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Efficiently learning how to select relevant input features remains a daunting
task in the development of artificial intelligence models, especially given
high noise levels (80% or more). However, when autonomous systems taunt-
ingly spring into our daily, noisy lives, the importance of automatically
and accurately detecting relevant features cannot be ignored. Considerable
progress in this direction has been made in the last few years, by using
partially sparse (i.e. the output layer is dense) Deep Reinforcement Learning
models, such as Automatic Noise Filtering (ANF) [18], which can outperform
previously existing networks in environments augmented with up to 98%
Gaussian noise. This discovery begs the question of what an optimal sparsity
distribution looks like, given a noisy medium. Thus, the present research
aims to answer this question, by analysing the effects that various sparsity
distributions - inspired from fields such as artificial intelligence, cognitive
neuroscience and mathematics - have on the learning efficacy and speed of
ANF [18] in highly noisy environments. The results validate the decision to
maintain a dense output layer, as well as support the proposal of a series of
novel sparsity distributions, among which an inverse Erdős–Rényi model.

Additional Key Words and Phrases: deep reinforcement learning, sparse
training, optimal sparsity distribution, noise filtering

1 INTRODUCTION
The clacks of a mechanical keyboard, the clicks of the mouse, whis-
pers hitting walls, then reflecting off every corner of the room, and
the wailing sounds of car honks and pedestrians somewhere in the
distance. This is the environment that even the quietest library halls
have to offer nowadays and the picture doesn’t even begin to depict
the dozens of movements, colours, lights and smells that our brains
are bombarded with every living second.

Although humans have learnt how to efficiently process this colos-
sal amount of daily collected data and filter relevant information
from noise (i.e. knowledge that is not significant for a given task),
Artificial Intelligence (AI) requires increasingly large, computation
power (and thus energy) hungry models, in order to quickly and
reliably cope with the continuous changes of the environment. Even
Deep Reinforcement Learning (DRL) - an exceptionally advanced,
adaptive machine learning paradigm, with SAC [19] and TD3 [12]
being prime examples - struggles to accommodate highly imperfect
input, which motivated the creation of state-of-the-art models that
strive to balance resource-awareness with reliable performance.

Excellent such agents can be obtained through the use of dynamic
sparse training on several DRL algorithms (including SAC [19], PPO
[35] and DQN [29]), by reducing their connections to as little as 10%
of the original number [17]. For this purpose, dynamic sparse train-
ing follows three steps: (1) sparsely initialise the model, (2) remove
the least important connections and (3) grow an equal amount of
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links. Its application on DRL networks was introduced by Sokar
et al. [36], who managed to successfully equate the performance
of dense agents, while decreasing both their parameter count and
their training time by 50%.

Only one year later, in 2023, Grooten et al. [18] proposed a model
for Automatic Noise Filtering (ANF), that applies the dynamic sparse
training to DRL algorithms to yield astonishing results in noisy
environments. Their network employs a partially sparse architecture
to outperform both its fully sparse and fully dense analogues [18],
which begs the question of the influence that partially sparse designs
might have on the efficiency of Artificial Neural Networks (ANN).
Building upon the idea, the present thesis aims to grasp the role
of a sparse initialisation in extremely sparse, noisy mediums, by
answering the research questions outlined below.

RQ 1 How can theories from related fields (e.g. neuroscience,
mathematics) be used to improve the performance of ANF in
noisy (i.e. 80% or more Gaussian noise) environments, given high
(i.e. 80% or over) sparsity levels?
RQ 1.1 Which theories are the most suitable for this purpose?
RQ 1.2 How can the identified theories be applied to ANF?

RQ 2 What impact does the application of the selected mathemat-
ical model(s) have on the performance (i.e. learning efficacy and
speed) of the network?
RQ 2.1 How does the impact of the selected sparsity distribution
models differ across the alternatives?

Briefly, the main contributions are: (1) studying how four global
sparsity levels and ten initial distributions affect the learning efficacy
and speed of ANF in noisy mediums; (2) contrasting the influence
of global and local sparsity to validate the partially sparse design of
ANF [18] and show that its performance can be further increased;
(3) proposing novel sparsity distributions (some of which appear
to outperform existing standards), such as an Inverse Erdős–Rényi
initialisation which is suitable for high noise levels.

The paper shall thoroughly describe the conducted experiments
and consequent conclusions, without assuming any prior knowl-
edge of the reader. Therefore, the next sections form a cohesive
explanation of essential background information such as basics of
probabilities, graph theory and ANNmodels (Section 2), then related
advancements in the domain of sparse training for reinforcement
learning (Section 3), the selected setup and algorithm for performing
the experiments (Section 4) and finally, the results (Section 5) on
which the answers to the research questions and recommendations
for future work have been based (Section 6).

2 BACKGROUND
Before delving into an explanation of the model training and the
experiments, it is worth understanding the underlying theory of
artificial neural networks (ANN), as well as a range of basic informa-
tion from fields that artificial intelligence branched from at its dawn.
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Consequently, the present section starts with explaining where the
architecture of ANNs draws inspiration from, then proceeds to give
an overview of useful probability and graph theory concepts and,
finally, describes the creation and training of ANNs.

2.1 Cognitive neuroscience
With its name coined at the end of the 1970s, cognitive neuroscience
deals with explaining the connections between the human brain and
the mind [16], including the emergence of intelligence through the
acquisition, storage and use of knowledge. Allured by a firm belief
that replicating the base elements of the human brain in a digital
environment could lead to the appearance of artificially intelligent
systems, many used to draw inspiration from this new field when
designing AI. Moreover, the view that the structure of the brain can
be a reliable development model (but arguably not an earmark) for
ANNs [20], proved its verity in the past few years.

One area that has intensely served as an inspiration for perfor-
mant autonomous systems has been research into the brain con-
nectivity. While some knowledge about the workings of this organ
has been accepted long ago by the academia (e.g. the fact that "the
nervous system is made up of individual cells" [16], namely neu-
rons, which communicate using electrical and chemical signals [26]),
mapping the structure of the brain (i.e. the human connectome) is a
rather novel field, which receives increasing attention [22]. More-
over, an interesting discovery has been the small-world property of
the brain, which can be explained as follows: on an anatomical level,
neurons are grouped in clusters which sparsely connect to each
other [22]; this knowledge has inspired state-of-the-art training
methods, as explained within Subsection 2.3.

2.2 Mathematics
2.2.1 Probability theory. Our brains represent the outside world by
means of probabilistic distributions and can detect such information
in data, since the youngest ages [24], [3], [10]. Additionally, proba-
bility theory found applications in a variety of fields, such as graph
theory and artificial intelligence, for which a basic understanding
of concepts like the probability distribution and expected value of
random variables (as explained below) are highly relevant.

First, taking an isolated event A, we can assign to it: a chance (i.e.
probability) of happening, which is denoted as P(A) and can take
a value between 0 and 1, where 0 denotes an impossible event and
1 - a certain event [27]; a set of all possible outcomes of this event,
usually denoted S.
Then, proceeding from set S, to each element of the series the

following can be assigned: a numerical value, via a function known
as a random variable (usually denoted X ); a probability of happening
(i.e. the probability function of X ), represented as P(X = x), where x
is any value that X can take.

Lastly, given a random variable X, we consider: its (probability)
distribution is a cohesive way of representing the probability of X
for each value that it can take, as 𝑃 (𝑋 ∈ 𝐵) =

∑︁
𝑥∈𝐵

𝑃 (𝑋 = 𝑥); its

expected value (i.e. the mean of the distribution) could be inter-
preted as the weighted average of the probabilities of each value that
X can take [27] and it is formally defined as E(𝑋 ) = ∑

𝑥𝑃 (𝑋 = 𝑥).

A relevant example for the presented theory would be studying
the direction of movement of a rook in a game of chess: we can define
S = {up, down, left, right}, X = "the direction of the rook" where X = 0
when the rook moves up, X = 1 when the rook moves down and so
on, then assign a probability P(X = x) = 1

4 , ∀𝑥 ∈ {0, 1, 2, 3}. Moreover,
given this information, we could calculate the expected value of
moving the rook, E(𝑋 ) = 1

4 , and the homogeneous distribution of
X, P(X = 0) = P(X = 1) = P(X = 2) = P(X = 3) = 1

4 . However, depending
on the probability function of X, several distributions can be defined
and visually represented (e.g. Figure 1 [27]).

Fig. 1. Probability distribution functions [27]

2.2.2 Graph theory. From street guidance to computer networks,
graph theory has found one of its more interesting applications in
mapping the connections of the brain, in particular its functional and
effective structures [9]. While the set of methods is vast, valuable
insight can be gained from the application of any graph (defined as
"a finite set of vertices (or nodes) that are connected by links called
edges (or arcs)" [9]).

Graph theory can be used to represent the architecture of artificial
neural networks such that each arc can be fully defined by the neu-
rons that it links and by a probability of existence. These concepts
are also employed in random graphs (i.e. graphs in which all arcs
have an equal probability of appearance), such as the Erdős–Rényi
model for the generation of random graphs [6] and the Erdős–Rényi
model of random graphs evolution [7].

2.3 Artificial neural networks
The creation of intelligent agents (i.e. any system that is able to
perceive its environment through sensors and act upon it via ac-
tuators [33]), broadly referred to as artificial intelligence (AI), has
been a subject of interest in the scientific community for almost
a century, since McCulloch and Pitts [26] published what is now
considered to be the first work in the field [33]. The present research
is concerned with machine learning, which is the study of how ma-
chines learn by observing information (i.e. input data), creating a
representational model of it and then inferring accurate knowledge
(i.e. output data) based on the model. The computer would then
receive feedback from its environment and aim to correct its model
in order to minimise representational and thus, output errors [33].

Depending on the type of input data, model, training and feedback
that an agent deals with, multiple areas of study can be differentiated.
A relevant example are artificial neural networks (ANN) which are
representational models vaguely resembling the structure of the
brain [33]. An existent connection allows the flow of information
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between two neurons, such that nodes on the first (i.e. input) layer
receive information and pass it for processing to the middle (i.e.
hidden) and last (i.e. output) layers.

2.3.1 Reinforcement learning. Depending on the feedback that the
agent receives, three learning paradigms have been defined (i.e.
supervised, unsupervised and reinforcement learning) and ANNs
found applications in all of them. In reinforcement learning, agents
learn by interacting with their environment, thus inferring one
behaviour which is periodically reinforced or punished through
rewards [33]. This can be formally defined as a Markov Decision
Process, a tuple that contains all the relevant setting information:
⟨X ,A ,P,R, 𝛾⟩, where X is the state space (i.e. the set of all
possible states of the agent); A is the action space (i.e. all possible
actions that the agent can take); P - the transition dynamics (i.e.
a function that maps a combination of the current state s and an
action a taken by the agent, to the transition probability of the
agent to find itself, in the consequent moment, in a state s’); R is
the reward function ; 𝛾 ∈ [0, 1) - the discount factor (i.e. a parameter
which controls the importance of new information in the learning
experience of the agent) [17].

Although hundreds of RL algorithms have been devised, they all
learn a desirable behaviour, which is stored as policy 𝜋 : X →
𝛿 (A ) (i.e. a function that maps each possible state of the agent to
a probability distribution of its possible actions). This policy also
entails learning a value function 𝑉 𝜋 : X → R (i.e. the expected
value of acting according to the policy, when starting from current
state s) and, possibly, a value-action function𝑄𝜋 : X ×X → R (i.e.
the expected value of acting according to the policy, when starting
from current state s and picking action a) [17].
Depending on how the value and action-value functions are

stored, Russell and Norvig [33] classifies RL algorithms as follows.
• action-utility learning: the agent stores 𝑉 𝜋 and 𝑄𝜋 directly in
a table, which becomes rather "impractical" for large X [17];
• policy search: it is usually applied by DRL algorithms, which
learn an approximation of the (action-) value function (instead
of the actual 𝑉 𝜋 or 𝑄𝜋 ) and store it in one or more deep net-
works. Depending on which approximators the algorithm stores,
Graesser et al. [17] further categorises them into:
– value-based: used in discrete control environments (i.e. spaces
with a finite set of actions), they learn an approximation 𝑄𝜃 ≈
𝑄𝜋 of the action-value function, which is then stored in a deep
network and used to infer the optimal policy [17];

– policy-gradient: also known as actor-critic methods, these algo-
rithms are typically used in continuous control environments
grace to their ability to learn both an action-value 𝑄𝜃 (i.e. the
critic) and a policy 𝜋𝜓 (i.e. the actor) estimator [17].

2.3.2 Deep learning. With application in several domains, including
reinforcement learning, deep learning (DL) is a family of techniques
that are widely used nowadays due to their baffling success [33].
The name comes from the complex structure of the ANN that DL
builds, with several interconnected layers of neurons, such as the
one depicted in Figure 2.

2.3.3 Sparse training. One of the most exciting, neuroscience in-
spired contributions to AI has been sparse training. As described in

Fig. 2. Deep learning network with 1 input layer, 3 hidden layers and 1
output layer

the previous section, deep neural networks are stacked layers of in-
terconnected neurons. Depending on how well connected the model
is, ANNs can be dense (i.e. each neuron is connected to all neurons
in the preceding and consecutive layer) or sparse, otherwise.
While the concept of sparse networks has been coined since

the late 1980s, generating and training them proved to either be
computationally expensive or yield inaccurate results [17]. Two
main approaches can be identified in this direction:
• dense-to-sparse training gradually prunes (i.e. removes) con-
nections through repeated train-prune-train cycles, in order to
reach a sparse network;
• sparse-to-sparse training sparsifies the model at initialisation
and proceeds to maintain the same sparsity level.
Although previously considered inefficient, recent years have

brought novel approaches in the latter training method, thus man-
aging to train sparse ANNs that considerably outperform their dense
counterparts. The performance is achieved by efficiently utilising
all the stored parameters, consequently driving down the required
power consumption [36]. The discussed innovations further split
the sparse-to-sparse training techniques into two classes:
• static (the sub-optimal solution [17]): the sparsity level is main-
tained throughout the training because the structure of the ANN
remains unchanged;
• dynamic: after pruning the network, an update time period is
defined, such that the topology (i.e. structure) of the network is
changed continuously, by cutting and regrowing a fixed number
of neural connections.

3 RELATED WORK

3.1 Sparse training
Proposals of training ANNs in away that utilises parameters more ef-
ficiently start as early as 1989 [17], when Mozer and Smolensky [32]
defined a technique called "skeletonization"; its aim was, among
others, to speed up and better understand the learning process of
agents. Since then, several attempts have been made at improving
the inference procedure of ANNs. The first to be employed were
dense-to-sparse methods, as further presented by Graesser et al. [17],
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with a notable contribution in the field being the work of Frankle
and Carbin [11]. They proposed "The Lottery Ticket Hypothesis"
stating that any randomly initialised, dense network can be further
pruned and retrained without denting its original accuracy [11].
Despite outstanding results, this manner of training can some-

times increase the energy consumption of the model [17], thus mak-
ing it an unfavourable alternative to sparse-to-sparse techniques,
both static and dynamic. While the rest of this paper will be con-
cerned with the dynamic alternative (whose main variants are pre-
sented below), further information about sparse training methods
can be found in survey papers like [14], [21] and [30].
Proposed in 2018, Sparse Evolutionary Training (SET) is a

dynamic sparse training method applied on ANNs [31], possibly the
first to train a fully sparse model from the beginning [8]. It initialises
the network with an Erdős–Rényi random graph [6], such that for
each layer k that has 𝑛𝑘 neurons, connections have a probability of
appearance of 𝜀 (𝑛𝑘+𝑛𝑘−1 )

𝑛𝑘𝑛𝑘−1
, where 𝑛𝑘−1 is the number of neurons on

the previous layer. From the formula, one can notice that the more
neurons a layer has, the sparser it will be. Then, throughout the
training, at predefined update periods Δ𝑇 , SET iteratively changes a
fraction of the existing connections, such that the arcs with absolute
weight values closest to zero are dropped and an equal number of
links is regrown at random.

A different, but similar method isTheRigged Lottery (RigL) [8];
drawing inspiration from "The Lottery Ticket Hypothesis" [11], it
slightly differs from SET because it selects new weights to be grown
from those with the highest magnitude, rather than at random.

3.2 Sparsity in Deep Reinforcement Learning
3.2.1 DRL algorithms. Successful implementations of DRL agents
can be traced back to their introduction in 2013, when Mnih et al.
[28] applied reinforcement learning concepts to deep neural net-
works, thus creating the value-based, Deep Q Learning (DQN)
algorithm. Remarkably, this managed to surpass all contemporary
agents when tested on Atari games and to nearly reach human-
level performance [29]. Following these outstanding results, several
policy-gradient actor-critics have been proposed, with the most
notable examples lying at the foundation of state-of-the-art models.
Depending on the policies that are optimised and respectively, used
for decision-making, these can be grouped into: on-policy, which
employ the same function for both updates and decisions (e.g. Trust
Region Policy Optimization (TRPO) [34], later improved by Proxi-
mal Policy Optimization (PPO) [35]) and off-policy, that employ
two separate functions, one for each purpose (e.g. Deep Determinis-
tic Policy Gradient (DDPG) [23] which was then advanced by the
Twin Delayed Deep Deterministic Policy Gradient (TD3) [12], Soft
Actor-Critic (SAC) [19]).

3.2.2 Sparsity in DRL. Applications of sparse training in DRL have
received increasing attention in the past few years [36], as a series
of novel, high performance models started emerging. Notably, for
agent training, these all employ dynamic sparse-to-sparse methods
(broadly inspired by the work of Mocanu et al. [31] on SET), as
Graesser et al. [17] proved their superior results on (up to 90%)
sparse DRL models (namely DQN [28], PPO [35] and SAC [19]).

The idea was initially suggested in 2022, by Sokar et al. [36], who
successfully integrated SET with 50% sparse TD3 [12] and SAC [19]
models, into DS-TD3 and DS-SAC - agents that require almost 50%
less training steps and computation power to equate the results of
the original, dense networks [36].
Within one year from the introduction, Tan et al. [38] proposed

the Rigged Reinforcement Learning Lottery (RLx2)model, that
achieved state-of-the-art results by training both TD3 [12] and SAC
[19] entirely on (up to 99%) sparse networks, by using the RigL
technique [8].
Finally, in 2023, Grooten et al. [18] presented the Automatic

Noise Filtering (ANF) agent which extends previous research
(particularly that of Sokar et al. [36]), by increasing the network’s
robustness to noise. For the purpose of testing, Grooten et al. [18]
also designed the Extremely Noisy Environment (ENE) and instanti-
ated it in four (MuJoCo Gym [2]) continuous control environments,
by augmenting them with a fraction 𝑛𝑓 ∈ [0, 1) of Gaussian [15]
noise (i.e. irrelevant features sampled from a random variable with
Normal probability distribution [4]). These were used in an exten-
sive study of ANF, which proved its outstanding performance in
mediums with 𝑛𝑓 ≥ 0.8 (i.e. over 80%) noise features, where all
other agents struggle to learn.

4 SPARSITY DISTRIBUTION ANALYSIS

4.1 Sparsity distributions in ANF
In order to answer the presented research question, the original
ANF-SAC [18] algorithm has been used and partially modified to
accommodate the selection and creation of various initial sparsity
distributions (as presented in Figure 5), in the layers of the actor
and critic networks. The algorithm (which will be made available
online after its intended submission to an A* conference) has been
schematically defined below, in Algorithm 1; the text written in
black represents the original algorithm of Grooten et al. [18] and
the text written in violet shows the novel components.
As partially seen in Algorithm 1, ANF-SAC [18] has dozens of

parameters that can be adjusted at initialisation in order to control
the structure and behaviour of the model, which rendered the cre-
ation of additional variables futile. While most of them were kept
with the default values as set by Grooten et al. [18], a few have been
adjusted throughout the training jobs, as listed below.

• environment: all experiments have been ran on Walker2d-v3
(one of the continuous control MuJoCo Gym environments [2]).
• noise: some study has been performed already by Grooten et al.
[18], concerning the effect that the global sparsity level has on the
returns of ANF, in ENE environments with 𝑛𝑓 = 0.9 added noise.
In line with their analysis, the base experiments in this research
have also been conducted by augmenting the selected medium
with 0.9 noise features.
• sparsity distribution: selected from {normal, inverse_ER, new,
ER, exp_input, exp_output, sparse_input, sparse_output, uniform,
random}, as shown in Figure 5 and presented in Subsection 4.2.
• global sparsity: incrementally set for each distribution, at values
𝑠𝑔 ∈ {0.8, 0.9, 0.95, 0.97}, as done by Grooten et al. [18].
• output layer sparsity: 𝑠𝑜 ∈ {𝑠𝑝𝑎𝑟𝑠𝑒, 𝑑𝑒𝑛𝑠𝑒}.
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Algorithm 1: Sparsity distribution analysis in ANF
Data: topology-change period Δ𝑇 , drop fraction 𝑑𝑓 , initial

collect steps 𝑏𝑖𝑛𝑖𝑡 , train every k env steps, minibatch
size n, learning rate 𝜆, target smoothing coefficient 𝜏 ,
max env steps T, global sparsity level 𝑠𝑔 , sparsity
distribution 𝑠𝑑 , output layer sparsity 𝑠𝑜

Initialize the actor network 𝜋 and two critic networks Q1, Q2,
with weights 𝜙 , 𝜃1, 𝜃2.
Assign sparsity level 𝑠𝑙 to each layer according to
distribution 𝑠𝑑 , so that the average network sparsity == 𝑠𝑔 .
if 𝑠𝑜 == dense then

𝑠𝑙 of the output layer← 0.
end
Randomly prune the layers in each network from {𝜋,𝑄1, 𝑄2}
to their sparsity level 𝑠𝑙 .

Duplicate the two critics to create two target networks, with
weights 𝜃1 = 𝜃1, 𝜃2 = 𝜃2.
Initialize the replay buffer B with 𝑏𝑖𝑛𝑖𝑡 random actions.
for t=1, t<T do

Sample action a from the policy (actor network) based on
current state s: a ∼ 𝜋𝜙 (·|s).

Take a step in the environment and observe reward r and
new state s’.
Store transition tuple (s, a, r, s’) in B.
if t mod k == 0 then

Sample minibatch of n transitions from B.
Update the weights according to SAC’s objective
functions 𝐽𝑄 , 𝐽𝜋 :

𝜃𝑖 ← 𝜃𝑖 − 𝜆∇̂𝜃𝑖 𝐽𝑄 (𝜃𝑖 ) for i ∈ {1, 2}
𝜙 ← 𝜙 − 𝜆∇̂𝜃𝑖 𝐽𝜋 (𝜙)

Update the target networks:
𝜃𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖 for i ∈ {1, 2}

end
if t mod Δ𝑇 == 0 then

Update the topology of the networks:
Prune fraction 𝑑𝑓 of the smallest magnitude
weights. Grow fraction 𝑑𝑓 new weights
randomly, initialize at value 0. Mask Adam’s
running avg. of the 1st & 2nd raw moment of
the gradient for pruned weights: m ← 0, v ← 0.

end
end

4.2 Types of sparse initialisation
A selection of inexhaustive initial sparsity distributions have been
devised for analysis, by creating associated probability functions.
These are shown in Figure 5, where 𝑘 is the index of the layer, 𝑛𝑘 is
the number of neurons on layer 𝑘 , 𝜀 = 0.3 as suggested in Sundar
and Dwaraknath [37], 𝛼 = 0.5 as proposed in Grooten et al. [18], 𝜎
and 𝜇 are the variance and mean of the normal distribution. They
were chosen such that out of the ten distributions: one (uniform)
has been studied before, by Grooten et al. [18], in both ANF and
Sparser-ANF; two (new and ER) have been inspired by the work of
Grooten et al. [18], but their 𝜀 value has been changed; one (random),

used as benchmark, was previously suggested by Liu et al. [25]. The
rest of six are novel and motivated as follows: one (normal) - by
the (Gaussian [15]) noise distribution employed in tests; four - by
existing mathematical (probability) functions, namely Linear [5]
(in the case of sparse_input and sparse_output) and Power law [1]
functions (exp_input and exp_output); one (inverse_ER, which is
one of the main contributions of this thesis) - by SET [31], as its
probability of connection on each layer is 1 − 𝑝𝐸𝑅 , where 𝑝𝐸𝑅 is the
probability of connection in SET [31]. This latter proposal sets a
higher sparsity for layers with less neurons and its suitability for
high noise levels could be explained, in the context of ANF, by the
consequent increased sparsity of the input layer, acting as a filter.

4.3 Global versus local sparsity
Another relevant, analysed aspect is the individual influence of the
global (i.e. the average sparsity level of the entire network) versus
local (i.e. output layer) sparsity, on the performance of ANF [18].
Therefore, for each of the global sparsity levels presented in Subsec-
tion 4.1, the various distributions have been given a specific output
layer setting between sparse and dense, illustrated in Figure 5 by the
continuous and respectively, dashed lines. Only three of the distri-
butions have been tested with a dense output layer, corresponding
to the investigation of Grooten et al. [18].

Fig. 5. Tested distribution functions and their algorithms (named as indi-
cated on the arrows)

5 RESULTS

5.1 Evaluation metrics
Treasured as it is nowadays, one can fail to notice that the data
itself, without those that can make sense of it, is meaningless; it
is rather the manner in which it supports further conclusions that
renders it so precious. Consequently, it is important to set clear
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Fig. 3. Comparison of average return of methods ER, new and uniform, when using a dense versus a sparse output layer

variables that are to be analysed, as well as relevant metrics for
them, before discussing the results. In the context of the present
thesis, two characteristics of the algorithm will be studied. Namely,
these are: the learning efficacy, depicted by contrasting the plotted
returns, and the learning speed, measured by using (1) the average
ratio between real (i.e. relevant) and fake (i.e. noisy) connections
(which aims to depict how accurately the algorithm discerns among
features) and (2) the average slope of the real features curve (which
shall determine the speed of the model).

These results will be evaluated and presented in the context of
three influencing variables: global sparsity, output layer sparsity
and sparsity distribution.

5.2 Learning efficacy
5.2.1 Global sparsity. Given the clear indication (i.e. on the graphs)
that regardless of the model, the returns decrease considerably as the
global sparsity increases past 0.9, it can be concluded that extremely
high sparsity levels are detrimental to the performance of DRL
networks. However, it is important to note that almost all models
can handle up to 0.9 sparsity with minimal loss (Figure 4).

5.2.2 Output layer. Figure 3 plots the average results of distribu-
tions ER, new and uniform given a dense output layer against the
average results of the same distributions given a sparse output
layer. Thus, it can be easily observed that the performance of DRL
agents improves by maintaining a dense setting, which validates
the choice of Grooten et al. [18] to design a partially, rather than
fully sparse architecture in their ANF model.

Fig. 4. Comparison of return from sparser input and respectively sparser output distributions
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Fig. 6. Comparison of return of methods normal, inverse_ER and random with the average return of sparser input and respectively sparser output distributions

5.2.3 Sparsity distribution. Figure 6 depicts the performance of
distributions normal, inverse_ER and random, in contrast with two
averages: the first set of subplots shows the average return as esti-
mated from all distributions with a sparser input, respectively all
distributions with a sparser output (further outlined in Figure 4, in
similar colours); the second set of subplots uses the same averages
as shown in Figure 3.

Based on the results, several interesting observations can be made:

• ER, new and uniform perform considerably better than their Linear
[5] and Power law [1] function distributed counterparts. This can
be deduced from the decrease in returns when the latter two are
included in the average (first row of plots in Figure 6);
• inverse_ER surpasses all other distributions in returns, in three
out of four cases (inverse_ER underperforms in 0.9 global spar-
sity). Moreover, when compared to the results of Grooten et al.
[18] in 0.8 and, respectively, 0.95 noise augmented, Walker2d-v3
environment, this distribution applied to ANF-SAC yields over
20% higher returns than distribution uniform on ANF-TD3 [18];
• normal and inverse_ER are both quite robust to increases in spar-
sity level;
• random is unexpectedly efficient, sometimes outperforming all
other distributions. Although highly stochastic, this idea was
previously suggested within the research of Gadhikar et al. [13]
and its importance comes from the following: since a randomly
sparse network can yield greater results than all other distribu-
tions, it is fair to assume that there must be a more suitable sparse
architecture for DRL agents than what has been studied so far.

5.3 Learning speed
5.3.1 Global sparsity. Although not obvious from the graphs dis-
cussed in the previous section, an analysis of Table 1 shows that
all sparsity distributions seem to have a spike in learning speed
(i.e. both connections ratio and learning slope) at 0.9 global sparsity
level. This points to the idea that 0.9 sparsity level is the optimum
value for accelerating the learning process.

5.3.2 Output layer. Investigating the effects of using a dense output
layer setting has only been conducted for distributions ER, new and
uniform (as they have been previously tested with a dense output
layer by Grooten et al. [18]), but it is still relevant to contrast the
results. It can be observed that, in the context of learning velocity,
having a dense output layer is also desirable over a sparse one,
similarly to the information presented above.

5.3.3 Sparsity distribution. Even though a comparison across dis-
tributions is somewhat inconclusive, it is interesting to note that
for the Linear [5] and Power law [1] function based models, sparser
output distributions appear to learn quicker than the sparser input
ones.

6 CONCLUSIONS
Although arduous work still awaits humanity in its pursuit of creat-
ing noise-indifferent intelligent entities, considerable advances have
been made in this direction lately and, with the present findings,
two more (research) questions (laid out in Section 1) have been
answered. Concisely, I have observed that concrete information
concerning the distribution of anatomical connections in the brain
is as sparse as the studied neural networks and that fields such as
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Output layer setting for each global sparsity
Sparsity Algorithmic Comparison 0.8 0.9 0.95 0.97

distribution method parameter sparse dense sparse dense sparse dense sparse dense

Erdős-Rényi

ER speed (10−5) 1.94 2.60 4.29 3.70 2.49 2.71 0.14 0.20
connections ratio 1.75 1.89 3.42 3.40 5.63 5.66 1.96 2.86

new speed (10−5) 2.52 3.75 3.63 4.91 2.41 2.42 0.16 0.24
connections ratio 1.90 2.21 3.31 4.14 5.47 5.39 2.02 3.37

inverse_ER speed (10−5) 3.44 3.91 2.51 2.78
connections ratio 2.28 3.49 6.19 0.16

Power law
exp_input speed (10−5) 2.06 2.87 2 0.18

connections ratio 1.96 3.44 5.19 2.88

exp_output speed (10−5) 2.91 4.69 3.11 0.23
connections ratio 1.64 3.06 5.07 2.06

Linear
sparse_input speed (10−5) 2.59 3.54 1.29 0.08

connections ratio 2.29 4.88 4.77 1.99

sparse_output speed (10−5) 2.90 4.69 2.54 0.12
connections ratio 1.95 3.75 5.13 1.90

Normal normal speed (10−5) 3.28 4.43 2.59 0.18
connections ratio 1.95 3.64 5.15 2.82

Uniform
uniform speed (10−5) 3.35 2.76 3.98 4.33 2.28 2.26 0.153 0.118

connections ratio 2.15 2.02 3.55 3.85 5.35 5.48 2.31 2.24

random speed (10−5) 1.98 4.10 1.88 0.118
connections ratio 1.88 4.08 4.89 2.27

Table 1. Comparison of average learning speed (10−5) and average ratio of real:fake connections in the actor network, given the sparsity distribution
(𝑠𝑑 = 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐𝑀𝑒𝑡ℎ𝑜𝑑), global sparsity (𝑠𝑔 ∈ {0.8, 0.9, 0.95, 0.97}) and output layer setting (𝑠𝑜 ∈ {𝑠𝑝𝑎𝑟𝑠𝑒,𝑑𝑒𝑛𝑠𝑒 })

probability and graph theory can serve as fruitful inspiration for
the architecture of performant deep reinforcement learning models.
Moreover, by contrasting a series of sparsity distributions on

ANF-SAC, in the ENE Walker2d-v3 environment [18], the following
conclusions have been reached:
• using a dense output layer appears to yield superior results (in
both learning efficacy and speed) to employing a sparse one;
• distribution inverse_ER shows the highest returns for three out of
four global sparsity levels (being closely followed by distribution
new) and outperforms Sparser-ANF-TD3 [18] in the Walker2d-v3
environment, by over 20%;
• random distributions, although stochastic, sometimes perform
better than all other models. Notably, this entails the relevance of
a further study of the topic (i.e. in the pursuit of a truly optimal
initial sparsity distribution);
• Normal [4] or nearly Normal distributions are surprisingly ro-
bust, to the extent where they outperform their counterparts in
extremely noisy environments (e.g. 95% noise);
• the learning speed of the studied examples generally peaks at 0.9
sparsity level. However, equally important to note is the fact that
returns do not follow the same pattern and rather decrease with
the network’s density.

6.1 Limitations
For various reasons, the discussed findings bear a series of limita-
tions, as listed within the section. First of all, as previous research

in the matter is rather scarce, the selection of sparsity distributions
(and their functions’ parameters) is inexhaustive and somewhat
arbitrary. Second of all, the data validation was considerably con-
stricted by time; thus, another insufficiency are the test setting and
its selection: one model, environment and noise level value have
been verified, to the degree of obtaining conclusive information.

6.2 Further directions
Work in the field of dynamic sparse training, especially in the con-
text of reinforcement learning, is at an incipient phase and much
exploration is left to be done in this direction. Hopefully, the present
results will serve as an inspiration for an arguably needed further
study of the issue. While the topics of analysis are vast, potential di-
rections include probing other distributions or function parameters,
validating the findings on different environments (e.g. Humanoid-v3
ENE, HalfCheetah-v3 ENE [18]), models (e.g. ANF-TD3 [18]) or noise
levels and, ultimately, creating a (dynamic) sparsity distribution for
optimal results, regardless of the agent’s setting.
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