [int -> char] -> _] words = [

lli!l
am
"hashing"

"strings"

TSclT 39, July 7, 2023, Enschede, The Netherlands

new [words -> int] count

for key -> _ in words {
count.insert(key, 0)

}

while nextWordInText {
count.insert(count.get(nextWord) + 1)

In both pthash and rust-phf a separate array will have to be allocated
to keep track of the number of occurrences of the words. This has
some slight spatial and temporal overhead, which will most likely
not be a problem.

6 CONCLUSION

After exploring the idea of a map-based programming language,
we came to the conclusion that it is a viable paradigm. Using a
map-based programming language is usually not a big advantage
or disadvantage compared to other languages. There are specific
problems where it can be advantageous to use a map based program-
ming language. An example is when a hash map is useful and the
keys can be known at compile time, then a map-based programming
language can find an optimal hashing function for that set of keys.
In MPL, there is a lot of overhead compared to other languages,
which could be disadvantageous if performance is important. This
is, however, a specific property of MPL. In general, map-based pro-
gramming should be able to optimise away most of the overhead.
If someone is willing to use libraries when using other languages,
the advantage a map-based language could have goes away, as the
problems it tries to solve can also be solved using a library. Then
it is up to preference as to which language or paradigm should be
chosen.

For further work, research could be done on specific optimisa-
tions that could improve the efficiency of a map-based language.
Another option is to propose novel syntax and semantics that could
improve readability or ease of use. Any research into new hashing
algorithms and their advantages and disadvantages could contribute
to improving map-based languages. And lastly, research into what
maps can be useful for can increase the overall usefulness of map-
based languages.

REFERENCES

[1] Jean-Philippe Aumasson and Daniel] Bernstein. 2012. SipHash: a fast short-input
PREF. In Progress in Cryptology-INDOCRYPT 2012: 13th International Conference on
Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings 13. Springer,
489-508.

Ankita Bihani and Anupriya Gagneja. 2017. Graph Processing Library in Rust.

(2017). http://web.archive.org/web/20080207010024/http://www.808multimedia.

com/winnt/kernel.htm

[3] Fabiano C.Botelho and Nivio Ziviani. 2007. External perfect hashing for very large
key sets. Proceedings of the sixteenth ACM conference on Conference on information
and knowledge management (2007). https://doi.org/10.1145/1321440.1321532

[4] Steven Fackler, Yuki Okushi, and Austin Bonander. 2023. rust-phf. https://github.
com/rust-phf/rust-phf.

[5] Michael L. Fredman, Janos Komlés, and Endre Szemerédi. 1984. Storing a sparse
table with 0 (1) worst case access time. J ACM 31, 3 (1984), 538-544. https:
//doi.org/10.1145/828.1884

[6] Chanchal Khemani, Jay Doshi, Juhi Duseja, Krapi Shah, Sandeep Udmale, and
Vijay Sambhe. 2019. Solving Rubik’s Cube Using Graph Theory: ICCI-2017. 301-317.
https://doi.org/10.1007/978-981-13-1132-1_24

[7] Niels Kruk. 2023. MPL. https://github.com/Pinchoboo/language.

[2

http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
https://doi.org/10.1145/1321440.1321532
https://github.com/rust-phf/rust-phf
https://github.com/rust-phf/rust-phf
https://doi.org/10.1145/828.1884
https://doi.org/10.1145/828.1884
https://doi.org/10.1007/978-981-13-1132-1_24
https://github.com/Pinchoboo/language

TScIT 39, July 7, 2023, Enschede, The Netherlands Niels Kruk

[8] Ryan Marcus. 2023. Learned Query Superoptimization. arXiv:arXiv:2303.15308
[9] Giulio Ermanno Pibiri and Roberto Trani. 2021. PTHash: Revisiting FCH minimal
perfect hashing. Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval (2021). https://doi.org/10.1145/
3404835.3462849
[10] Renzo Sprugnoli. 1977. Perfect hashing functions. Commun. ACM 20, 11 (1977),
841-850. https://doi.org/10.1145/359863.359887

https://arxiv.org/abs/arXiv:2303.15308
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.1145/359863.359887

	Abstract
	1 Introduction
	2 Related Work
	3 Language description
	3.1 Types
	3.2 Variables
	3.3 Expressions
	3.4 Control flow
	3.5 Memory management
	3.6 Functions
	3.7 Map methods
	3.8 Perfect maps
	3.9 Comments

	4 Methodology
	4.1 Answering [RQ1]RQ1, [RQ2]RQ2 and [RQ3]RQ3
	4.2 Answering answer [RQ4]RQ4
	4.3 Answering [RQ5]RQ5

	5 Results
	5.1 Results for [RQ1]RQ1
	5.2 Results for [RQ2]RQ2
	5.3 Results for [RQ3]RQ3
	5.4 Results for [RQ4]RQ4
	5.5 Results for [RQ5]RQ5

	6 Conclusion
	References

