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The increasing complexity of cyber-physical systems has made it challenging

to maintain their serviceability and diagnose faults. Model based diagnosis

and Bayesian networks have been researched to diagnose faults in these

systems. This study focuses on the use of a hybrid approach combining

consistency-based diagnosis and Bayesian Networks to improve fault de-

tection and diagnosis for complex systems. A relatively simple model of

a cyber-physical system will be built and subjected to different health sta-

tus node configurations to determine the best diagnosis performance. The

proposed approach is expected to enhance fault diagnosis and maintain

serviceability of cyber-physical systems.
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1 INTRODUCTION
Cyber-physical systems have become an essential part of our lives,

ranging from critical infrastructure such as power grids and trans-

portation systems to everyday devices like smartphones and home

appliances. Ensuring the uptime and smooth operation of these

systems is crucial to prevent disruptions. However, as these systems

have become more complex, diagnosing faults and maintaining their

serviceability has become increasingly challenging. With this com-

plexity comes a higher probability of component faults, which can

lead to a cascade of misbehaving parts [2] and make it difficult to

identify the root cause of the issue.

Research in the field of fault diagnosis and system serviceability

for cyber-physical systems has been ongoing for several years, with

numerous studies addressing various aspects of the topic. This re-

search will be mainly focusing on the area of model based diagnosis

(MBD) and Bayesian network (BN). MBD involves using a model of

a system or device’s structure and behavior to identify the cause of

malfunctioning [8]. One popular approach to MBD is consistency-

based diagnosis (CBD), which utilizes knowledge of normal device

behavior to diagnose faults. This method is particularly useful for

troubleshooting novel systems where there is limited or no prior

experience with faults. However, incorporating uncertainty into

CBD can be challenging, even though uncertainty is often desirable

in fault diagnosis because it can help identify the most probable

cause of a problem. The use of BN would be ideal in this case as they

are known for providing a framework for dealing with uncertainty

in knowledge-based systems [5].

This research will examine a diagnostic methodology that relies

on model-based techniques and probabilistic reasoning to diagnose

faults in a cyber-physical system. By leveraging design knowledge

and probabilistic reasoning, this approach aims to improve fault
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detection and diagnosis for complex systems. To achieve this, a

theoretical model of a water pipes cyber-physical system is built us-

ing hybrid model-based approach that combines consistency-based

diagnosis with Bayesian networks. The model will be subjected to

different configurations, and the health status node configuration

that yields the best diagnosis performance will be determined.

This paper consists of six sections. The second section states

the problem and research question. In section three, background

and relevant literature is analyzed. The fourth section describes the

methods and steps taken to answer the research question. The fifth

section provides the results obtained from these experiments. Lastly,

the sixth section presents the conclusions drawn from the study

and highlights potential directions for future research.

2 PROBLEM STATEMENT
Although in the past there has been quite some research on the

theoretical underpinning of the field of Bayesian MBD [4, 8, 9]

there is not much empirical research that clearly indicates which

particular approach is best. This holds in particular for the various

possible graph configurations of the health nodes in these models.

Previous research by Barbini et al. [1] made particular assumptions

about the way in which health nodes are positioned in the graph,

although, without proper justification. In our research the impact of

various health node configurations on the accuracy of diagnosing

faults is being investigated for the first time.

ResearchQuestion
The problem statement will lead to the following research question:

• How should health status variables be represented in a Model

Based Diagnosis Bayesian Network for monitoring and diag-

nosing faults in a cyber-physical system?

3 BACKGROUND
Fault diagnosis can be achieved through several methods. One ap-

proach involves identifying the failure modes of faulty components

and tracing the system based on a given causal theory which is sim-

ilar to the idea of abductive diagnosis (for fault diagnosis) [7]. An-

other approach is MBD, where only the normal behavior of the sys-

tem’s components and relations between them are modeled which

is similar to CBD. This research will focus on the latter method as it

is often not possible to know the failure modes of a novel system

and it is quite difficult to know all the possible failure modes to

diagnose to a single component in relatively large systems.

Several researchers have explored Bayesian Network as a method

for fault diagnoses in cyber-physical systems [1, 6, 8]. Reiter [11]

presented the first formal and precise description of consistency-

based model-based diagnosis, which primarily discusses the logical

structure of this diagnostic approach. A useful review and also input

to this research was [1]. In that paper, Barbini et al. demonstrated

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


TScIT 39, July 7, 2023, Enschede, The Netherlands Mustafa Hayri Bilgin

Fig. 1. A simple model of a pipe system

how to use model-based diagnosis to locate faults in complex cyber-

physical systems. They achieved this by constructing diagnostic

models utilizing Bayesian networks for diagnostic inference to deal

with partial system observability.

However, despite the progress made in this field, none of this

scientific research has investigated the impact of different health

node configurations on Bayesian model-based diagnosis.

3.1 Model Based Diagnosis
Reiter [11] developed the notion of MBD to diagnose faults in a

system by using first order logic. Essentially, a system consists of

components CMP and a system description SD. The former consists

of a set of components of the system while the latter defines the

normal behavior of the components in a set of first-order sentences.

Each component within the system can have the following values:

Normal, Abnormal. The Normal state refers to the case where a

component is behaving as expected which can be found from the

first-order logic in the SD. The Abnormal state can be considered as

the negation of the Normal behavior.

A diagnostic problem can be viewed as the combination of a

system and a set of observations Obs. When a system is behaving

abnormally, a diagnosisD represents the minimal set of components

that provides an explanation for the abnormal behavior and satisfies

the following equation:

𝑆𝐷 ∪𝑂𝑏𝑠 ∪ {𝐴𝑏 (𝑐) | 𝑐 ∈ 𝐷} ∪ {¬𝐴𝑏 (𝑐) | 𝑐 ∈ 𝐶𝑜𝑚𝑝𝑠 − 𝐷} ⊭ ⊥
(1)

where ⊥ represents falsum (or inconsistency) and ⊭ represents the
"does not prove" relation. Essentially, the expression is stating that

the combination of sets on the left-hand side does not logically entail

a contradiction.

3.2 Modeling
To visualize the idea of modeling in MBD, consider a relatively

simple theoretical pipe system shown in Figure 1. This small system

S consists of four pipes: pipe 1, pipe 2, pipe 3, and pipe 4. A flowmeter

is also attached to the end of the system which is the connection

between pipe 4 indicating the end of the system.

Based on MBD, the system S consists of components CMP =

{pipe 1, pipe 2, pipe 3, pipe 4} and a system description SD. Since

each component is identical, their behavior is also expected to be

similar. Each component has an input, output, and relations. The

input and output are essentially variables and thus can have the

following values: no flow, low flow, normal flow.

There exist relations between the components and these are rep-

resented using first-order logic. For instance, if the input is low

flow, then the output can either be low flow or no flow logically.

Besides the components of a system, we also have to consider the

connections of components. These connections are the flow of the

system in this case. Specifically, the output of a component is con-

nected to the input of another component when two components

are connected. For example, the output of pipe 1 and pipe 2 are

connected to the input of pipe 3. These relations and connections

make up the SD.

3.3 From MBD to BN
This paper implements MBD through the mapping of an SD of a

system to a BN [10]. A BN is defined as a directed acyclic graph that

represents the joint probability distribution of a group of random

variables. Each node in the graph corresponds to a specific random

variable and the connections between nodes depict causal depen-

dencies among the variables. Additionally, a conditional probability

table (CPT) is defined for each node in the BN.

There are multiple ways of translating an MBD to a BN prob-

lem and this paper will highlight three main approaches. The first

approach discussed is the traditional method, providing a solid

foundation for understanding the subsequent adaptations. The sec-

ond approach represents an adaptation of the traditional method,

introducing modifications to enhance its effectiveness. The third

approach follows a similar structure to the second approach, further

refining the representation of health nodes for components. It is

important to note that each approach represents the configuration

of health nodes of a component differently which allows to explore

and find an answer to the research question of this paper.

Generally, a system can be translated to a BN using the following

steps:

(1) Assign an individual input, output, and health variable for

each component in the SD.

(2) Add a connection (edge) from the input to the output for each

component.

(3) Create connections from the output of one component to the

input of connected components within the system.

(4) The specific connections between the health node, input, and

output variables vary depending on the chosen modeling

approach.

It is assumed that the same probabilities can be taken for the same

type ofmodeled component, which inmany cases will be a justifiable

simplification.

Note that it is also possible to add sensor nodes to a BN to repre-

sent the sensors in a system. For this research, it is assumed that

each output node has a sensor attached to it in order to record the

behaviour of the component.

The subsequent subsections present different approaches to con-

figuring health nodes when translating MBD to BN, providing fur-

ther details on each method.

3.3.1 Traditional Approach. The traditional approach is based on

the work of Srinivas [12]. Each component consists of an input,
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(a) Traditional approach: HealthParentOut

(b) Second approach: InOutParent

(c) Third approach: HealthParentOut

Fig. 2. Different approaches of representing the pipe system in a BN.

output, and model. The input and output has the same description

as explained in section 3.2. The model is essentially the health node

and its value is determined by the behavior of the input and output.

In Figure 2a, the pipe system from Figure 1 has been translated

into a BN following this method. As it can be seen, each pipe consists

of inflow, outflow, and pipe health variable. The input (or inflow) has

a connection to the output (or outflow) of a component. In addition,

the health node has a connection to the outflow. For each connection

of a pipe with another pipe, the output of the first pipe is linked to

the input of the subsequent pipe. Based on inference logic, both the

health and input node impact the output of a component. Moreover,

the value of a component’s input is influenced by the output of

the connected pipes. In the later sections, this configuration will be

referred to as "HealthParentOut".

3.3.2 Second Approach. The second approach shares several simi-

larities with the traditional method. The overall structure remains

the same, where each component possesses an input, output, and

health variable. However, there is a distinction in the relationship

between the health node and the input/output nodes. Figure 2b

illustrates the translation of the pipe system from Figure 1 into a

BN using this method.

In this approach, the health node can be considered dependent on

the values of the input and output. Therefore, arrows connect from

the input to the health node and from the output to the health node,

respectively. This arrangement aligns logically since observations

of the input and output implicitly provide information about the

health of the component. For example, if the input exhibits expected

behavior but an unexpected value is observed in the output, it may

indicate a component fault. This type of relationship in the BN

structure is well-suited for such inferences. Based on inference

logic, the input and output variables serve as parents to the health

variable, thereby influencing its assigned value. In the later sections,

this configuration will be referred to as "InOutParent".

3.3.3 Third Approach. The third approach shares several similar-

ities with the second approach, but with a key difference in the

relationship between the health node and the input/output nodes.

In this approach, the health node is considered the parent of the

input and output nodes, indicating that the health node influences

the values of both. Figure 2c illustrates the translation of the pipe

system from Figure 1 into a BN using this method.

Logically, when a system has a problem or fault, it directly af-

fects the values of the input and output variables. Therefore, the

arrows in the BN structure go from the health node to the input

and output nodes, reflecting this cause-and-effect relationship. This

configuration aligns with the understanding that the health state

of a component or system can impact the behavior and values ob-

served in the input and output variables. Following the principles

of inference logic, the health node’s value influences the values of

the input and output nodes. By considering the health node as the

parent, any changes or issues in the health node propagate to affect

the input and output variables accordingly. In the later sections, this

configuration will be referred to as "HealthParentOut".

3.3.4 Forming a Diagnosis. After translating the MBD to a BN

problem, the next crucial step is to define and find the diagnosis. This

can be formed by using probabilistic inference and the calculation

of posterior probabilities within the BN.

To form a diagnosis using probabilistic inference and the calcula-

tion of posterior probabilities of a model-based BN, the following

formula can be used:

𝐷 = {𝑘 | leak ≡ argmax𝑣𝑃 (Health𝑘 = 𝑣 | 𝐸), 𝑘 = 1, . . . , 𝑁 } (2)
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for 𝑁 different components of the cyber-physical system. By apply-

ing equation (2), the diagnosis process evaluates whether probability

of a "leak" state in each 𝑘th "pipe-health" node (Health𝑘 ) and selects

the pipe or pipes with the highest probability. If multiple pipes have

the same highest leak probability, all of them are included in the

diagnosis.

4 METHODOLOGY
In this paper the pipe system from Figure 1 is used as the experimen-

tal framework. In order to perform diagnosis and evaluate different

BN models, it is essential to have both the system and relevant data.

Since it is not feasible to collect data from the system as this requires

gathering data from a real cyber-physical system, synthetic data

will be generated based on a logical algorithm.

For the implementation of the experiments, the programming

language Python was chosen. Specifically, the pyAgrum library [3]

was used to construct and evaluate various BN models.

The following subsections provide a comprehensive description

of the data generation process, the system itself, and the different

evaluation methods employed.

4.1 System Structure
The system from Figure 1 has been translated to different BN con-

figurations, as shown in Figure 2. These configurations represent

different types of modeling approaches for the BN, while the compo-

nents remain the same, with variations in the network relationships.

Once these configurations were constructed using the pyAgrum li-

brary, the next step involved assigning conditional probability tables

(CPTs) for each node in the BN. There were two options for assign-

ing the CPTs: manual assignment based on system knowledge or

learning the CPTs from the synthetic data. For this research, a hybrid

approach was chosen. Initially, the CPTs for each BN configuration

were learned from the data. Subsequently, manual adjustments were

made to the CPTs, except for the pipe-health nodes. Learning the

CPTs for the health pipes from the data was preferred, as adding

them manually would have been challenging without prior knowl-

edge of the system’s health status. Given that the primary research

objective is to identify the most effective health node configura-

tion, the manually adjusted CPTs were designed to be very similar

across configurations. This ensured that the diagnosis results were

primarily influenced by the health node configurations rather than

the specific CPT values. Figure 3 contains an example CPT for the

"HealthParentBoth" configuration.

It is worth noting that each pipe’s outflow is connected to a

sensor. This deliberate choice enables the use of inference without

interfering with the inferential logic when providing evidence to

identify the diagnosis. While additional sensors could be attached to

other components, this research specifically adopted this approach.

4.2 Data Generation
A data generator algorithm was built to generate synthetic data for

a theoretical pipe system. The functions built are modular to ensure

that it adheres to any pipe system that follows a similar structure to

the pipe system in Figure 1. By providing the names of the pipes and

Fig. 3. CPT of pipe3-outflow for the HealthParentBoth configuration

their corresponding relations (connections), the algorithm handles

the rest of the data generation process.

Each pipe in the generated data consists of three main columns:

pipeX-inflow, pipeX-outflow, and pipeX-health, where 𝑋 denotes the

pipe number. The inflow and outflow columns can have the values:

noFlow, lowFlow, or normalFlow, while the pipe-health column can

take either the value normal or leak.
Overall, the data generator makes use of logical probabilities to

assign values for different states that a component can take. For

example, assuming that 90% of the pipes are expected to function

normally, the generated data reflects this probability distribution.

Various factors influence the assignment of values to specific com-

ponents based on the system’s structure and behavior. The pseudo

code for the data generator can be found in Algorithm 1. The logical

flow for assigning values to each component is described below:

• pipe-inflow: The value of this component is determined by

two factors: the pipe’s own health status (pipe-health) and
its connection to other pipes. This logical approach acknowl-

edges that the health of the pipe can impact the inflow. Addi-

tionally, even if the pipe is in normal health, the inflow can

be influenced by the outflow values from other connected

pipes. For example, if pipe 1 and pipe 2 are connected, and

pipe 1 has noFlow, then pipe 2’s inflow will also be noFlow,
regardless of the health of pipe 2.

• pipe-outflow: The value of this component is determined by

two factors: the inflow of the current pipe (pipe-inflow) and
the health status of the current pipe (pipe-health). Specifically,
the value of the pipe’s outflow can either match or be lower

than its inflow value. Similarly to the pipe-inflow case, the

health status of the pipe impacts the outflow value.

• pipe-health: This value is randomly determined based on a

given probability. For the generated data in this case, it was

assumed that 90% of the components would function properly.

A very important note is the conservation of water in pipes. If

the pipe-inflow of a pipe has the value lowFlow, then the outflow

can only be lowFlow or noFlow, as the flow cannot increase in a pipe

but can only stay the same or decrease.

By taking into account these logical principles, as well as addi-

tional conditions within the code, the synthetic data was generated.
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Algorithm 1 Random Pipe Generator

1: function data_generator(pipes, relations)

2: for pipe in pipes do
3: pipe_health = randomly select ’normal’ or ’leak’

4: if pipe is the first pipe then
5: pipe_inflow = randomly select from [’noFlow’,

’lowFlow’, ’normalFlow’] based on pipe_health

6: else
7: find connected_outflows based on pipe relations

8: pipe_inflow = randomly select from [’noFlow’,

’lowFlow’, ’normalFlow’] based on connected_outflows and

pipe_health

9: end if
10: pipe_outflow = randomly select from [’noFlow’,

’lowFlow’, ’normalFlow’] based on pipe_inflow and pipe_health

11: end for
12: end function

4.3 Evaluation Methods
4.3.1 Cartesian Product of Evidences. In order to gain an under-

standing of all potential diagnoses that can be generated by a par-

ticular model, it is possible to generate and test every unique combi-

nation of evidences to formulate a diagnosis. The Cartesian Product

can be used to obtain all possible combinations of evidence. This

method involves considering all possible combinations of the source

pipes (Sp), sensor nodes (Sn), and possible values (Pv). The formula

used for this method is as follows:

E = {𝑐 ∈ (Sp × P(Sn) × P(Pv)) | ∀sp ∈ Sp : sp = ’normalFlow’}
(3)

The above formula ensures that each combination in the set of

evidences includes all the source pipes with the value ’normalFlow’,

while allowing the sensor nodes to take any value from the possible

values set. Additionally, it accounts for scenarios where not all

sensor nodes are present, as long as all the source pipes are included.

The adaptation of the Cartesian Product of Evidences and the

creation of this formula were necessary to consider logical and ap-

propriate diagnosis that can effectively represent real-life evidences.

By incorporating the points below, the formula provides a realistic

representation of the evidential scenarios:

• In all the combinations, all the source pipes must be present.

Moreover, we are only interested in the cases where the flow

is normal from the source pipes. This is because diagnosing

faults of the source pipes can be achieved through a simple

observation of the system.

• The combinations also include cases where not all sensor

nodes are present, while ensuring that all source pipes remain

present.

Note that the code which generates these combinations take into

account additional factors. For instance, if a pipe is connected to

another pipe, then it is not possible to have an evidence combination

where the former pipe sensor detects no flow while the latter pipe

sensor detects low flow or normal flow.

4.3.2 Accuracy. A BN model can form a diagnosis by following the

steps from Section 3.3.4. Once the BN selects its diagnosis, which

may consist of one or multiple pipes, it becomes essential to evaluate

the accuracy of this diagnosis. This evaluation involves examining

each data point from the synthetic dataset that adheres to the evi-

dence criteria.

The accuracy of the diagnosis can be defined as follows:

Accuracy =
Number of Correct Diagnoses

Number of Rows that Meet the Evidence Criteria

(4)

4.3.3 Incalculable Inference. The concept of incalculable inference
in Bayesian networks refers to situations where the network fails

to compute inference due to a mismatch between the provided

evidence and the network’s structure. This negatively impacts the

evaluation of the BN model, as it suggests a potential mismatch

between the model and the observed data.

4.3.4 Diagnosis Probability Log Likelihood. The Diagnosis Proba-
bility Log Likelihood (DPLL) provides an objective measure of the

BN model’s performance in capturing the true diagnosis across dif-

ferent combinations of evidence. Essentially, the DPLL measures the

cumulative log-likelihood of the correct diagnosis given different

combinations of evidence. The idea of this methodology is described

as follows:

(1) Logical Generation of Evidences: All logically possible combi-

nations of evidence are generated using the formula described

in Section 4.3.1.

(2) Determining the Correct Diagnosis: For each combination of

evidence, the correct diagnosis is determined by analyzing

the synthetic data. The observed evidence is compared with

the actual data to identify the diagnosis that aligns with the

ground truth.

(3) Performing Inference: Inference is performed on the BNmodel

using each combination of evidence. This step allows for the

computation of probabilities associated with the correct diag-

noses given the observed evidence.

(4) Logarithmic Transformation: Instead of directly summing the

probabilities of the correct diagnosis across all combinations,

the logarithm of the leak probability for each combination

is taken. This transformation is motivated by the following

reasons:

(a) Numerical Stability: The probabilities of individual com-

binations can vary significantly, ranging from very small

to very large values. Summing these probabilities directly

may result in numerical instability or loss of precision.

(b) Comparative Analysis: The logarithmic transformation al-

lows for easier comparison of results across different com-

binations and datasets.

(5) Calculation of DPLL: The DPLL is calculated by summing the

logarithms of the leak probabilities for each combination of

evidence. The formula is as follows:

Diagnosis Probability Log Likelihood =

𝑁∑︁
𝑖=1

log 𝑝𝑖 (5)
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Fig. 4. Line-chart: Accuracy for different Evidence Combinations

where 𝑝𝑖 represents the leak probability of the correct diag-

nosis for each combination of evidence and N is the total

number of combination of evidences.

Note that certain BN models cannot compute the inference of

certain combinations of evidence, as explained in Section 4.3.3. The

number of such incalculable inferences is considered alongside the

DPLL, as these factors mutually influence each other’s values.

4.4 Experiments
In order to address the research question, a series of experiments

will be conducted to test the three BN configurations using various

methodologies. The accuracy and number of incalculable inferences

will be evaluated for each configuration. The accuracy assessment

will be based on synthetic data consisting of 200,000 rows.

The experiments will involve applying the Cartesian Product of

Evidences to each BN configuration. This approach will allow to

compare the accuracy of the configurations across different evi-

dences. By testing the configurations with all logical combination

of evidences, the relative performance of each configuration will

be analyzed, and any patterns or variations in accuracy will be

identified.

Additionally, the number of incalculable inferences will be de-

termined for each configuration. This metric provides insight into

the robustness and reliability of the BN configurations in handling

different types of evidences. Moreover, it indirectly measures how

well the BN structure fits the data structure.

5 RESULTS
The results of the experiments are presented in this section, includ-

ing a box plot, a line chart, and a table summarizing the performance

of different BN configurations.

Fig. 5. Box-plot: Accuracy information

5.1 Box plot Analysis
The box plot from Figure 5 provides a visual summary of the distri-

bution of accuracy values across different BN configurations. An-

alyzing key statistics such as the minimum accuracy, maximum

accuracy, median accuracy, interquartile range (IQR), upper quartile,

and lower quartile allows for insights into the performance of each

BN configuration.

The "HealthParentBoth" configuration has the highest minimum

accuracy value of 0.512, indicating that even its lowest accuracy

values are relatively high compared to the other configurations. On

the other hand, the "HealthParentOut" and "InOutParent" configu-

rations both have minimum accuracy values of 0.0.

When considering the maximum accuracy, all three configura-

tions achieve a maximum accuracy of 1.0, suggesting that they can

reach the highest level of accuracy for some combinations of evi-

dence. However, it is important to note that this value alone does

not provide a comprehensive comparison.

Analyzing the median accuracy, the "HealthParentBoth" and “In-

OutParent” configurations stand out with a median accuracy of 1.0,

indicating a consistently high performance compared to the “Health-

ParentOut” configuration, which has a median value of 0.702.

When examining the IQR, it can clearly be seen that “HealthPar-

entOut” has the highest IQR. A wider variability in accuracy values

suggests that the performance is likely to be more dependent on the

specific combinations of evidence than overall structure.

In terms of the upper quartile, all three configurations have the

same accuracy value of 1.0, indicating a consistent performance for

the top 25% of accuracy values across the configurations. However,

for the lower quartile accuracy, the "HealthParentBoth" configura-

tion has the highest value of 1.

In summary, the boxplot analysis reveals that the "HealthParent-

Both" configuration generally exhibits higher accuracy based on the

median, minimum, and maximum values. However, it is essential to
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Table 1. General table

Configuration Average Accuracy Incalculable inference Diagnosis Probability Log Likelihood Sum
HealthParentBoth 0.894 0 -1.315

HealthParentOut 0.577 0 -6.984

InOutParent 0.747 1 -9.579

consider the wider spread of accuracy values and the performance of

the "InOutParent" configuration. The comparison and performance

of these two configurations will be more evident in the Line Chart

analysis below.

5.2 Line chart Analysis
The line chart from Figure 4 provides a visual representation of

the accuracy values for different BN configurations across various

combinations of evidence. Each line on the chart represents a dif-

ferent BN configuration, and the points on the line indicate the

corresponding accuracy values. Analyzing the line chart allows for

observation of performance trends for each BN configuration and

identification of patterns based on the accuracy values.

The "HealthParentBoth" configuration consistently demonstrates

high accuracy values across different combinations of evidence, with

the majority of data points reaching a value of 1.0. This suggests a

robust and reliable performance for this configuration, regardless

of the specific evidence used.

The "HealthParentOut" configuration exhibits varying accuracy

values across the combinations of evidence. This configuration

demonstrates an intriguing pattern where the accuracy is either

consistently high (1.0) or consistently low (0) for the majority of evi-

dence combinations. This behavior indicates that the performance of

this configuration is highly dependent on the specific combinations

of evidence used.

For the "InOutParent" configuration, the accuracy values vary the

most across different combinations of evidence. While most data

points indicate high accuracy (1.0), there is one data point marked

as ’X’ (incalculable inference), which is interpreted as 0. Similar to

the "HealthParentOut" configuration, this configuration might be

influenced by specific combinations of evidence, leading to lower

accuracy in certain cases.

5.3 Table Analysis
The table 1 presents keymetrics for each BN configuration, including

average accuracy, the number of incalculable inferences, and the

diagnosis probability log likelihood sum.

The "HealthParentBoth" configuration achieves an average accu-

racy of 0.894, indicating the highest overall performance. Notably,

this configuration does not have any incalculable inferences, sug-

gesting its robustness in handling various evidence combinations

and its suitability with the structure of synthetic data. Additionally,

this configuration has the lowest diagnosis probability log likelihood

sum (-1.315), indicating the most favorable estimation of probabili-

ties for all possible evidence combinations.

In comparison, the "HealthParentOut" configuration demonstrates

a lower average accuracy of 0.577. Similar to the "HealthParentBoth"

configuration, it does not have any incalculable inferences. However,

the diagnosis probability log likelihood sum for this configuration

is -6.984, indicating a less accurate estimation of probabilities com-

pared to the "HealthParentBoth" configuration.

Lastly, the "InOutParent" configuration achieves an average ac-

curacy of 0.747. It has one incalculable inference, suggesting some

limitations in handling specific evidence combinations. Although

it has a higher average accuracy than "HealthParentOut", the diag-

nosis probability log likelihood sum for this configuration is lower

(-9.579), indicating a less accurate estimation of probabilities.

6 DISCUSSIONS AND CONCLUSIONS
In conclusion, this research investigated the representation of health

status variables in a Model Based Diagnosis Bayesian Network for

fault monitoring and diagnosis in a cyber-physical system. The find-

ings demonstrated the impact of different health state configurations

on fault diagnosis accuracy.

The "HealthParentBoth" configuration exhibited the highest over-

all performance, showcasing its robustness and suitability for han-

dling various evidence combinations. The "HealthParentOut" config-

uration provided insights into the sensitivity of accuracy to specific

evidence combinations, while the "InOutParent" configuration high-

lighted the trade-off between accuracy and limitations in handling

certain evidence combinations. By understanding the implications

of these findings, practitioners can make informed decisions when

selecting health state configurations for fault diagnosis in cyber-

physical systems, improving the accuracy and reliability of the

diagnostic process.

It is important to note that these results are specific to the system

and data used in this study. Therefore, further experimentation with

different types of cyber-physical systems is necessary to generalize

this observation. Moreover, future research can build upon these

findings by refining assumptions, exploring alternative representa-

tions, and investigating additional factors to enhance fault diagnosis

accuracy. One interesting area of research for the future is to exam-

ine how the addition of more sensor nodes in the system, thereby

expanding the available evidence, can impact the accuracy of fault

diagnosis. Understanding the relationship between the number of

sensor nodes and the diagnostic accuracy can provide valuable in-

sights into the optimal deployment of sensors in cyber-physical

systems. Furthermore, investigating the effects of different types of

evidence and their relative importance in the diagnostic process can

contribute to the development of more accurate and reliable fault

diagnosis methods. By addressing these aspects, future research can

further advance the field and pave the way for more effective fault

diagnosis strategies in cyber-physical systems.

7



TScIT 39, July 7, 2023, Enschede, The Netherlands Mustafa Hayri Bilgin

REFERENCES
[1] Leonardo Barbini, Carmen Bratosin, and Emile van Gerwen. 2020. Model based

diagnosis in complex industrial systems: a methodology. PHM Society European
Conference 5, 1 (July 2020), 8–8. https://doi.org/10.36001/phme.2020.v5i1.1174

Number: 1.

[2] Sergey V. Buldyrev, Roni Parshani, Gerald Paul, H. Eugene Stanley, and Shlomo

Havlin. 2010. Catastrophic cascade of failures in interdependent networks. Na-
ture 464, 7291 (April 2010), 1025–1028. https://doi.org/10.1038/nature08932

arXiv:0907.1182 [cond-mat].

[3] Gaspard Ducamp, Christophe Gonzales, and Pierre-Henri Wuillemin. 2020.

aGrUM/pyAgrum : a toolbox to build models and algorithms for Proba-

bilistic Graphical Models in Python. https://www.semanticscholar.org/

paper/aGrUM-pyAgrum-%3A-a-toolbox-to-build-models-and-for-Ducamp-

Gonzales/1b7b7b4d8abe5b7e1c122150fffb4220e5b015d9

[4] I. Flesch, P.J.F. Lucas, and Th.P. van der Weide. 2007. Conflict-based diagno-

sis: adding uncertainty to model-based diagnosis. In Proceedings of IJCAI-2007.
Morgan-Kaufman, San Francisco, 380–388.

[5] David Heckerman, Abe Mamdani, and Michael P. Wellman. 1995. Real-world

applications of Bayesian networks. Commun. ACM 38, 3 (March 1995), 24–26.

https://doi.org/10.1145/203330.203334

[6] Zhen Huang, Cheng Wang, Milos Stojmenovic, and Amiya Nayak. 2015. Charac-

terization of Cascading Failures in Interdependent Cyber-Physical Systems. IEEE
Trans. Comput. 64, 8 (Aug. 2015), 2158–2168. https://doi.org/10.1109/TC.2014.

2360537

[7] Peter J. Lucas. 1997. Symbolic diagnosis and its formalisation. The Knowledge
Engineering Review 12 (June 1997). https://doi.org/10.1017/S0269888997002026

[8] Peter J. F. Lucas. 2001. Bayesian model-based diagnosis. International Journal of
Approximate Reasoning 27, 2 (Aug. 2001), 99–119. https://doi.org/10.1016/S0888-

613X(01)00036-6 Publisher: Elsevier.

[9] Judea Pearl. 1988. . Morgan Kaufmann, San Francisco (CA).

[10] Judea Pearl. 1988. Chapter 3 - MARKOV AND BAYESIAN NETWORKS: Two

Graphical Representations of Probabilistic Knowledge. In Probabilistic Reasoning
in Intelligent Systems, Judea Pearl (Ed.). Morgan Kaufmann, San Francisco (CA),

77–141. https://doi.org/10.1016/B978-0-08-051489-5.50009-6

[11] Raymond Reiter. 1987. A theory of diagnosis from first principles. Artificial
Intelligence 32, 1 (April 1987), 57–95. https://doi.org/10.1016/0004-3702(87)90062-

2

[12] Sampath Srinivas. 1994. A probabilistic approach to hierarchical model-based

diagnosis. In Uncertainty Proceedings 1994, Ramon Lopez de Mantaras and David

Poole (Eds.). Morgan Kaufmann, San Francisco (CA), 538–545. https://doi.org/10.

1016/B978-1-55860-332-5.50073-0

8

https://doi.org/10.36001/phme.2020.v5i1.1174
https://doi.org/10.1038/nature08932
https://www.semanticscholar.org/paper/aGrUM-pyAgrum-%3A-a-toolbox-to-build-models-and-for-Ducamp-Gonzales/1b7b7b4d8abe5b7e1c122150fffb4220e5b015d9
https://www.semanticscholar.org/paper/aGrUM-pyAgrum-%3A-a-toolbox-to-build-models-and-for-Ducamp-Gonzales/1b7b7b4d8abe5b7e1c122150fffb4220e5b015d9
https://www.semanticscholar.org/paper/aGrUM-pyAgrum-%3A-a-toolbox-to-build-models-and-for-Ducamp-Gonzales/1b7b7b4d8abe5b7e1c122150fffb4220e5b015d9
https://doi.org/10.1145/203330.203334
https://doi.org/10.1109/TC.2014.2360537
https://doi.org/10.1109/TC.2014.2360537
https://doi.org/10.1017/S0269888997002026
https://doi.org/10.1016/S0888-613X(01)00036-6
https://doi.org/10.1016/S0888-613X(01)00036-6
https://doi.org/10.1016/B978-0-08-051489-5.50009-6
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/B978-1-55860-332-5.50073-0
https://doi.org/10.1016/B978-1-55860-332-5.50073-0

	Abstract
	1 Introduction
	2 Problem Statement
	3 Background
	3.1 Model Based Diagnosis
	3.2 Modeling
	3.3 From MBD to BN

	4 Methodology
	4.1 System Structure
	4.2 Data Generation
	4.3 Evaluation Methods
	4.4 Experiments

	5 Results
	5.1 Box plot Analysis
	5.2 Line chart Analysis
	5.3 Table Analysis

	6 Discussions and Conclusions
	References

