
Dia: a Domain Specific Language for Scripted Dialogues and Cutscenes
VLADIMIR KOBZEV, University of Twente, The Netherlands

Modern computer games often rely on presenting a fictional narrative to

the player. Translating a written story manuscript for a modern computer

game into working interactive narrative is a cumbersome task that requires

time investments from story writers, programming teams and technical

artists. This paper proposes a Domain Specific Language (DSL) called Dia.

Dia aims to simplify the process for a game development team through

simple and non-intrusive grammar, as well as extensive functionality for

data and function binding.

Additional Key Words and Phrases: Computer Game, Digital Storytelling,

Narrative Design, DSL, Tools

1 INTRODUCTION
Game development is a time consuming process prone to a vari-

ety of problems. Aside from planning-related difficulties such as

unrealistically large scope identification, and its further expansion

through feature creep, other usual obstacles are technological and

tool problems that greatly increase development time. This poten-

tially leads to the project exceeding allocated budget and, in some

cases, risking cancellation [17, 23]. Tool problems generally revolve

around the difficulty of using the tools or lack of specialized tools

in general [17, 23].

One of themajor elements inmodern computer games are scripted

sequences of events in which the player is presented with the nar-

rative of the game. These events may possess a varying degree of

interactivity. The non-interactive events are generally referred to as

“cutscenes”, in which the player is simply shown a series of events,

like a movie [7]. Some games introduce a degree of interactivity into

such events, generally through interacting with Non-Player Char-

acters (NPCs) by means of selecting from a list of predetermined

options. Such events are referred to as dialogues or dialogue trees.

Dialogues interrupt the general flow of the game to let the player

interact with other characters and advance the story. Dialogues can

also be integrated into cutscenes, such that a series of predetermined

actions are interrupted by a choice query from the player.

There are different approaches to creating scripted events in

computer games. The most obvious one is to simply hard-code them

into the game source code, which may be cumbersome and much

less accessible to those unfamiliar with programming [4, 19]. The

other involves incorporating a scripting language into the game

logic. Scripting languages can be either general-purpose or domain-

specific, depending on the requirements of the development team,

and can be either text-based, such as Lua or Python, or graphical,

such as Unreal Blueprints (formerly known as Kismet) [4, 19]. While

visual languages are known to be easier to learn, their application

to narrative design may be limited, as storytelling may involve

large amounts of data, which, according to Myers [14] is difficult to

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2023 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in , https://doi.org/10.1

145/nnnnnnn.nnnnnnn.

represent with a visual language. Because of this, the focus will be

primarily on text-based languages.

Several existing languages and tools that deal with digital sto-

rytelling and narrative design were analyzed, such as SAGA [1],

Ink [11], RenPy [11], Twine [2, 11] , and ScriptEase [20]. Among

the languages listed, Ink and RenPy are both text-based, and are

known to have been used to develop a large number of games, in-

cluding commercial ones [9, 18]. Ink is a text-based DSL that is

simple enough for a non-programmer to learn, due to its simple

syntax, and construct complex dialogues and narratives. However,

the language provides no support for text markup, and the function

bindings not only appear too verbose, but also support a very limited

number of built-in types for parameters and return types [10]. This

leads to Ink users inventing custom tag and message formats that

are meant to be manually parsed after Ink compilation, which can be

error-prone. RenPy, on the other hand, provides a lot of expressive

constructs for text markup [21], but exists as its own Python-based

engine for Visual Novels (VNs). This is convenient if the goal is

to design a classic visual novel, but at the same time comes with

its own technical limitations, such as being limited strictly to 2D

Visual Novels. RenPy also requires at least some degree of Python

knowledge, which is a general-purpose programming language that

takes time for a non-programmer to learn. This results in a gap in

which there is no language that is easy to learn, is capable of being

adapted to different interactive genres, and provides extensive data

and function binding.

The general problem of tool development and tool usability, as

well as the problem of readability and accessibility of languages lead

to the following research questions:

• RQ1: What grammar constructs are needed for a scripted

event to be expressed, such as a dialogue or a cutscene?

• RQ2: How do constructs for data and function binding, as

well as markup affect source code readability?

Thus, the goal is to design a DSL that is both easy to use and

is flexible enough to adapt to a variety of games with different

degrees of interactivity. The ease of use in this case is based on

using familiar syntactic constructs from popular markup languages,

and readability comparable to other popular text-based DSLs for

game dialogues. Flexibility is achieved by offloading any complex

logic and data implementation strictly outside the language domain,

while retaining the ability to reference it. The language will be called

Dia, short for “Dialogue”.

First, to help establish a grammar for the language, the paper

describes how domain analysis was conducted. Then, an in-depth

language description is presented. Afterwards, a comparison be-

tween Dia and another DSL, is shown with regards to readability

and feature differences. The DSL for the comparison purposes was

chosen to be Ink, as it is a text-based DSL with known successful ap-

plication. Finally, the paper concludes with a discussion of findings

and their relation to their respective RQs.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TScIT 39, July 7, 2023, Enschede, The Netherlands Kobzev

2 DOMAIN ANALYSIS
One of the first steps to DSL design is the identification of the

domain in which the language operates. This process is referred to

as Domain Analysis [12]. The particular formal method of Domain

Analysis that was selected for this languagewas Bunge-Wand-Weber

(BWW) ontology [22]. This widely accepted method was chosen

as it is described as the leading ontology for domain analysis [13].

The ontology is modeled using “things”, which are elementary units

that can either be primitive or composite, consisting of several other

things. Sets of things that contain common properties are referred

to as classes [22]. Subclasses are classes that inherit properties of

its parent class [15]. Finally, things that are coupled together form

a system, and the things that interact with the things within that

system, but are not a part of the system, are a part of the system

environment [22].

The following entities were identified to be relevant in the domain

of scripted sequences in computer games, according to the BWW

ontology. Similarly to Goncharenko and Zaytsev [3], words in italics
refer to kinds of BWW ontological constructs, and words in bold
are the domain-specific concepts. When things affect the history

of each other they are said to be coupled [22]. The coupling of the

identified entities is represented in Figure 1.

System Environment Game Logic is the environment that con-

cerns the business logic and data of the game itself. This environ-

ment is not analyzed in depth because different games may employ

vastly different game engines, which in turn may affect the com-

position of this environment. For the sake of this analysis, it is

sufficient to assume that Game Logic directly controls the system

and possesses the data it may require.

Class Script represents a vector of Events, and is coupled to some

Context. Scripts directly interface with and are under direct control
of Game Logic to run the game dialogue or a cutscene. Property
Iterator represents which Event is to be processed by Game Logic
at a given moment. Property Sections defines groupings of Events.
Class Context represents information that describes the envi-

ronment in which the Script is run. Context itself is populated
either directly by Game Logic or at the request of its Script. Script
and Context are separate entities because, technically, the same

Script can be executed in a variety of different Contexts. Property
Identifiers is a set of Identifiers.
Class Identifier is a referential binding to external functions or

data in Game Logic.
Class Event is a statement that either represents a Message in a

dialogue, a Control that directs execution flow, or an Action that

notifies Game Logic about a context specific activity. All Events
influence the state of the Script that contains them. Subclasses of
Event are as follows.

Subclass Message is an Event that represents a unit of text that
is expected to be printed on the screen at the time of execution.

This subclass refers to and encompasses any kind of printed text

information, whether it is a line of monologue, a passage exchanged

by actors within a certain context, an email, etc. Property Text rep-
resents portions of text to be displayed. Property Styles represents
how portions of text are displayed.

Subclass Control represents an Event that directs the execution
flow. This redirection can either be unconditional, which simply

points to a different Section of the script, or conditional that selects
areas of the script depending on certain options, which are decided

by Game Logic. A conditional Control has additional properties
Choices, Control Action and Outcomes. Choices are conditions
that select Outcomes, which are Script areas, and the Control
Action is an external function Identifier that describes the kinds
of Choices that are possible for the Game Logic to make.

Subclass Action is a kind of Event that serves as a binding to

a function in Game Logic through a set Identifier in a Context.
Actions can additionally influence state of other identifiers.

Game Logic

Script

Event

Context

Message Control

Action

Identifier

Fig. 1. Domain Entity Coupling

The capsule/stadium shape in Figure 1 represents the BWW sys-

tem, with the nodes inside of it the individual entities. Lines on the

graph are entity couplings. Event is shown in italics to highlight

that it is used as an abstract class. EntityGame Logic, which resides
outside the BWW system, represents the environment in which the

system operates, and can directly interface with the system through

its Script and Context nodes.

3 LANGUAGE DESCRIPTION
The identified ontology was applied to design the language fea-

tures of Dia, and the domain entity model was used to ensure that

specific language features properly interface with game logic. The

following section provides a detailed description of the resulting

language. First, subsection 3.1 will introduce basic language fea-

tures to display and partition dialogue lines. Then subsection 3.2

will demonstrate how data and function binding is handled to inter-

face with the game logic environment. Afterwards, subsection 3.3

will present constructs for built-in and custom text markup. Finally,

subsection 3.4 will show how to enable branching narratives by

using Options for control flow. A reference grammar is provided in

Appendix A.

3.1 Messages and Sections
Dia is designed to be easy to learn for scriptwriters and flexible

enough to extend for game programmers. The language utilizes

many of the familiar constructs from other markup and program-

ming languages to be more intuitive.

2

Dia: a Domain Specific Language for Scripted Dialogues and Cutscenes TScIT 39, July 7, 2023, Enschede, The Netherlands

� �
Hello
> Hello World!
> This is a longer dialogue message. If a
message is too long for a single line, it
can be indented. > Messages can be chained
within a single indent block too.� �

Listing 1. Simple Message Display

All messages begin with a greater-than > operator, and must be con-

tained within a section. Messages that are separate but require to be

rendered as a single message can be combined together with a plus

+ operator at the end of a message. This way the interpreter notifies

the game logic that, while there is a message to be displayed in its

current iteration phase, the next one is supposed to be combined

with it.

Akin to Markdown, sections are marked with a pound # sign. Sec-
tions can accept Unicode characters, except for characters reserved

for operators, but including whitespace. A section or its subsections

span until another section or subsection is encountered, or until

the end of the file. When the language interpreter encounters the

end of a top level section, it halts and notifies the game logic, so

that further action can be taken, whether it is to halt the dialogue

entirely, or to process a section. All subsections are fall-through.

Execution can jump to a different section or a subsection with a

double greater-than » operator. A valid path is either a subsection

on the same level, a top-level section, or a point-delimited path from

a top-level section. Sections can be returned from with a double

less-than « operator.� �
A
> This is a message from A.
AA
> And now we have +
>> B.BA
> Came back from B.BA!
> Now execution will pause.

B
> This will not be displayed.
BA
> arrived at B.BA!
<<� �

Listing 2. Subsections and Jumps

3.2 Data and Function Binding
Plain text dialogue can be sufficient for some games, but in a lot

of cases, audiovisual cues and game events play an important role.

For this reason, Dia implements “actions”, which are basic function

bindings that can notify game logic on what to do. Before an action

can be used, it must be declared. The interpreter is expected to

process all declarations in advance and take the appropriate steps

to bind them. Declarations are not required to be contained within

a text section, and it is encouraged to place all binding declarations

at the top of the script file.

Actions can be called inline within a text message or in a separate

statement. The former requires the action to be enclosed in paren-

theses, but no such enclosure is necessary for separate statements.� �
action ding :: Ding

Example
Ding
> This message demonstrates an

inline (Ding) action.� �
Listing 3. Simple Binding to Play a Sound

Actions are declared with an external name, and a script-related

signature. The external name is used to identify the action within

the game logic, and the signature is to be used within the Dia script

itself. Signatures can be composed from both Unicode words and

type names in arbitrary order, and the interpreter is responsible for

deriving which words in the signature correspond to actual types.

The only predefined types in Dia are String, Integer, Float, and
Boolwith reserved true and false state keywords. Any other type
is declared with the data keyword. The language is not concerned

with the implementation of custom data types, and only expects

to be able to pass references of their respective external objects.

Because an action signature can contain words in arbitrary order,

strings are distinguished with double quotation marks. Actions can

have a return type, which is identified with an arrow -> sign and

a return type name in its definition. Such actions can be used to

assign data references to variables.

Variables in Dia can be defined both implicitly and explicitly. Implicit

definitions rely on the game logic to assign a value in advance.

Explicit definitions are handled with the back arrow <- operator.

Variable definitions are allowed to reside before text sections, in

which case they are processed before any execution takes place.

This allows the user to define source files with various common

declarations and definitions, and use them as libraries in other source

files. Additional script files can be referenced with the include
keyword.� �
// library.dia
data Portrait
action switch_portrait :: Portrait
action load_portrait :: Load String -> Portrait
Alice: Portrait
Bob <- Load "/assets/faces/bob.png"

// example.dia
include library
Example
(Alice)> Hi, I'm Alice.
(Bob)> And I am Bob.� �

Listing 4. Data Declarations and Definitions

3

TScIT 39, July 7, 2023, Enschede, The Netherlands Kobzev

Dia allows data declarations to contain references to additional

typed data related to an instance. The structure of such types does

not have to map directly to objects referenced in game logic. Data

contained within such a type is accessed with a dot. All references

contained within such a type are read-only andmay only be resolved

by game logic. References are evaluated at runtime.� �
data Actor
data ActorSlot
data VisualNovelScene
front: ActorSlot
back: ActorSlot
left: ActorSlot
right: ActorSlot

LivingRoom: VisualNovelScene
Alice: Actor
Bob: Actor

action place_actor :: Place Actor in ActorSlot
action set_scene :: VisualNovelScene

Compound data example
LivingRoom
Place Bob in LivingRoom.left
Place Alice in LivingRoom.right� �

Listing 5. Compound Data Declaration and Usage

3.3 Markup
Dia provides several shorthands for text markup. While actual style

implementation is up to the developer, the built-in markup markers

are called *bold*, /italic/, and _underline_. On rare occasions,

literary fiction requires use of characters that are reserved in the

language. While Dia does not provide escape sequences, it does

provide a marker for unformatted text with three sequential grave

accents “‘.� �
Simple markup
> *bold* /italic/ _underline_
> ```This >text< is displayed *verbatim* (as-is!)```� �

Listing 6. Simple Markup

A few reserved characters for markup may not always be suffi-

cient, especially for games that need more control over how text

is displayed, or deal with a variety of concepts that need to catch

attention of the player. Some concepts, such as amounts of some

in-game currency, may be complimented by an associated icon to

help the player with quick concept recognition.

These requirements are covered with range markers and renderers.

Markers accept a range of a message, and the interpreter notifies the

game logic when a marked portion begins and ends. The markers

can be chained together and accept parameters. The range itself is

surrounded with equals = signs, and markers are prepended to it.

� �
data Color
marker text_color :: Color
marker centered :: centered
marker morse :: morse
Red: Color

Range marker example
> \Red=This text is in red=
> \Red\centered\morse= Oddly specific horizontally

centered red text in morse code =� �
Listing 7. Custom Markup Ranges

To display data as text, or to generally let the game know that certain

game data is being referenced in a specific position of a message,

Dia features data renderers. Data renderers act similarly to actions,

but with certain limitations. A renderer may only be used inline

within a message block, and a renderer has no explicit return type,

because a renderer is expected to insert itself as a portion of a text

message. Unlike actions, renderers are evaluated immediately as

part of a message, which can be useful when the total length of

a message is required to be calculated before it is displayed. The

example below additionally demonstrates how compound data may

be used as well.� �
data Currency
data CurrencyAmount

currency: Currency
amount: Integer

data Item
data ShopItem

item: Item
price: CurrencyAmount

data Color

renderer item_print :: Item
renderer item_override_name_print :: Item as String

Red: Color
Badge: Item

Renderer example
> Hey, that's my {Badge}
> Hey, that's my \Red={Badge}=
> Hey, that's my \Badge.color={Badge as "BADGE"}=� �

Listing 8. Data Renderers

3.4 Control Flow with Options
While linear and predictable flow may be sufficient for some

narrative-driven games, or for games that handle branching narra-

tive by means outside the scope of dialogues, control flow is still

necessary for a wide rage of narrative-driven games. For this reason,

Dia provides the user with the ability to manage control flow by

means of an “option” statement.

4

Dia: a Domain Specific Language for Scripted Dialogues and Cutscenes TScIT 39, July 7, 2023, Enschede, The Netherlands

The built-in option block notifies the game logic and presents a set

of text choices. Selecting any of them directs execution flow into

the appropriate choice outcome. Choices themselves are indented

and surrounded with square brackets. Choice outcomes are either

inlined or indented.� �
action ding :: Ding
Example
? [Option A] > Option A selected
[Suboptions]
> Here are some suboptions
? [Sub A] (Ding)

[Sub B] > Suboption B selected
[Start over] >> Example� �

Listing 9. Built-In Options

Selection from a list of text options may not always be sufficient,

and some games provide the ability to interact by additional means,

such as presenting items to actors. The language supports extending

options via binding. The example below declares a new option type

that lets the player select an item from an in-game inventory. The

resulting choice can be optionally extracted into a variable with ->
to be used within the block. Custom options can also support an

empty fallback option.

To prevent repetition in cases when every choice has a common

opening line or action call, it is possible to prepend a message block

before the set of choices. The block will be executed once a choice

is made, but before evaluating the choice result.

Adjacent options are evaluated together, meaning that is is possible

to either select the text option or present an item out of order and

continue script execution onward. This behavior can be prevented

by placing non-option statements between option statements, or

separating them with subsections� �
options present_item :: Present -> Item
action show_item :: Show Item
renderer name_to_string :: Item
AttorneysBadge: Item

Custom options
? > I would like to ask you something
[Day of the crime]
> Where were you on the day of the murder?
[Victim]
> When was the last time you saw the victim?

? Present -> item
> I would like to show you something
[AttorneysBadge]
> This is my {item} (Show item)

[]> Ah, sorry, not that...� �
Listing 10. Custom Options

Because developer-defined game logic has the authority over choice

selection, options do not necessarily have to be explicitly shown to

the player, and as such can be extended in creative ways to act as a

switch statement in programming languages. Additionally, options

can accept parameters similarly to actions. The example below binds

an option to an external Pseudo-RandomNumber Generator (PRNG)

and uses it to simulate a coin flip.� �
options dice_roll :: Roll Integer -> Integer
Coin flip example
? Roll 2

[1] > Heads!
[2] > Tails!� �

Listing 11. Using Options as a Switch Statement

Lastly, in some cases, binding may appear excessive. For this, the

language provides the ability to tag choices. The example below

assumes that the game keeps track of the days of the week, and uses

choice tags to selectively show choices depending on week days.� �
? @mon [I hate Mondays]

> Me too, captain. Let's power through
this week together

@tue@wed [What a week, huh]
> Captain, the week is not even

halfway over yet!
[How are the engines?]

> I'm still working on them� �
Listing 12. Option Labels

4 READABILITY AND COMPLEXITY METRICS
Because the language is interpreted like a program, it can be treated

as such to measure script complexity. For this purpose, the com-

plexity analysis will be conducted with Halstead metrics [6, 8]. This

particular method of analysis was chosen because the metrics ap-

pear to correlate with cognitive load, according to a study using

fMRI scanning by Peitek et al. [16]. As designing character interac-

tions for cutscenes and dialogues is taxing enough cognitively as a

creative task, the cognitive load imposed by the language is best to

be kept to a minimum.

At the same time, Dia scripts mostly consist of commands that

display large amounts of text that may easily outnumber operators,

the total count of which is used for Halstead metrics. Additionally,

Dia is designed to help make external function calls resemble natural

language more than a general purpose programming language. This,

to a certain extent, also allows to treat script files written in Dia as

data files. Thus, to measure readability, a simple data file readability

formula proposed by Gryk [5] will be used. It is preferable to let the

script writer focus on the text of the story itself, instead of language

syntax.

Ink, which was chosen for readability and complexity comparison,

can be treated in the same way. While Ink does provide features to

write game logic within its scripts, those features are optional, and

will not be used in the analysis. Ink also features tags, which have

to be manually parsed, but are reported by the interpreter engine,

allowing arbitrary-looking external commands. This, similarly to

Dia, allows both metrics to be applied.

5

TScIT 39, July 7, 2023, Enschede, The Netherlands Kobzev

The following metrics comparison utilizes two scripts. One is a

simple dialogue, based on the example script from the Ink manual

[10]. This script was chosen in particular because it is a generic

dialogue featuring a conversation between two actors with branches

and sub-branches, all the while being short. Additionally, this script

is intended to present the strongest points of Ink, which is the

ability to create and modify branching narrative with simple syntax.

One final reason is that the script is a snippet from a published

commercial game “80 Days”, developed by the designers of Ink.

The other script is the same conversation, but modified to feature

on-screen actor interaction and text markup. The lines have also

been modified to fit a first-person Visual Novel style narrative. Both

scripts are presented in Dia and Ink, with their respective readability

and complexity metrics. It should be noted that, for the Dia script

with metadata in Listing 15, only the conversation part is taken for

the metrics calculations, leaving out the declaration section. This is

because the goal is to compare similar executed sections. To avoid

inventing additional manually parsed syntax for Ink, all metadata

is kept only in tags. This results in markup being applied to whole

messages in Dia for the sake of parity of outcomes of scripts in both

languages, but nonetheless used.

A dialogue had to be selected in particular, as opposed to a mono-

logue or a polylogue, because dialogues appear to possess a balance

between having too little and too much interaction between charac-

ters, which requires different levels of metadata representation. A

monologue with too little additional information about the scene or

its only character would put Ink at an advantage too great to be rep-

resentative, as a monologue without interaction may be expressed

as plain text in this language. Such a monologue would have to be

inflated artificially with calls to game logic data, making the compar-

ison difficult to reason about. On the other hand, a polylogue with

too much interaction may significantly disadvantage Ink, because

large amounts of metadata references would make compiler-time

type checking too obvious to declare a necessary feature, which is

nonexistent for Ink with manually parsed tags.� �
Prologue
> I looked at Monsieur Fogg
? [...and I could contain myself no longer.]
> 'What is the purpose of our journey, Monsieur?'
> 'A wager', he replied.
? [A wager!]
> 'A wager!' I returned.
> He nodded.
? [But surely that is foolishness!]

[A most serious matter then!]
> He nodded again
? [But can we win?]

> 'That is what we will endeavour to find out',
he answered.
[A modest wager, I trust?]
> 'Twenty thousand pounds', he replied, quite

flatly.
[I asked nothing of him then]
> And after a final, polite cough, he offered

nothing more to me.

[Ah.]
> 'Ah', I replied, uncertain what I thought.

> After that, +
[...]
> ...but I said nothing, and +

> we passed the day in silence.� �
Listing 13. Basic dialogue in Dia

� �
- I looked at Monsieur Fogg
* ... and I could contain myself no longer.

'What is the purpose of our journey, Monsieur?'
'A wager,' he replied.
** 'A wager!'[] I returned.

He nodded.
*** 'But surely that is foolishness!'
*** 'A most serious matter then!'
--- He nodded again.
*** 'But can we win?'

'That is what we will endeavour to find
out,' he answered.
*** 'A modest wager, I trust?'

'Twenty thousand pounds,' he replied,
quite flatly.
*** I asked nothing further of him then[.], and

after a final, polite cough, he offered nothing
more to me. <>

** 'Ah[.'],' I replied, uncertain what I thought.
-- After that, <>

* ... but I said nothing[] and <>
- we passed the day in silence.
- -> END� �

Listing 14. Basic dialogue in Ink

Dia, Basic Ink, Basic

Unique operators n1 6 6

Total operators N1 38 38

Unique operands n2 23 25

Unique operands N2 23 25

Volume 296.34 312.11

Difficulty 3.00 3.00

Level 0.33 0.33

Effort 899.01 936.34

Characters for identifiers 517 518

Total characters 555 563

Readability 93% 92%

Table 1. Metrics for Basic Scripts

6

Dia: a Domain Specific Language for Scripted Dialogues and Cutscenes TScIT 39, July 7, 2023, Enschede, The Netherlands

� �
data ActorSlot
data VNScene
left: ActorSlot
right: ActorSlot
front: ActorSlot

data Actor
data ScrollSpeed

action scene_set :: VNScene
action actor_say :: Actor
action portrait_set :: Actor String
action put_actor :: Place Actor in ActorSlot
action thinking :: Thinking
action text_scroll_speed :: ScrollSpeed

Slow: ScrollSpeed
Fast: ScrollSpeed
Office: VNScene
London_Cityscape: VNScene
Passepartout: Actor
Fogg: Actor

Prologue
Office
(Thinking)> I looked at Monsieur Fogg
Place Fogg in Office.left
? [...and I could contain myself no longer.]
(Passepartout)> What is the purpose of our journey,

Monsieur?
(Fogg)> A wager
? [A wager!]
(Passepartout)(Fast)> *A wager!*
Fogg nodding
? -> answer

(Passepartout)> {answer}
[But surely that is foolishness!]
[A most serious matter then!]

Fogg nodding
? [But can we win?]

(Fogg)> That is what we will endeavour to find
out.
[A modest wager, I trust?]
(Fogg serious)(Slow)> /Twenty thousand pounds./
[I asked nothing of him then]
(Thinking)> And after a final, polite cough, he

offered nothing more to me.
[Ah.]

(Passepartout)> Ah.
(Thinking)> I was uncertain what I thought that

moment.
(Thinking)> After that, +
[...]
> ...but I said nothing, and +

London_Cityscape
> we passed the day in silence.� �

Listing 15. Dialogue with metadata in Dia� �
#scene: Office
- I looked at Monsieur Fogg #thinking
- #left: Fogg
* ... and I could contain myself no longer.

What is the purpose of our journey, Monsieur? #say:
Passepartout

A wager #say: Fogg
** A wager![] #say: Passepartout #quickly #bold

--- #actor: Fogg nod
*** But surely that is foolishness! #say:
Passepartout
*** A most serious matter then! #say: Passepartout
--- #actor: Fogg nod
*** But can we win? #say: Passepartout

That is what we will endeavour to find out #
say: Fogg
*** A modest wager, I trust? #say: Passepartout

Twenty thousand pounds, #say: Fogg #italics
#slowly
*** I asked nothing further of him then[.], and
after a final, polite cough, he offered nothing
more to me. <> #thinking

** Ah[.]#say: Passepartout
--- I was uncertain what I thought that moment. #
thinking

-- After that, <>
* ... but I said nothing[] and <>

- #scene: London_Cityscape
- we passed the day in silence.
- -> END� �

Listing 16. Dialogue with metadata in Ink

Dia, Metadata Ink, Metadata

Unique operators n1 12 7

Total operators N1 70 71

Unique operands n2 33 39

Unique operands N2 47 66

Volume 642.55 756.73

Difficulty 8.55 5.92

Level 0.12 0.17

Effort 5490.85 4482.16

Characters for identifiers 517 662

Total characters 691 751

Readability 89.4% 88.1%

Table 2. Metrics for Scripts with Metadata

7

TScIT 39, July 7, 2023, Enschede, The Netherlands Kobzev

5 DISCUSSION
With regards to the first research question concerning the grammar

constructs needed to express a scripted event, it was established

that using the BWW ontology has helped identify entities related

to the domain of research, which in turn has helped translate them

into the necessary grammar constructs. This also helped establish

the boundaries of the system and how it must interface with its

environment. As an answer, it is proposed that the most important

constructs must at least describe events that are either information-

related (messages), activity-related (actions) and control flow-related

(options). These events must exist in a vector that form the script

itself, and the script must be aware of the context in which it is

being executed. The particular implementation was described in

section 3.

As for the second research question on readability impact by data

and function binding, the readability analysis has shown that both

languages appear very similar in a basic uncomplicated setting. In a

complicated environment with metadata, however, the results are

beginning to diverge, but not enough to definitively say that one

language is more complicated than another. While the readability

metric is near identical for both scripts, the Halstead metrics do not

show any definite metric that one language bears significantly more

cognitive load than another.

While it could be argued that both scripts are similar at a glance,

the tag structure that was chosen for Ink script camouflages the

fact that Ink tags are actually arbitrary strings that are not checked

by the language compiler and require manual parsing to introduce

any functionality to them. In a setting where a developer prefers to

ensure no errors at runtime from tags, an additional checking system

would have to be implemented on top of the language compiler to

allow it. This problem is not present in Dia, where all metadata

identifiers must be declared and type-checked during compile-time.

A similar problem occurs with text markup. While it is possible to

introduce and manually parse special syntax in messages for Ink

akin to built-in markup and range markers in Dia, doing so would

add another error-prone layer of complexity for the developers

and maintainers of the game. Such notations would also have to

be communicated with and ensured among developers and script

writers and as a result lead to further complexity.

Thus, for the second research question, it is concluded that adding

metadata constructs to a language bears little impact on its readabil-

ity, because otherwise, in order to fulfill design requirements, the

developer must invent a separate notation system that still affects

the readability. While an overall longer program is produced due to

necessary type declarations, the executed portion itself is similar,

with the added benefit of compiler type and identifier checking.

While this introduces more concepts to the language, their benefits

outweigh possible increase in steepness of the learning curve.

This paper was produced within significant time limitations, which

severely narrowed its scope. For example, due to the lack of time,

it was not feasible to design and develop an interpreter for the

language that would work within an existing game engine. The

lack of an interpreter, combined with the lack of time unfortu-

nately also meant it was impossible to conduct user testing with

non-programmer participants. Such a study could provide useful

information on how easy Dia actually is to learn, as well as how

compares against a language such as Ink. The research resorted to

formal metrics as a result.

This research bears several implications on DSL design and tool

development. It shows that ontology based domain analysis can

be applied to design game development tools in a quick manner,

covering all necessary requirements in the process. The research

also indicates that cognitive difficulty is not a deeply researched

topic, especially for DSLs, which required additional reasoning to

classify Dia and Ink as programming languages fit for Halstead

software metrics, for example. Lastly, the research shows that there

is a potential niche for an interactive narrative language that is both

very flexible and simple to understand quickly.

For further research, the most immediate recommendation is de-

velopment of a language plugin for a game engine. Such a plugin

could allow Dia to function within a game logic environment, and

allow assessing actual language flexibility in a practical setting.

Additionally, while there may have been sufficient reasoning for

selecting a specific snippet to conduct an analysis, its subjectiv-

ity may still introduce selection bias. As such, an experiment with

non-programmer participants is recommended for further research

with the use of the developed language plugin. Such an experiment

could not only greatly reduce selection bias, as the scripts would

be produced by participants instead, but also provide useful infor-

mation on how non-programmers perceive Dia, as well as digital

storytelling tools in general.

REFERENCES
[1] Lucas Beyak and Jacques Carette. 2011. SAGA: A DSL for Story Management.

Domain-Specific Languages, 66, 48–67. doi: 10.4204/eptcs.66.3.
[2] Henrik Engström, Jenny Brusk, and Patrik Erlandsson. 2018. Prototyping Tools

for Game Writers. THE COMPUTER GAMES JOURNAL, 7, 3, (Sept. 1, 2018),
153–172. doi: 10.1007/s40869-018-0062-y.

[3] Boryana Goncharenko and Vadim Zaytsev. 2016. Language design and imple-

mentation for the domain of coding conventions. In Proceedings of the 2016
ACM SIGPLAN International Conference on Software Language Engineering (SLE

2016). Association for Computing Machinery, New York, NY, USA, (Oct. 20,

2016), 90–104. isbn: 978-1-4503-4447-0. doi: 10.1145/2997364.2997386.

[4] Jason Gregory. 2019. Game Engine Architecture. (3rd ed.). CRC Press. isbn:

978-1-138-03545-4.

[5] Michael R. Gryk. 2022. Human Readability of Data Files. Balisage Series on
Markup Technologies, (July 30, 2022). doi: 10.4242/balisagevol27.gryk01.

[6] Maurice H. Halstead. 1977. Elements of Software Science (Operating and Pro-
gramming Systems Series). Elsevier Science Inc., USA, (Apr. 1977). 128 pp. isbn:
978-0-444-00205-1.

[7] Hugh Hancock. 2002. Better Game Design Through Cutscenes. Game Developer.

(Apr. 2, 2002). Retrieved Apr. 30, 2023 from https://www.gamedeveloper.com/d

esign/better-game-design-through-cutscenes.

[8] T Hariprasad, G Vidhyagaran, K Seenu, and Chandrasegar Thirumalai. 2017.

Software complexity analysis using halstead metrics. In 2017 International Con-
ference on Trends in Electronics and Informatics (ICEI). (May 2017), 1109–1113.

doi: 10.1109/ICOEI.2017.8300883.

[9] [SW] Joseph Humfrey, Ink Library June 1, 2023. inkle. url: https://github.com

/inkle/ink-libraryRetrieved June 10, 2023 from.

[10] Joseph Humfrey. 2023. Writing with Ink. GitHub. (Jan. 21, 2023). Retrieved

June 18, 2023 from https://github.com/inkle/ink.

[11] Mika Letonsaari. 2019. Nonlinear Storytelling Method and Tools for Low-

Threshold Game Development. Seminar.net, 15, 1, (June 14, 2019), 1–17. doi:
10.7577/seminar.3074.

[12] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and how

to develop domain-specific languages. ACM Computing Surveys, 37, 4, (Dec. 1,
2005), 316–344. doi: 10.1145/1118890.1118892.

[13] Daniel Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for

Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering, 35, 6, (Nov. 2009), 756–779. doi: 10.1109/TSE.2009.67.

8

https://doi.org/10.4204/eptcs.66.3
https://doi.org/10.1007/s40869-018-0062-y
https://doi.org/10.1145/2997364.2997386
https://doi.org/10.4242/balisagevol27.gryk01
https://www.gamedeveloper.com/design/better-game-design-through-cutscenes
https://www.gamedeveloper.com/design/better-game-design-through-cutscenes
https://doi.org/10.1109/ICOEI.2017.8300883
https://github.com/inkle/ink-library
https://github.com/inkle/ink-library
https://github.com/inkle/ink
https://doi.org/10.7577/seminar.3074
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1109/TSE.2009.67

Dia: a Domain Specific Language for Scripted Dialogues and Cutscenes TScIT 39, July 7, 2023, Enschede, The Netherlands

[14] Brad A. Myers. 1990. Taxonomies of visual programming and program visual-

ization. Journal of Visual Languages & Computing, 1, 1, (Mar. 1, 1990), 97–123.

doi: 10.1016/S1045-926X(05)80036-9.

[15] Jeffrey Parsons and YairWand. 1997. Using objects for systems analysis. Commu-
nications of the ACM, 40, 12, (Dec. 1, 1997), 104–110. doi: 10.1145/265563.265578.

[16] Norman Peitek, SvenApel, Chris Parnin, André Brechmann, and Janet Siegmund.

2021. Program Comprehension and Code Complexity Metrics: An fMRI Study.

In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
(May 2021), 524–536. doi: 10.1109/ICSE43902.2021.00056.

[17] Fábio Petrillo, Marcelo Pimenta, Francisco Trindade, and Carlos Dietrich. 2009.

What went wrong? A survey of problems in game development. Computers in
Entertainment, 7, 1, (Feb. 27, 2009), 13:1–13:22. doi: 10.1145/1486508.1486521.

[18] 2023. Ren’Py Games List. Retrieved June 10, 2023 from https://games.renpy.org/.

[19] Simon Renger. 2022. Investigation into the Criteria of Embeddability of Visual
Scripting Languages within the Domain of Game Development. (June 23, 2022).
doi: 10.13140/RG.2.2.11976.39686.

[20] Jonathan Schaeffer et al. 2007. ScriptEase: A Generative/Adaptive Programming

Paradigm for Game Scripting. ERA. doi: 10.7939/R33F4M223.

[21] 2023. Text — Ren’Py Documentation. (June 22, 2023). Retrieved July 1, 2023

from https://www.renpy.org/doc/html/text.html.

[22] Yair Wand and Ron Weber. 1995. On the deep structure of information systems.

Information Systems Journal, 5, 3, 203–223. doi: 10.1111/j.1365-2575.1995.tb001
08.x.

[23] Michael Washburn, Pavithra Sathiyanarayanan, Meiyappan Nagappan, Thomas

Zimmermann, and Christian Bird. 2016. What went right and what went wrong:

an analysis of 155 postmortems from game development. In Proceedings of the
38th International Conference on Software Engineering Companion (ICSE ’16).

Association for Computing Machinery, New York, NY, USA, (May 14, 2016),

280–289. isbn: 978-1-4503-4205-6. doi: 10.1145/2889160.2889253.

9

https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1145/265563.265578
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1145/1486508.1486521
https://games.renpy.org/
https://doi.org/10.13140/RG.2.2.11976.39686
https://doi.org/10.7939/R33F4M223
https://www.renpy.org/doc/html/text.html
https://doi.org/10.1111/j.1365-2575.1995.tb00108.x
https://doi.org/10.1111/j.1365-2575.1995.tb00108.x
https://doi.org/10.1145/2889160.2889253

TScIT 39, July 7, 2023, Enschede, The Netherlands Kobzev

A GRAMMAR

script = bind_section? text_section*

bind_section = (bind | var_declaraction)+

text_section = heading statement+
statement = msg | bind | var_declaraction | action | option_block | subheading | goto | return

heading = "#" TEXT NEWLINE
subheading = "#"{2+} TEXT NEWLINE

msg_block = msg NEWLINE (INDENT ((msg_content | msg) NEWLINE)+ OUTDENT)?
msg = ">" msg_content
msg_content = (TEXT | action | renderer | range | goto | return)+

range = ("\" WORD+)+ "=" msg_content "="
renderer = "{" WORD+ "}"
action = "(" WORD+ ")"

option_block = "?" (WORD+)? ("->" WORD)? NEWLINE
INDENT (msg_block)* (option_choice (msg_block|NOTHING) NEWLINE)+ OUTDENT

option_choice = "[" (TEXT) "]"

goto = ">>" TEXT
return = "<<"

bind = bind_data | bind_action | bind_option
bind_data = "data" WORD (NEWLINE INDENT var_declaration+ OUTDENT)? NEWLINE
bind_option = "options" WORD "::" WORD+ -> WORD NEWLINE
bind_action = "action" WORD "::" WORD+ (-> WORD)? NEWLINE
bind_renderer = 'renderer' WORD '::' WORD+ NEWLINE
bind_rangemarker = 'marker' WORD '::' WORD+ NEWLINE

var_declaration = var_name : type NEWLINE
var_assignment = var_name (: type)? "<-" action NEWLINE
var_name = WORD
type = WORD

import = "import" filename NEWLINE

filename = TEXT

WORD = //a single alphanumeric word identifier
TEXT = //valid unicode text excl reserved characters
STRING = //valid unicode

INDENT // indentation level increase
OUTDENT // indentation level returned to previous state
NEWLINE // new line

10

	Abstract
	1 Introduction
	2 Domain Analysis
	3 Language Description
	3.1 Messages and Sections
	3.2 Data and Function Binding
	3.3 Markup
	3.4 Control Flow with Options

	4 Readability and Complexity Metrics
	5 Discussion
	A Grammar

