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ABSTRACT
Endometrial cancer is one of the most common cancers affecting
women worldwide and exhibits a complex nature with varying
patient responses to treatment. The current growing interest in
using advanced computational techniques offers promising oppor-
tunities to improve prognostic predictions in these complex cases.
This study aims to investigate the relationship between endome-
trial cancer and various biomarkers, analyze possible treatment
options, and determine patient-specific probabilities for treatment
outcomes by looking into the presence of lymph node metastasis
and survival rates. The study utilizes Bayesian networks which can
potentially contribute to the development of more accurate and
clinically relevant prognostic tools for endometrial cancer patients,
improving clinical management and treatment outcomes. The per-
formance of a Bayesian network model by leveraging score-based
structure learning and local parameter learning was demonstrated.
In the model-building process, the insignificant biomarkers were
removed, and new variables were added to more accurately rep-
resent endometrial cancer prognosis. The results demonstrate the
potential of Bayesian networks to provide personalized prognostic
predictions, ultimately enabling clinicians to make better-informed
decisions and improve patient outcomes in endometrial cancer
treatment.

keywords - Bayesian network, Endometrial cancer, Biomarkers,
lymph node metastasis, survival, goodness-of-fit, accuracy, ROC
curve, Brier score

1 INTRODUCTION
Endometrial cancer is a significant health concern worldwide, as in
2020, it was ranked as the sixthmost common cancer inwomenwith
417,000 newly diagnosed cases globally [1]. With the increasing
proportion of the aging population, the number of endometrial
cancer patients is expected to increase in the coming decade. This
is already noticeable, as the overall incidence of this malignancy
has increased by 132% over the past three decades [2].

However, despite the development of new treatment methods,
the overall mortality rate for endometrial cancer has not improved
significantly. Therefore, researchers from the Department of Gy-
necology and Obstetrics at Radboud University Medical Centre
(RadboudUMC) collected clinical data from patients with endome-
trial cancer over the last few years. The resulting dataset was used
to develop a Bayesian network, called ENDORISK, to forecast the
prognosis of the ailment in patients [3]. The model performance
was evaluated using data from patients in other countries, and it
was demonstrated that the model performs quite well [4, 5].

Although the present model has demonstrated promising out-
comes, it has not integrated the latest biomarkers and clinical man-
agement variables representing cutting-edge clinical management
of patients with the disease. These variables are absent in the col-
lected data so far on account of non-inclusion in the study yet. The
majority of these variables pertain to biomarkers, which concern
specific molecules that potentially correlate with certain disease
outcomes.

The focus of the researchers is primarily on such biomarkers
that:

• foresee the presence of lymph node metastasis in the ab-
domen (mainly in the pelvic region and surrounding the
aorta) as a result of the tumor spreading beyond its primary
site;

• anticipate the survival of endometrial cancer patients after
undergoing surgery and the additional treatment by radio-
therapy and chemotherapy.

The study aims to investigate the relationship between endome-
trial cancer and various biomarkers, then analyze the available
treatment options and their results with probability. By updating
the Bayesian network and identifying the presence of lymph node
metastasis and survival rates, the goal is to contribute to the devel-
opment of a more accurate and clinically relevant prognostic tool
for endometrial cancer patients. The researcher hopes this improves
clinical management and outcomes for women with endometrial
cancer and finds better treatment options per patient.

To achieve the overall goals, the objectives of the study are:

(1) To update the Bayesian network model for endometrial
cancer prognosis prediction that incorporates significant
biomarkers predictive of lymph node metastasis, and sur-
vival after treatment.

(2) To compare the performance of the updated model against
the existing model.

(3) To investigate the new variables for improving the perfor-
mance of the updated model.

With this, the following research questions will serve as the foun-
dation for investigation and shaping the structure of the research
to accomplish the stated goals:

(1) What particular biomarkers from the existingmodels have no
significant impact that needs to be replaced with alternative
biomarkers?

(2) How does the updated Bayesian network model demonstrate
improved performance in predicting the prognosis of en-
dometrial cancer patients?

(3) How do missing values and the small dataset size affect the
performance of the Bayesian network model?
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2 BACKGROUND
This subsection provided background on the necessary concepts of
biomarkers, and Bayesian networks to be used in the research.

2.1 Endometrial Cancer and Biomarkers
Endometrial cancer is a common and often aggressive malignancy
that affects the female genital organs, specifically the inner lining
of the uterus known as the endometrium. This complex disease
predominantly occurs in postmenopausal women and presents di-
verse histological types, varying degrees of tumor differentiation,
and variable patient responses to treatment making prognostic
prediction particularly challenging. Although traditional clinico-
pathological factors, such as tumor stage, grade, and the presence of
lymphovascular space invasion, play a significant role in determin-
ing patients’ prognoses, these factors alone may not be sufficient
for accurately predicting disease recurrence and overall survival [6].
The limitations of the current clinicopathological-based prognostic
models for endometrial cancer emphasize the urgency to identify
novel, more reliable biomarkers that can enhance the prognostic
accuracy.

Recent studies have focused on molecular and genetic markers,
such as microsatellite instability, mutations in POLE and p53 genes,
and hormone receptor status, for potential prognostic indicators.
A few indicative lymph node metastasis biomarkers of endome-
trial cancer patients from the basis Bayesian network model are
discussed here.

Biomarker is a measurable substance in a biological system that
indicates a specific biological condition, disease, or treatment re-
sponse. This aids in diagnosis, prognosis, and treatment monitoring.

The tumor suppressor protein, p53, has a critical function in cell
multiplication and apoptosis control. The link of p53 mutations
with unfavorable prognoses, such as lymph node metastasis and
a decrease in overall survival in patients with endometrial cancer,
are reported [8]. In addition, biomarkers such as serum CA-125,
lymphadenopathy, and tumor size are identified to be correlated
with a heightened likelihood of lymph node metastasis among
individuals with endometrial cancer [9].

The depth of myometrial invasion is predictive of lymph node
metastasis [10, 12], along with estrogen receptor, and progesterone
receptor, which are commonly assessed in pathology reports. They
offer valuable insights into the likelihood of lymph node metastasis
estimation and overall survival after treatment [12]. Nevertheless,
further research is needed to validate their predictive power and
determine their potential clinical utility.

2.2 Bayesian Networks
A Bayesian network B = (𝐺, 𝑃) is a joint probability distribution
𝑃 with (conditional) independence constraints, represented as a
directed acyclic graph 𝐺 = (𝑉 ,𝐴), with 𝑉 = {1, . . . , 𝑛} a set of
nodes and 𝐴 ⊆ 𝑉 × 𝑉 a set of arcs or directed edges [7]. Nodes
𝑣 ∈ 𝑉 in a Bayesian network correspond 1 − 1 to variables 𝑋𝑣 in
the joint probability distribution 𝑃 as follows:

𝑃 (𝑋1, . . . , 𝑋𝑛) =
∏
𝑣∈𝑉

𝑃 (𝑋𝑣 | 𝑋𝜋 (𝑣) )

where 𝜋 (𝑣) represents the parents of node 𝑣 ∈ 𝑉 .

The arcs are often interpreted as causal relationships. Common
probabilistic operations on Bayesian hetworks are marginilization
𝑃 (𝑋𝑣) =

∑
𝑥𝑤 :𝑤∈𝑉 \{𝑣} 𝑃 (𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛) and condition-

ing 𝑃 (𝑋𝑣 | 𝐸) = 𝑃 (𝑋𝑣, 𝐸)/𝑃 (𝐸), where 𝐸 is a set of instantiated
variables, called evidence. Both types of probabilistic inference can
be done by software such as GeNie, which also offer nice visual
graphical representations of the resulting marginal probability dis-
tributions (cf. Figure 7). Both Bayesian network graph structure and
probability distribution can be learned from data using score-based
structure learning [11]. Specifically hill-climbing and tabu-search
were well-known score-based learning algorithms.

To conclude whether one variable is significant or not, its place
in the graph is important to know. In particular one needs to check
where a node participates in a diverging, serial, or converging
connection as shown in Figure 1.

Figure 1: Basic connections of Bayesian network that repre-
sent causal relations

The effect of instantiating the central vertex on the flow of prob-
abilistic information was examined starting with converging and
serial arcs and then lastly diverging arcs.

Bayesian network modeling techniques have demonstrated re-
markable precision in forecasting lymph node metastasis and post-
treatment survival for patients with endometrial cancer [4, 5]. A
systematic analysis of research spanning the past thirty years re-
vealed that machine learning approaches, incorporating Bayesian
network modeling, have been effectively utilized in prognostic esti-
mation for gynecological cancers [13].

A Bayesian network model incorporating different types of data
was found to have higher accuracy in predicting cancer subtypes
and survival outcomes than models using only one type of data
[14].

These studies emphasize the potential of Bayesian network mod-
eling techniques in enhancing cancer prognosis prediction and
personalized treatment planning and the integration of multiple
levels of patient data to develop more comprehensive and robust
prognostic models.

2



Bayesian network models are widely used to predict disease
prognosis because of a probabilistic framework that handles un-
certainties in medical data while accurately capturing the complex
relationships and dependencies between various variables such as
risk factors, symptoms, and disease progression.

3 RELATEDWORK
This section deals with studies related to the survival prediction
prognosis of endometrial cancer patients.

Many other studies are done on the prognostic survival assess-
ment of endometrial cancer patients. Wan et al. [15] identified
several prognostic factors significant to recurrence and survival
rates. These factors are age, tumor grade, tumor stage, depth of my-
ometrial invasion, lymph node involvement, and presence of lym-
phovascular space invasion. In their study, a prognostic model was
developed by combining multiple clinical, histological, or molec-
ular variables. AlHilli et al. [16] conducted a similar study. They
collected the data in two different groups, the development cohort,
and the validation cohort. The identified factors include age, race,
tumor grade, FIGO (International Federation of Gynecology and
Obstetrics) stage, lymphovascular space invasion, and lymph node
status factors. They used a risk-scoring model in which risk scores
are obtained from the assigned points based on hazard ratios for
risk factors. They further explored the relationship between sur-
vival, risk scores, and which treatments the patients can benefit
from. Both of the studies were done with the same goal as this
study and have identified some factors covered in this study. They
were all found to be valuable to be used in the clinical field with
some modifications needed just like the basis Bayesian network
model for this study. The main difference between these studies is
the model used. The Bayesian network model is used in this study.

4 METHODOLOGY
In this section, the detailed steps taken to conduct this study are
discussed. Throughout the project, R programming language (4.3.0)
with bnlearn and mice packages was used to write programs and
develop networks, and GeNie was used to have the graphical repre-
sentations.

4.1 Data
The researchers from RadboudUMC provided the complete cohort
with a total of 952 patients including the training cohort with addi-
tional Cancer Genome Atlas (TCGA) data. In the data, only patients
diagnosed by an expert gynecological pathologist, with complete
clinical and pathological data and follow-up of at least 36 months
were included. Since the data was obtained from patients with en-
dometrial cancer anonymously, neither ethical consideration nor
informed consent was needed. The data include variables from im-
munohistochemical analysis of endometrial biopsies. Among those,
only selective variables are included in the Bayesian network and a
few more variables are to be added.

The data was cleaned by creating a subset with selective variables
and replacing blank cells with not applicable ’NA’. The values were
changed to more meaningful ones for easy and straightforward
interpretation such as 0 and 1 to positive and negative depending on
the variable explanation. The subset was used to create two separate

data which are 1) data with variables included in the given Bayesian
network and 2) another with variables to be newly added (FIGO,
MRI_MI, MSI, and POLE) to the Bayesian network which was later
combined with its parent nodes. Then, imputation was done using a
bnlearn package to the first data set to replace the missing data. For
the extra variables to be added, due to many missing values, only
cells with records were considered separately per variable. Instead
of imputation, local parameter learning was done. Using the data
of the node and its parent node(s), the conditional probability table
(CPT) was computed with the code as shown in Figure 1.

Figure 2: Code to compute conditional probability table (CPT)

Depending on the number of the parent nodes, either xtabs() or
table() function was used to count each combination of values. Then,
prop.table() was used to estimate the new CPT as the conditional
probabilities, dividing the count table by the sum of each row. NaN
values were encountered for MSI and POLE nodes that the Laplace
smoothing technique was used to add a constant of 1 to each count
to avoid division by zero.

4.2 Inspection of the Provided ENDORISK
Bayesian Network

The Bayesian network was provided to use as a basis. With the
additional variable TP53, replacing p53 or keeping both p53 and
TP53 variables was considered. Then, chance nodes and arcs were
added for additional variables, and their probability was updated
with the result of CPT calculations.

The first research question is all about identifying insignificant
biomarkers from the basis Bayesian network. To conclude whether
one variable is significant or not, a few things were checked. This
includes identifying interested variables and classifying the arcs
of each node connected to other nodes by either diverging, serial,
or converging. Depending on the connection type, either inclusion
of the target variable or probability change by giving values to
the node was analyzed to deduce the insignificant variables. Then
finally, the variable was once again classified between patholog-
ical variables and biomarkers. Only the variable identified as a
biomarker was removed from the network.

4.3 Model Performance
This research question demonstrates the improvement in the perfor-
mance of the updated Bayesian network model. The performance of
the Bayesian network model was evaluated using goodness-of-fit,
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Brier score, and area under the Receiver operating characteristic
(ROC) curves. Since these measures were also used to evaluate the
provided Bayesian network, the performance of only the updated
model was evaluated and then compared. The log-likelihood, sensi-
tivity, and specificity with different thresholds were calculated to
establish accuracy and ROC curve plots with the confusion matrix.

Table 1: Confusion matrix.

Predicted
Positive Negative

A
ct
ua
l Positive True Positive

(TP)
False Negative

(FN)

Negative False Positive
(FP)

True Negative
(TN)

The formulas used with confusion metrics are below:
Sensitivity = 𝑇𝑃

𝑇𝑃+𝐹𝑁
Specificity = 𝑇𝑁

𝐹𝑃+𝑇𝑁
Positive predictive value = 𝑇𝑃

𝑇𝑃+𝐹𝑃
Negative predictive value = 𝑇𝑁

𝑇𝑁+𝐹𝑁
False negative rate = 𝐹𝑁

𝐹𝑁+𝑇𝑃
ROC curve plot = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1−𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦

4.4 Possible Influences on Model Performance
The last research question is to see how the missing values and
small dataset size affect the performance of the model. Multiple
imputation and performance metrics were used to evaluate the
influence on performance.

For the missing data, multiple imputation, creating several com-
plete datasets with imputed values, was done using a mice package.
This is to account for the uncertainty introduced by the imputation
process. This is because resorting to single imputation can lead to
underestimation of the variance and biased parameter estimates
assuming the imputed values are correct. Bayesian networks were
constructed as described in section 4.2. Then compare the model
performances across the multiple imputed datasets by calculating
the performance metrics shown in section 4.3. However, multiple
imputation was done to answer this research question only.

The performance metrics were also used for the small dataset.
Using the imputed data by bnlearn package, the different subsets of
238, 476, 714, and the whole data (952) were created using random
sampling. The Bayesian network models were trained with different
subsets (sizes) of data. Then chosen performance metrics, Brier
score, sensitivity, and specificity, were calculated for each of the
models. The changes in the calculated values were analyzed.

5 RESULTS
Building on the discussion of the methodology, the section 5 pro-
vides a comprehensive analysis of the results obtained and presents
the results.

5.1 Data
Among the total cohort of 952 patient data, only 202 cases had
complete information on all variables. Imputed data was generated
with bnlearn package in R (4.3.0). For additional variables, only
non-empty records were considered. The summary of additional
variable data with the total considered records can be found in
Table 2.

Table 2: Additional variable data summary.

MRI_MI POLE MSI FIGO
lt_50 : 65 no : 409 no : 352 IA : 532
ge_50 : 37 yes : 35 yes : 92 IB : 228

II : 64
IIIC : 54
IIIA : 23
IVB : 23
Other : 8

Total : 102 Total : 444 Total : 444 Total : 932

5.2 Updated Bayesian Network
The updated Bayesian network can be found in Figure 7 in the
Appendix. From the basis Bayesian network, every variable was
carried over except p53, and the additional variables (FIGO, MRI_MI,
MSI, and POLE) were included. The protein variable, p53, was
replaced with the gene variable, TP35, since both of them measure
the protein, not the gene. This means they are the same variable. In
the cleaned data, p53 has 257 missing values while none for TP53.
Due to the completeness of TP53, it was chosen instead of p53.

5.3 Insignificant Variable Identification
The interested or target variables are lymph node metastasis (LNM)
and the survival rates, especially after 5 years.

The causal relationships of nodes were classified as diverging,
serial, or converging. For diverging and serial arcs, when the central
node is not initiated, knowing one edge node can tell information
about the other edge node. Therefore, the node is considered sig-
nificant if at least one of the target variables is connected as the
edge node with diverging or serial arc. These nodes are Myome-
trialInvasion, L1CAM, PR, ER, PostoperativeGrade, CA125, LVSI,
Recurrence, Chemotherapy, Radiotherapy, and Survival3yr.

For the converging arcs, the probabilistic information transmits
from one edge node to another only if the central node is known.
The nodes with converging arcs connected to at least one of the
interested variables can become significant only after the value is
given to the central node. The possible significant nodes include p53,
L1CAM, PR, ER, CTMRI, Recurrence, Survival1yr, and Survival3yr.
To decide the significant variable, they were given values and the
probability changes were analyzed.

Only variables that made more than 0.1 probability difference to
the target node were considered significant. These are p53, L1CAM,
ER, CTMRI, Recurrence, Survival1yr, and Survival3yr. For survival
rates, the probability affects the survival5yr when the value "no" is
entered since there is propagated probability making survival5yr
no = 1 and yes = 0 automatically.
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Table 3: Probability changes of insignificant variable candi-
dates.

Target variables
LNM Survival5yr

p53 wildtype 0.022 0.01
mutant 0.112 0.052

L1CAM negative 0.021 0.008
positive 0.177 0.065

PR negative 0.068 0.036
positive 0.015 0.008

ER negative 0.124 0.058
positive 0.014 0.007

CTMRI no 0.014 0.004
yes 0.266 0.073

Recurrence
no 0.029 0.062
regional_distant 0.266 0.496
local 0.031 0.158

Survival1yr no 0.254 0.932
yes 0.005 0.018

Survival3yr no 0.249 0.932
yes 0.013 0.047

Then, the only variables not identified as significant so far are
Platelets, PreoperativeGrade, and Cytology. Finally, these variables
are classified as either pathological or biomarker making only
Platelets to be insignificant. Platelets only have an incoming arc
from LNM which is one of the target variables and no other in-
coming or outgoing arc. Since LNM is the target variable, no value
is given to LNM that Platelets do not affect the Bayesian network
model.

5.4 Model Performance
To check how well the model fits the data, three different log-
likelihood scores were computed to compare the Bayesian network
model. To use as the baseline comparison, the log-likelihood score
on the original model with complete cases of initial data was calcu-
lated as -1419.797. The score showing the generalization of learned
structure from imputed data to the complete cases was -1444.041.
Finally, model fit with the learned structure from imputed data on
the imputed data was found to be the lowest with -5923.701. The
similar scores of the original model and learned structure from im-
puted data tested with complete cases of initial data show that the
learned structure performs well to capture the underlying relations
in the not-imputed data. However, having a much lower score on
imputed data learned structure tested on imputed data compared
to the others indicates the issue with the imputation process or
possible discrepancy in the complete cases of initial data and the
imputed data.

To test the accuracy of probabilistic predictions, Brier scores were
computed. The closer the score is to 0, means less difference between
the predicted probabilities and the true outcomes, indicating perfect
or better predictions. The highest Brier score is 1 which represents
the worst possible prediction with the maximum difference. A Brier
score near 0.5 implies that the model predicts close to a 50-50 chance
for binary outcomes which is similar to random guessing.

The updated BN shows Brier scores of 0.474 for LNM and 0.299
for Survival5yr which were 0.09 and 0.12 in the original model
respectively. The updated model has no accurate predictions for
the LNM variable and the Survival5yr variable has more accurate
predictions than LNM. However, in comparison to the original
model, the accuracy is significantly lower.

Table 4: Concordance statistics of the BN.

LNM Survival5yr
AUC (95%-CI) 0.959 (0.942,

0.959)
0.728 (0.697,
0.728)

Brier score 0.474 0.299
Predicted N of events 94 836
Observed N of events 77 494
Predicted/Observed ratio 1.221 1.692

In addition to the Brier score, the confusion matrix was ana-
lyzed to plot the ROC curves. The AUC was 0.959 with 0.942 to
0.959 of 95% confidence interval for LNM which indicates a good
discriminatory power in distinguishing the presence of LNM. The
95% confidence interval suggests that the true AUC value falls
within the range. On the other hand, the AUC value of 0.728 with a
95% confidence interval of (0.697, 0.728) for Survival5yr indicates a
moderate discriminatory power in predicting the survival rate. Al-
though the lower bound of the confidence interval is still relatively
high, the wide range suggests that the true AUC value may have
some uncertainty and is likely to vary around the point estimate.

(a) LNM (b) Survival5yr

Figure 3: ROC curve plot

(a) LNM (b) Survival5yr

Figure 4: Scatter plot with Preoperative Grade

The AUC and Brier scores show contradictory results. The AUC
for LNM indicates a strong performance, while the Brier score re-
flects poor performance. Likewise, the AUC for the Survival5yr
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suggests a moderate performance, but the Brier score indicates
a relatively better performance. This discrepancy may be due to
the different aspects emphasized by these two metrics. The AUC
focuses on rank prediction and analyzes the ability of a model to dis-
criminate between positive and negative classes by examining the
true positive rate and the false positive rate at different thresholds.
On the other hand, the Brier score is an appropriate scoring rule
to evaluate the accuracy of probabilistic predictions. Measures the
mean squared difference between predicted probabilities and actual
outcomes. In this research. the Brier score is a more informative
metric to consider as the quality of the predicted probabilities and
overall model calibration are essential.

Table 5: Diagnostic accuracy values for the prediction of the
target variables using various cut-off values.

Cut-off 1% 5% 10% 15% 20% 25%
LNM

Sensitivity 0.987 0.948 0.883 0.818 0.818 0.740
Specificity 0.737 0.810 0.897 0.941 0.942 0.958
PPV 0.248 0.305 0.430 0.548 0.553 0.606
NPV 0.998 0.994 0.989 0.983 0.983 0.977
Predicted
Positive

0.081 0.081 0.081 0.081 0.081 0.081

FNR 0.013 0.052 0.117 0.182 0.182 0.260
Survival5yr

Sensitivity 1 0.998 0.998 0.998 0.998 0.988
Specificity 0.164 0.197 0.221 0.221 0.221 0.240
PPV 0.563 0.573 0.580 0.580 0.580 0.584
NPV 1 0.989 0.990 0.990 0.990 0.948
Predicted
Positive

0.519 0.519 0.519 0.519 0.519 0.519

FNR 0.000 0.002 0.002 0.002 0.002 0.012

5.5 Possible Influence on Model Performance
To realize the influence of missing values in the data set and small-
size data sets, the accuracy and the ROC curve plots were analyzed.
With themice package, 5 different imputed data sets were generated.
For LNM, the Brier scores lie between 0.461 and 0.475 while it lies
between 0.3 and 0.303 for Survival5yr. The difference in Brier scores
of the updated model and models with multiple imputation datasets
are relatively consistent.

Table 6: Brier scores for each dataset of multiple imputation.

data set LNM Survival5yr
1 0.462 0.303
2 0.461 0.302
3 0.467 0.302
4 0.47 0.301
5 0.475 0.3

The updated model has an AUC of 0.959 for LNM and 0.728 for
Survival5yr, while the AUCs for the multiple imputation models
are relatively close to these values. For LNM, the AUCs range from

0.92 to 0.947, and for Survival5yr, they range from 0.731 to 0.738.
Generally, the AUCs of the multiple imputation models suggest a
reasonably consistent performance across the imputed datasets. In
terms of 95% confidence intervals (CI), the updated model has a CI
of (0.942, 0.959) for LNM and (0.697, 0.728) for Survival5yr. The CI
for LNM is narrower compared to Survival5yr, indicating that the
prediction performance is more consistent for LNM. The confidence
intervals of AUCs for the multiple imputation models overlap with
the updated model’s CI, suggesting that the performances of these
models are comparable.

(a) LNM (b) Survival5yr

Figure 5: ROC curve plots with multiple imputation data sets

Based on the Brier scores and AUCs alongside their CIs, the
impact of missing data imputation on predictive performance is
not substantial, the imputation process has adequately addressed
the issue, and the models are relatively stable and less sensitive to
variations in the dataset indicating robustness in the performance.
While the missing values’ influence may not be substantial, employ-
ing multiple imputation provides a more accurate representation
of the uncertainty in the model’s performance due to missing data.

The same approach was done to analyze the influence of small
sizes data sets but with a random sampling of one imputed data into
the 4 different subsets with different sizes. For LNM, the Brier scores
show a general decreasing trend (improving performance) with
increasing dataset size. For Survival5yr, the Brier scores consistently
decrease (improve) as the dataset size increases. It appears that the
performance slightly improves with larger datasets, but it’s fairly
consistent across different dataset sizes since the largest dataset is
still a small dataset.

Table 7: Brier scores for small size datasets.

data set LNM Survival5yr
1 0.482 0.325
2 0.462 0.304
3 0.451 0.301
4 0.48 0.3

For LNM, the AUC values suggest stronger performance with
smaller-sized datasets. This is an interesting finding as it might indi-
cate potential overfitting, noise, or other confounding factors in the
larger dataset which was actually used to update the Bayesian net-
work model. For Survival5yr, the AUC values show a mild decrease
(reduced performance) as the dataset size increases, suggesting
that smaller datasets surprisingly perform better in this case. The
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95% confidence intervals are narrower for the smaller datasets, in-
dicating more certainty in their performance for both LNM and
Survival5yr target variables.

(a) LNM (b) Survival5yr

Figure 6: ROC curve plots with small size data sets

6 CONCLUSION
The main objective of this study was to update the BN model and
evaluate its performance in comparison to the given model. The
BN model was updated by removing the insignificant variable and
adding new variables. Platelets were identified as insignificant mak-
ing no changes to the target variables. It had no outgoing arc and
only one incoming arc connected to LNM which is one of the tar-
get variables. The protein variable (p53) was replaced by the gene
variable (TP53) according to the completeness of the data.

Despite the AUC and Brier scores showing contradictory results,
it was clear the performance of the updated BN model is fairly low
compared to the given BN model. The AUC showed the perfor-
mance to be strong for LNM and moderate for Survival5yr while
the Brier score showed poor and relatively better performance re-
spectively. Given the specific context of prognosis prediction in
endometrial cancer, the Brier score is a more important metric
taking into account both discrimination and calibration.

The analysis of Brier scores and AUC values along with their 95%
confidence intervals indicates that the influence of missing values
on model performance is minimal, and the imputation process has
effectively addressed the issue. The models derived from multiple
imputed datasets display consistent performance with the updated
model, demonstrating the models’ stability and robustness. The BN
model seems to perform fairly well even with small datasets, but
smaller datasets show better performance results.

Taking everything into account, this model has stable model
performance but still a room for improvements. Since it is proved
that the using imputation for missing values and small data sets
do not influence the performance heavily but the imputation affect
the goodness-of-fit. This model would still need further research
to improve the accuracy in order to be used for individualizing
decision-making on endometrial cancer in clinical field.

7 FUTUREWORK
For the newly added variables, local parameter learning was done
rather than imputation because of the large number of missing
values. More data should be collected to improve the prediction
and to handle all the data in the same way. As shown in the log-
likelihood score comparison, the quality of data imputation needs
to be investigated. The first approach would be trying different

methods or even doing multiple imputation together as done in
research question 3 to not underestimate the variance and no biases
to parameters. Refining the imputation technique and adjusting
the parameters may improve the overall performance of the model,
better capture the relationships between variables, and achieve
a higher log-likelihood score for the whole imputed dataset. The
possibility of factors such as noise, overfitting, or other confounding
factors in the larger datasets introduced in the collected data needs
to be examined. Additional investigation, such as exploring different
modeling techniques or addressing potential biases in the data,
could provide further insights into the model’s performance at
varying dataset sizes.

REFERENCES
[1] E. J. Crosbie, S. J. Kitson, J. N. McAlpine, A. Mukhopadhyay, M. E. Powell, and N.

Singh, “Endometrial cancer,” The Lancet, vol. 399, no. 10333, pp. 1412–1428, Apr.
2022, doi: https://doi.org/10.1016/S0140-6736(22)00323-3.

[2] B. Gu, X. Shang, M. Yan, et al (2021). Variations in incidence and mortality rates of
endometrial cancer at the global, regional, and national levels, 1990–2019. Gynecol
Oncol 2021; 161 pp. 573-580.

[3] C. Reijnen, E. Gogou, . . . , P.J.F. Lucas, J.M.A. Pijnenborg (2020). Preoperative risk
stratification in endometrial cancer (ENDORISK) by a Bayesian network model: A
development and validation study. PLOS Medicine 2020; 17(5): e1003111.

[4] M. Grube, C. Reijnen, P.J.F. Lucas, F. Kommoss, F.K.F. Kommoss, S.Y. Brucker, ... Im-
proved preoperative risk stratification in endometrial carcinoma patients: external
validation of the ENDORISK Bayesian network model in a large population-based
case series. Journal of Cancer Research and Clinical Oncology (Springer), 1-9, 2022,
DOI 10.1007/s00432-022-04218-4.

[5] P. Vinklerova, P. Ovesna, J. Hausnerova, J. Pijnenborg, P.J.F. Lucas, ... External Val-
idation Study of Endometrial Cancer Preoperative Risk Stratification (ENDORISK)
Model. Frontiers in oncology, 3895, 2022, DOI 10.3389/fonc.2022.939226.

[6] P.V. Dludla, B.B. Nkambule, B. Jack, Z. Mkandla, T. Mutize, S. Silvestri, P. Orlando,
L. Tiano, J. Louw, and S.E. Mazibuko-Mbeje (2019). Inflammation and Oxidative
Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients, 11(1),
23. DOI: 10.3390/nu11010023

[7] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan kaufmann, 1988.

[8] C. Zhang, and X. Hao (2019). Prognostic significance of CD276 in non-small cell
lung cancer. Open Medicine, 14(1), 805-812. https://doi.org/10.1515/med-2019-0076

[9] C. Reijnen, J. IntHout, L. Massuger, F. Strobbe, H. Küsters-Vandevelde, I. Haldorsen,
M. Snijders, and J. Pijnenborg (2019). Diagnostic Accuracy of Clinical Biomarkers
for Preoperative Prediction of Lymph Node Metastasis in Endometrial Carcinoma:
A Systematic Review and Meta-Analysis. The Oncologist, Volume 24, Issue 9,
Pages e880–e890. DOI: 10.1634/theoncologist.2019-0117

[10] Y. Zhang, H. Huang, H. Li, Y. Li, and X. Li (2018). Prediction of lymph node
metastasis in endometrial cancer using conventional MRI and DWI. Journal of
magnetic resonance imaging, 47(5), 1319-1326. DOI: 10.1002/jmri.25823.

[11] Marco Scutari, Learning Bayesian Networks with the bnlearn R Package, Journal
of Statistical Software, 35(3), 2010.

[12] L. Shan, J. Wang, Y. Wang, R. Hu, and R. Chen (2021). High expression of CXCL10
is associated with lymph node metastasis in endometrial carcinoma. Aging, 13(1),
465-478. DOI: 10.18632/aging.202230.

[13] J. Sheehy, H. Rutledge, U.R. Acharya, H.W. Loh, R. Gururajan, X. Tao, X. Zhou, Y.
Li, T. Gurney, and S. Kondalsamy-Chennakesavan (2023). Gynecological cancer
prognosis using machine learning techniques: A systematic review of the last
three decades (1990-2022). Artificial Intelligence in Medicine, vol. 139, pp. 102536,
2023. DOI: 10.1016/j.artmed.2023.102536.

[14] M. Zhang, Y. Wang, Y. Wang, L. Jiang, X. Li, H. Gao, M. Wei, and L. Zhao (2020).
Integrative Analysis of DNA Methylation and Gene Expression to Determine Spe-
cific Diagnostic Biomarkers and Prognostic Biomarkers of Breast Cancer. Frontiers
in Cell and Developmental Biology, 8. DOI: 10.3389/fcell.2020.529386

[15] Y. L. Wan et al., “Prognostic models for predicting recurrence and survival in
women with endometrial cancer,” Cochrane Database of Systematic Reviews, vol.
2021, no. 6, Jun. 2021, DOI: 10.1002/14651858.cd014625.

[16] M. AlHilli, L. Rybicki, C. Carr, M. Yao, S. Amarnath, R. Vargas, R. Debernardo,
C.Michener, P.G. Rose (2021). Development and validation of a comprehensive
clinical risk-scoring model for prediction of overall survival in patients with
endometrioid endometrial carcinoma. Gynecologic Oncology, vol. 163, no. 3, pp.
511-516. DOI: 10.1016/j.ygyno.2021.09.008.

[17] J. M. Ordovas et al., “A Bayesian network model for predicting cardiovascular
risk,” Computer Methods and Programs in Biomedicine, vol. 231, p. 107405, Apr.
2023, DOI: 10.1016/j.cmpb.2023.107405.

7



Appendices

Figure 7: Visual representation of the updated Bayesian network.

8


	Abstract
	1 Introduction
	2 Background
	2.1 Endometrial Cancer and Biomarkers
	2.2 Bayesian Networks

	3 Related Work
	4 Methodology
	4.1 Data
	4.2 Inspection of the Provided ENDORISK Bayesian Network
	4.3 Model Performance
	4.4 Possible Influences on Model Performance

	5 Results
	5.1 Data
	5.2 Updated Bayesian Network
	5.3 Insignificant Variable Identification
	5.4 Model Performance
	5.5 Possible Influence on Model Performance

	6 Conclusion
	7 Future work
	References
	Appendices

