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Steganography is the process of hiding data within other data. Unlike cryp-
tography which aims to secure data through obscuring its meaning, steganog-
raphy aims to secure data by obscuring its existence altogether. Although
many different types of cover data, such as text or images, can be used to
embed secret data in, this paper focuses on audio steganography because it is
uniquely positioned to enabled real time secure communication. A problem
within currently available audio steganography research is that there are no
thorough comparative analyses available of modern audio steganography
methods, such as machine learning based methods. While such comparative
analyses are available for many other types of steganography, such as image
steganography. The origin of this problem can be partially attributed to the
fact that there is a wide variety of evaluation features and audio datasets
in use among audio steganography researchers. This makes it difficult to
directly compare the results of two different papers. To address this prob-
lem, this paper provides a comparative analysis of two methods proposed
in the last 5 years (An Audio Steganography Method Based on generative
adversarial networks (GAN), and Logistic Tan Map Based Audio Steganogra-
phy) and two popular steganography tools (Hide4PGP, Steghide) that have
existed for over a decade. This analysis was performed using three evalua-
tion features (Bit Error Rate (BER), Signal to Noise Ratio (SNR), Embedding
Percentage (EP)) and three datasets (TIMIT, GZTAN, ESC50). These were
selected to be most suitable for the evaluation of steganography research
based on criteria formed after thorough review of the ones most commonly
found in audio steganography research. This comparative analysis and the
datasets/evaluation features recommendation is important because it will
help future searchers in more consistently evaluating their audio steganog-
raphy methods and understand those evaluation results in the context of the
performance of other methods. It also helps shed light on the performance
of new methods in comparison to the old existing tools.

Additional Key Words and Phrases: Audio steganography, Data security,
Machine learning, Generative adversarial network, Logistic Tan Map

1 INTRODUCTION

Steganography is the process of hiding data within other data
[33]. Unlike the related field of cryptography, which aims to se-
cure data by obscuring its meaning from any unauthorized parties
[4], steganography seeks to secure data by obscuring its existence
all together. The data which the secret data is embedded within
is called the cover data (or cover audio) while the resulting data
with the secrets embedded in it is called the stego data (or stego
audio) [3, 4]. Although many different types of cover media can
be used, such as text [26] or images [34], this research focuses
on audio steganography because it is uniquely positioned for en-
abling real-time communication [4, 33]. This is in part because of the
prevalence of reliable audio channels in VoIP (Voice over Internet
Protocol) services such as Discord or Microsoft Teams [19], but also
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because many audio steganography methods are computationally
inexpensive enough that they could be run in real time [2, 33].

Data security is only becoming more relevant in our increasingly
digital world and audio steganography could play an important
role in facilitating secure real time communication [36], but despite
this potential it is unclear how audio steganography methods pro-
posed in the last few years compare against each other as there are
no extensive comparative analyses of recent audio steganography
methods available [4]. This problem is rooted primarily in the fact
that there is a wide variety of datasets and evaluation features in
use [4], which means two papers often cannot be directly compared
since different evaluation features have different units or numerical
ranges and methods may perform differently on different types of
audio [10] so a papers results may depend strongly on the dataset
used.

To address this problem, this paper provides a comparative anal-
ysis of two methods proposed in the last 5 years ([44] and [12])
and two popular steganography tools that have existed for over a
decade (Hide4PGP and Steghide). The results of which can be found
in section 7. The analysis was performed using three evaluation fea-
tures (Bit Error Rate (BER), Signal to Noise Ratio (SNR), Embedding
Percentage (EP)) and three datasets (TIMIT[13], GZTAN([38], ESC-
50[30]). These were selected as most suitable using criteria based
on a review of recent audio steganography papers as described in
sections 3.4 and 3.5.

Because the terms tools and method are used frequently in this
paper it is important to define exactly what they mean. When speak-
ing about steganography tools, this paper refers to computer pro-
grams that implement a steganography method in a user friendly
way and that are usually distributed as a compiled binary. So pro-
grams such as Steghide or MP3Stego are considered a tool, but
a Python notebook included with a paper is not. When speaking
about new methods, this paper refers to steganography methods/al-
gorithms introduced in a paper during the last 5 years (2018-2023).
To keep things concise, when referring to both the tools and the
new steganography methods, this research paper simply refers to
the techniques (plural). Colloquially a steganography technique or
method (singular) are both understood to mean an algorithm or
system for performing steganography, but to avoid confusion with
the techniques this paper always uses method when speaking about
such an algorithms.

The comparative analysis and the datasets/evaluation features
recommendation provided in this paper are important because it
will help future searchers to more consistently evaluate their newly
developed audio steganography methods, as well as help with under-
standing those evaluation results by placing them in the context of
the performance of other methods. This paper also helps shed light
on the performance of new methods in comparison to the existing
tools by providing a novel comparative analysis.
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1.1 Research questions

The main research question of this paper is as follows: ”How do audio
steganography methods proposed in the last 5 years and popular audio
steganography tools compare against each other in the 3 key metrics:
capacity, robustness, and perceptual transparency?” In supporting
this research question, the following sub research questions were
identified and answered first:

(1) Which existing dataset(s) is most suited for the evaluation of
steganography techniques?

(2) Which evaluation features are most appropriate for measur-
ing each key metric?

(3) What are the limitations and challenges of using these tech-
niques in practice?

2 AUDIO STEGANOGRAPHY BACKGROUND

This section provides a brief theoretical background to help un-
derstand the rest of the contents of this paper. It touches on how
different types of audio steganography methods are categorized and
evaluated. As mentioned in section 1.1, there are three key metrics
[4, 5] by which the performance of an audio steganography method
is generally evaluated:

o Perceptual transparency: The ability of a given steganography
method to evade detection[4], often measured as the amount
of noise added by the method. Although some papers [6, 25]
also include a subjective score of how perceivable the noise is
because the human auditory system (HAS) does not perceive
all types of noise equally.

o Robustness: The ability of the embedded data to withstand
signal degradation (e.g. compression, resampling, filtering) of
the stego file or deliberate attacks such as LSB dropping [5].

e Hiding capacity: The density with which secret data can be
embedded in the cover signal [24].

These key metrics naturally oppose each other as by their nature
increasing the performance in one will usually hurt the performance
in another [4] (e.g. increasing hiding capacity will cause more signal
distortion and thus reduce perceptual transparency). There exist
many different evaluation features that attempt to quantify the per-
formance in a given key metric, such as BER[41] (Bit error rate) for
robustness or PSNR([25] (Peak Signal to Noise Rato) for transparency.
A detailed explanation of the features used in this report can be
found in section 6, while a detailed overview of commonly used
evaluation features is included in the Appendix in Tables 4, 5, and 6.
Unfortunately the evaluation features used in audio steganography
research can differ greatly per paper [4, 16, 42, 46] and not all papers
include a feature for each of the key metrics [12, 46].

There are many different methods for embedding secret data in-
side audio cover files. Some of these methods, like LSB coding [28],
borrow ideas from other steganography fields like image steganog-
raphy [34], while other methods, like those targeting the MP3 codec
[17], are unique to the audio medium. Previous reviews [3, 10, 27]
have identified three main domains into which all these audio
steganography methods can be categorised, namely: the spacial
domain, the transform domain, and the coded domain. One review
[27] identified a fourth domain, the compressed domain, which cov-
ers methods that operate directly on compressed cover data, but
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this domain has been purposefully left out here as no papers whose
method belonged to the compressed domain were cited.

Although each domain encompasses many different methods
(some examples of which are given below) this paper only discusses
the LSB coding and DWT methods as these are immediately rele-
vant to understanding the techniques included in the comparative
analysis.

2.1 Spatial domain - LSB coding

The spatial domain, sometimes also referred to as the temporal
domain [10] or the substitution techniques [27], encompasses rela-
tively simple methods, like Echo hiding [21] and Parity coding[37],
in which the secret data is embedded directly in the audio bit stream.

Most relevant for this paper, it also encompasses LSB coding
(or low-bit encoding [10]) methods. LSB methods are some of the
simplest [15] and most common [33] steganography methods which
work by replacing the least significant bit of samples in the cover
audio with a bit from the secret data.

In its simplest form the bits of the secret data are simply dis-
tributed evenly amongst all the LSB’s of the cover audio samples
[10, 15], though this creates a very predictable type of distortion
that is easily detected by steganalysis methods. Many improvements
have been proposed to address this by adaptively selecting which
samples to modify, such as only using samples with an absolute
value higher than some threshold [28]. There also exist variants that
seek to improve hiding capacity by replacing not just the lowest bit
but the lowest two or three bits, sometimes called LSB-2 and LSB-3
respectively [25].

2.2 Transform domain - DWT

The transform domain, which includes methods like spread spec-
trum[9] and phase coding [11], encompasses methods in which the
audio data is actually interpreted as audio and then transformed
in some way to hide the secret data inside the audio signal [35].
Usually with the goal of only altering the audio signal in ways the
HAS is insensitive to [10].

The transform domain also includes DWT (Discrete wavelet trans-
form) methods, which are methods involving embedding the secret
data within the frequency sub bands of the cover audio signal’s
wavelet coefficients [24, 27, 46].

2.3 Coded domain

Unlike the previous methods which embed in the audio signal itself
(pre-encoder embedding), methods in the coded domain seek to use
the properties of a specific audio codec (like MP3 [17]) to embed
the secret data [18]. No coded domain methods are included in this
comparative analysis.

3 RESEARCH METHODOLOGY

The research process for this paper was divided into separate stages,
which are listed and explained in chronological order below.

3.1 Stage 1: Literature review

In the first stage existing literature in the form of both conference
papers and journal papers were searched and categorized, both
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to provide the theoretical background found in section 2 and to
determine the available state of the art methods. Specifically, the
databases of Google scholar, Elsevier, and IEEE Xplore were searched
with the terms "audio steganography”,” audio steganography review”,
”audio steganography method”, ”audio steganography machine learn-
ing”. (Other databases were considered but not searched due to time
constraints).

The criteria listed below was taken into account during the litera-
ture search. The last 7 years (after 2016) was chosen as a threshold
rather than the last 5 years (after 2018) so more papers could be taken
into account for determining common datasets and evaluation fea-
tures. The stage in which the new methods for the comparison were
chosen applies further criteria which does use 2018 as threshold
(see section 3.2).

o The paper must be published after 2016

o The paper is written in English.

o The paper is about audio steganography.

o For papers proposing a new method; it must actually be a new
method, not a novel combination of existing cryptography
and steganography methods.

Aside from those papers which were deemed not to fit the criteria
based on the title alone, the searched initially yielded 68 papers from
Google scholar, 24 from Elsevier, and 34 from IEEE Xplore. These
papers were then loaded into a research assistant (Zotero) to delete
duplicates and filter according to the criteria based on the papers’
abstracts. Leaving 81 papers in total, as can be seen in Figure 1.

Fig. 1. High level overview of the literature review process.

[Google scholar] [Elsevier] [IEEE Xplore]

8 24 4
Duplicates deletion

103

[Filter criteria based on abstract]

81
Usage
4 20 4

[Stage 2] [Stage 3& 4] [Reviews]

A subset of papers proposing a steganography method was then
further analyzed and documented in a spreadsheet ! to record their
used datasets and evaluation features, which was then used in stage 3
and 4. The complete list of 74 papers proposing a new steganography
method was further filtered in stage 2 according to the criteria listed
in section 3.2. While the 4 identified reviews [4, 11, 27, 36] were used
in writing the audio steganography background found in section 2.

!https://docs.google.com/spreadsheets/d/e/2PACX-1vRZCvdOHhNPun-
Zi12f77CBKt169S8ZKmkcIDNkWPssh4 TxP1PgucmFvNaUysHM9bf-FSnUy5EOQ6v6-
¢/pubhtml
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3.2 Stage 2: Techniques selection

This stage served to select which audio steganography tools and
new methods would be included in the comparison. The results of
which can be found in section 4. To represent the state of the art of
the audio steganography field, two recent methods were selected
based on the following inclusion criteria:

o The paper must be published after 2016.

e The method proposed in the paper must be compatible with
or easily adaptable to the evaluation dataset chosen in stage
3.

o The source code or an executable version of the method must
be available or made available by authors.

To represent the established steganography methods in the com-
parison, existing audio steganography tools were reviewed and two
were selected. The tools were discovered through their appearances
in research papers discovered in stage 1 and through a simple Google
search for “audio steganography tools”. The chosen tools can be
found in section 4.2.

3.3 Stage 3: Data set selection

This stage addressed research question 1, finding the dataset(s) most
suited for the evaluation of steganography methods. To achieve this
the criteria for a suitable evaluation dataset were first established
based on the information from the papers and reviews identified
in stage 3.1. These criteria can be found in section 5. Then a list of
potential datasets was formed based on datasets used by existing
papers in the spreadsheet ! and extended with additional datasets
(Speaker Recognition Dataset, ESC-50[30]) discovered on Kaggle 2
and Google Research 3. After which all datasets where evaluated
with the previously established criteria (the result of which can be
found in the Appendix in Table 3) and a combination of suitable
datasets was selected (see section 5).

3.4 Stage 4: Evaluation features selection

This stage addressed research question 2, finding the evaluation
feature most suited for measuring the performance for each one of
the three key metrics (perceptual transparency, robustness, hiding
capacity). To determine which features were the most suitable, all
of the features found in existing literature and documented in the
spreadsheet ! were reviewed (see Appendix for Tables 4, 5, and 6)
and the most suitable feature for each metric was determined. The
results of which can be seen in section 6.

3.5 Stage 5: Analysis

To answer the last research question all the selected techniques
were applied to the selected datasets and the evaluation features
were computed in the manner described in the subsections below.
The resulting data is visualized and discussed in section 7 while the
derived conclusions and answer to the last research question can be
found in section 8.

3.5.1 Audio files selection methodology. Because each audio file
used for evaluation had to be embedded and extracted multiple

https://www.kaggle.com/
3https://research.google.com/
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times in a process that took about 2 minutes per file, it was simply
not feasible to use all 7300 audio files in the datasets. Instead a
random subset of audio files was chosen for each music genre in
GTZAN (55 files in total; 5 per genre) and a random subset of audio
files for some speakers in TIMIT (16 files in total) were selected to
keep the data analysis computation times within a few hours while
still providing statistically significant results.

In order for the data selection process to be reproducible for any
future researchers the random number generator was seeded with
a constant value. The source code for this process can be found in
the get_data. py file in the code repository .

3.5.2  Hiding capacity methodology. To determine the hiding capac-
ity for the tools, a script (compute_hiding_capacity.py, see code
repository ) was written to apply the built-in commands steghide
--info cover.wav and hide4pgp -i cover.wav to all audio files
selected in section 3.5.1. The resulting hiding capacity for each
file/tool was then saved in a CSV file (results/hiding_capac-
ity.csv).

However, due to an issue with StegHide certain files from the
TIMIT [13] dataset, such as SI1629.wav, could not actually have the
reported amount of bytes embedded in them. To fix this a "back off”
system was implemented where the secret data would be reduced in
size by one byte for that file each time StegHide returned an error.

To determine the hiding capacity for the new methods (GAN and
TAN; see section 4), an automated script (compute_gan_tan.py)
was produced to systematically increase the secret message size
until the message could no longer be successfully extracted, which
was then considered the maximum hiding capacity. To keep the
comparison fair any message compression features were disabled
for those methods and tools that supported them.

3.5.3  Perceptual transparency methodology. The amount of secret
data that is embedded influences how much distortion is introduced
to the stego audio. Because of this several stego files were generated
for each technique and cover audio file combination with secret
message sizes ranging from 1B to 100kB. The SNR of all these stego
files was then computed (compute_transparency.py) as described
in section 6.2. And this data was then used so that the relationship
between secret message size and SNR for each of the techniques
could be graphed, as can be seen in Figure 3 in section 7.2

For the perceptual transparency evaluation, the SNR of the stego
file relative to the cover file was computed as described in section 6.

Because the amount of secret data that is embedded influences
how much distortion is introduced to the stego audio, the SNR
was computed at various secret message sizes to determine the
relationship between the secret message size and SNR, as can be
seen in Figure 3.

3.5.4 Robustness methodology. To measure the robustness of the
techniques, stego files with the maximum size secret message were
generated for each technique. Each of these files was then mixed
with various levels of background noise from the ESC-50[30] dataset,
ranging from 0dB (full volume) to —65536dB (imperceptible to HAS).
After which the secret message was extracted from the noisy stego

!https://github.com/MatthijsReyers/steganography-analysis
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audio and compared against the real secret message to compute the
BER (Bit error rate) as described in section 6.

4 TECHNIQUES SELECTION

This section describes how the techniques (i.e. tools and new meth-
ods) to be included in the comparative analysis were selected.

4.1 Audio steganography methods

Recall that one of criteria for the new methods established in section
3.2 was the availability of source code or an executable version of
the method. This is needed to be able to apply the method to the
evaluation dataset chosen in section 5, but unfortunately this criteria
proved especially difficult. Although many papers claim that their
source code is available on request, these requests were often left
unanswered, and for those papers which had their source code
openly available this often did not include trained model weights or
code for training the model.

The following methods were ultimately chosen over the other
candidates [7, 8, 23, 40, 46] because an implementation could be
found or the algorithm was trivial to implement:

GAN Heard More Than Heard: An Audio Steganography Method
Based on GAN [44] This method operates in the transform
domain in a DWT like fashion. The cover audio is converted
into a spectrogram which is then fed into an adversarial GAN
network to embed a secret message, after which the resulting
spectrogram is turned back into stego audio.

TAN Logistic Tan Map Based Audio Steganography [12] This
method is an improvement on regular LSB, where the secret
bits are pseudo randomly distributed along the audio signal
using a logistic tan map with the goal of providing better
security.

4.2 Audio steganography tools

The following two tools were chosen to be included in the compar-
ative analysis because of their prevalence in audio steganography
research and because each tool represents a different audio steganog-
raphy domain:
o Hide4PGP 2.0 [1]: This freeware developed by Heinz Repp
operates in the temporal domain using a variation of LSB.
e Steghide 0.5.1 [32]: Developed by Stefan Hetzl, this open
source software operates in the transform domain.

Previous attempts to compare the performance of these tools [10]
exists but was insufficient because the tools were only compared in
one of the three key metrics, making it impossible to tell which tool
performed better than the others. Although S-Tools, MP3Stego [29],
and Steganos were initially taken into consideration for the com-
parison analysis, they were ultimately excluded since their source
code or generated executable was not readily available. Except for
MP3Stego[29], whose source code could be found but was discov-
ered to have a flaw which prevented it from supporting the bit rate
of the audio files in the GZTAN [38] dataset.

5 DATASET SELECTION

In order to have a fair comparison of the steganography methods
and tools selected in section 4, they must naturally all be applied to
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the same dataset. To determine what constitutes a good dataset for
steganography research, the existing literature identified in section
3.1 was reviewed again to determine the following criteria.

(1) Audio recordings must be diverse both in types (ambi-

ent sound, speech, music) and origin.
Different steganography methods may perform differently on
different types of audio [10], or even different genres of music
[12], so to ensure a fair and useful comparison, different kinds
of audio must be taken into consideration.

(2) Audio must be provided in a lossless format (e.g. WAV,

AIFF, FLAC).
Lossy audio codecs like MP3 alter the audio signal [17], and
thus make it more difficult to attribute what signal distor-
tion/alterations were introduced by the method vs by the
encoder. This can affect the evaluation metrics.

(3) Audio must be provided in sufficiently high bit rate (at

least 256Kbps).
Certain steganography methods are designed to operate on
high bit rate audio [45], so to ensure that these can be in-
cluded in the comparison the dataset must at least match
their required bit rate.

(4) Audio recordings must be at least 2 seconds in length.
Certain adaptive steganography methods such as [41, 45] will
change their embedding rate depending on the audio signal,
which means that to measure an embedding rate representa-
tive of the real world performance of the method, the average
of a long period of time must be taken. 2 seconds was chosen
somewhat arbitrarily to ensure the recordings would be more
than long enough.

(5) Dataset must be in the public domain or free to use.
The most commonly used datasets are all free to use [4], which
displays the importance researchers place on the accessibility
of datasets for easy sharing and reproduction of the research.

5.1 Datasets review

The full list of reviewed papers and occurrences of commonly used
datasets is not included in this paper but can be found in the spread-
sheet ! described in section 3.1.

A systematic review[4] performed in 2020 identified the following
commonly used datasets: NOIZEUS [43], TIMIT [13, 45, 46], GTZAN
[25, 38], CORPORA [14]. Additionally, it was also found that many
papers create their own custom datasets [4] from sources such as
the FMA (freemusicarchive.org) database [16], which might indicate
that the researchers were unable to find a suitable dataset. The
CMU_ARCTIC [22] dataset was also found in existing papers during
the literature review process [16] and has been included for review as
well. Aside from previously used datasets, the databases on Kaggle?
and Google Research®. were also searched for suitable audio datasets.
For a comprehensive list of all datasets reviewed, see Table 3 in the
appendix.

!https://docs.google.com/spreadsheets/d/e/2PACX-1vRZCvdOHhNPun-
Zi12f77CBKt169S8ZKmkcIDNkWPssh4 TxP1PgucmFvNaUysHM9bf-FSnUy5EOQ6v6-
¢/pubhtml
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As can been seen in Table 3, it is clear that no single dataset
currently matches all the criteria. However multiple datasets can be
combined to fill in each others deficiencies, which is the approach
this paper has taken. Ultimately TIMIT [13] and GTZAN [38] were
chosen to provide speech and music recordings respectively because
of their prevalence in existing audio steganography research [4].
Their prevalence is relevant because it increases the chance that
the results of this paper can be compared to a previously published
paper. Additive background noise samples from the ESC-50 [30]
dataset were chosen to provide realistic background noise for the
robustness evaluation phase. ESC-50 [30] was chosen over AURORA-
5 because it is freely available on GitHub while AURORA-5 requires
researchers/their universities to buy a licence.

6 EVALUATION FEATURES SELECTION

As mentioned previously in section 2, there are many different eval-
uation features that attempt to measure a steganography method’s
performance in one of the three key metrics. Unfortunately there is
no consensus among steganography researchers which features are
most suitable and many papers thus include different features or
even no features for a given key metric [4]. This means two given
papers often cannot be directly compared.

To address this problem this paper determined the best feature
for evaluating each of the key metrics by first making a list of which
features were used in the papers found during the literature review,
and then determining the pros and cons of each feature.

A full review of all the discovered evaluation features for Robust-
ness, Perceptual transparency, and Hiding capacity can be found in
the appendix in Tables 4, 5, and 6 respectively. Where the evaluation
feature selected for use in the analysis phase is marked with a green
check mark ([4). The results of the review were as follows:

6.1 Robustness - BER

This paper measures robustness with BER (Bit Error Rate) in percent-
age (%), since for the papers that do provide some kind of robustness
testing, BER is by far the most commonly used feature [17, 41, 42].
It makes sense to follow this convention as it could allow for the
results of this paper to be compared with other papers.

BER is computed using the following formula [20] where be,r is
the number of incorrect bits in the extracted secret data and b;;4;
is the total number of secret bits that were embedded:

b
BER = - % 100% (1)
btotul

It is important to be aware that some papers do not feature any
robustness analysis and instead use BER to measure how many bits
were changed in the cover audio after the embedding process in
order to measure perceptual transparency. That is not what this
paper uses BER for, in this paper BER always means the percentage
of erroneously extracted bits in the extracted secret text.

6.2 Perceptual transparency - SNR

This paper measures perceptual transparency using SNR (Signal to
Noise Ratio). Although it would probably be wise to also include
a subjective evaluation feature like PESQ to measure directly how
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detectable the introduced noise is to the HAS (human auditory
system), and many papers do indeed use both [8, 16], the work
required for performing such a survey is not feasible for the scope
of this paper.

SNR was chosen because it was the only one for which an accept-
able value was found (30db or higher [17]). The possible range of
SNR is linked directly to the bit depth of the audio in use since this
determines the possible values x; and y; can take. In this case the
audio datasets chosen in section 5 both have a bit depth of 16 bits
and all SNR values in this report are thus be between —codb, and
96.32db. SNR is computed using the following formulas:

XS

SNR = 101
°810(375E

n

1
where MSE = N ;(xi - yi)2

1 n
2
XS = — ;l x?

Where x and y are the cover and stego audio signals respectively,

) @

N is the number of samples in a signal, and x; and y; are the ith
sample of x and y respectively.

6.3 Hiding capacity - EP
This paper measures hiding capacity in EP (Embedding Percentage),
because unlike ER (Embedding Rate, kb/s) or BC (Bit Count, bits),
it is independent of the length and bit rate of the carrier audio.
This means it gives a reasonably accurate indication of the relative
performance between the hiding capacity of other methods and re-
search papers even when these used a different dataset. Additionally
it also has a clearly defined range (0% tot 100%) making it easy to
understand where a result lies relative to the theoretical best perfor-
mance (100%). (Although this theoretical best performance would
of course have terrible perceptual transparency as there would ef-
fectively be nothing left of the cover audio). EP is computed using
the following formula:

b changed

EP = X 100% ®3)

total
Where bcpanged is the number of bits that have changed between

the cover and stego audio, and b;;; is the total number of bits in
the stego audio.

7 RESULTS

The following section contains visualizations and explanations of
the evaluation data generated for the comparison. For a detailed
description on how this evaluation data was generated please see
section 3.5 and for the conclusions derived from these results, please
see section 8.

7.1 Hiding capacity results

Out of concern that the character distribution of the secret data
might affect the performance of the machine learning based GAN
method, a small test with three different types of secret text was
performed. 100 paragraphs of Lorem ipsum text, randomly generated
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ascii characters, and the Sherlock Homes story A study in scarlet
were used, the results of which are shown in Table 1.

Table 1. Effect of different secret text types on hiding capacity
of GAN method, in %, formatted as mean+std.

Secret text type | Spoken English (TIMIT) | Music (GTZAN)
Lorem ipsum 0.010+0.005 0.006+0.004
Random ascii 0.018+0.009 0.007+0.006
Sherlock Homes 0.026+0.014 0.013+0.017

Because the Sherlock Homes story gave the best performance
and arguably has the most realistic character distribution since it is
real English text, the rest of the evaluations were performed using
this as the secret text.

A full comparison of the performance of the maximum hiding
capacity of the different tools and methods can be seen in Figure
2. A logarithmic scale was used on the y-axis so the smaller values
can be seen in more detail, while the exact numbers can be found
in Table 2.

Fig. 2. Maximum hiding capacity of different methods/tools, please note
the use of a logarithmic y-axis.
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As is clear from Figure 2 and Table 2, Hide4PGP has by far the
biggest embedding percentage of all the methods, averaging almost
exactly 25%. To put this number in context, Hide4PGP was able to
fit the text of A study in scarlet (=236 kiB) multiple times inside a 30
second wav file (mono, 353 kbit/s). This might be useful if you want
to embed large files like images, but if the goal is only to embed a
short text message all of the methods will suffice.

Table 2. Maximum hiding capacity of different methods in % formatted as
meanzstd.

Spoken English (TIMIT) | Music (GTZAN)
Hide4PGP 24.999+0.000 24.989+0.003
StegHide 3.053+0.001 3.044+0.042
TAN 0.013+0.112 0.026+0.037
GAN 0.415+0.519 1.091+4.392

Neither of the tools are able to vary the embedding rate depending
on the audio and they thus achieved the same hiding capacity within
regardless of the genre of music. Only StegHide has a slight amount
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of variance for the TIMIT dataset because it failed to embed all the
secret bytes it claimed to be able to embed, as described in section
3.5.2.

7.2 Perceptual transparency results

The amount of secret data that is embedded in the cover audio
influences how much distortion is introduced to the stego audio.
Because of this the SNR of stego files with different sizes of secret
messages was computed as described in section 3.5.3. This data has
been visualized in Figure 3 which shows the relationship between
the secret message size (x-axis) and the SNR value (y-axis) for the
different techniques. Previous research [17] has established that the
recommended SNR for an audio signal is 30db or higher.

And while only anecdotal evidence, all values above 30db were
indeed not perceptible to the researcher.

Fig. 3. Average SNR at different secret message sizes, dotted lines represent
individual audio files to illustrate the variance in results.
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All methods performed slightly better on the GZTAN dataset,
this makes sense since the TIMIT dataset contains lots of silences in
between the speech and adding noise to silence is more noticeable
then adding noise to a loud signal like music.

Hide4PGP and TAN performed the best at most message sizes.
Their overlap in the graph can likely be attributed to the fact that
they are both LSB-1 methods. This means that the pseudo random
distribution of the secret bits used by TAN did not create any no-
ticeable SNR improvement over the strategy used by Hide4PGP.

The GAN paper [44] notably also used SNR as a metric for per-
ceptual transparency, but unfortunately did not describe how SNR
was computed or if it was in decibels. When using the assumption
that they used pure ratio, their results can be converted to decibels
to find they achieved an SNR of about 10/0g10(7.24) = 8.6dB on the
TIMIT dataset. This is significantly worse than the results in this
paper, which might be due to the fact that our model was trained
on a different dataset or because they used a formula for SNR that
cannot be converted to decibels this way. The relationship between
secret message size and SNR for the GAN method is fairly constant,
since the GAN network always seems to modify the spectrogram
roughly the same amount regardless of message size. The line for
GAN stops relatively early because this paper used only 2 seconds of
audio for the spectogram, but it is easy to imagine a sliding window
system which would allow for larger message sizes to be reached.
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7.3  Robustness results

The robustness of the different techniques against various levels
of background noise was computed as described in section 3.5.4.
This data was then visualized in Figure 4, which shows the BER (on
y-axis) at various levels of noise (on the x-axis).

Fig. 4. BER (bit error rate) of the methods at different levels of noise, lower
is better.
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Fig. 5. Waveform and spectrogram of the cover, stego, and noisy stego
audio for StegHide. File: blues.00000.wav, noise at -8dB.
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As can be seen Figure 4, essentially all the tools and methods were
unable to deal with this distortion. Only TAN was eventually able to
decode the secret message after the level of the noise became so low
that the least significant bits of the audio file were left unchanged.

It is unknown why the other techniques were still unable to
extract the secret message at this point as the stego file should
have been essentially left unchanged. This might point to a possible
flaw in the testing methodology, however such a flaw could not be
identified.

Hide4PGP appears to perform better than the others, however
this is only the case because Hide4PGP does not include a checksum
or error correcting code, meaning that it cannot detect whether it
is extracting a secret message or random bits. And since some of
those random bit will happen to be the right bits by pure chance
the BER is not 100%, but at around 70% BER the extracted output is
essentially unrecognizable.

The other methods and tools do include some kind of checksum or
error correcting codes which allows them to throw an error rather
than output random data, but since they were unable produce any
output, their performance was counted as 100% BER. Depending on
the use case this may actually preferable since the integrity of the
extracted message is ensured this way.
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8 CONCLUSIONS

In regards to research question 1, this paper reviewed the datasets
most commonly used in steganography research and determined
in section 5 that the TIMIT [13], GZTAN [38], and ESC-50 [30]
datasets are most suitable for the evaluation of steganography tech-
niques. Where TIMIT[13] is used to represent speech recordings,
GZTAN [38] represents music recordings, and ESC-50 [30] is used
for sourcing realistic background noise for robustness testing.

For research question 2 it was determined in section 6 that the
evaluation features most suitable for measuring each of the key
metrics are EP, SNR, and BER. With the addition of a subjective
feature like PESQ when possible.

Future researches can use these recommendations for datasets and
evaluation features to evaluate their new steganography methods
in such a way that the obtained results are compatible with this
paper. Meaning that the performance of their method can be directly
compared against the performance of the method evaluated in this
paper.

For research question 3; the limitation and challenges of new
audio steganography methods, it was found in the previous section
that the new methods in this paper (GAN and TAN) did not manage
to outperform the older tools (StegHide and Hide4PGP) in any of
the key metrics. This means that people seeking to apply these
new steganography methods are better off using one of the existing
tools instead or investigating other new steganography methods.
For researchers working on their own new method or comparative
analysis it means that older tools such as StegHide and Hide4PGP
are still worth including in the comparison as despite their age they
are still relevant.

9 DISCUSSION

The fact that non of the new method managed to outperform the
existing tools is perhaps rooted in the method selection. There are
other papers built around GAN which claim to achieve even better
performance, but these could not be included in this research due
to issues in obtaining the source code. Additionally the model used
for the GAN method was not trained on the GZTAN dataset so it
is possible that the GAN method might have performed better if it
had been trained on this dataset as well.

The logistic tan map variation of LSB coding that was analyzed
in this paper was designed to improve the security of the message
by making it more difficult to extract. The order of the secret bits is
essentially shuffled after all. However, this shuffling does not neces-
sarily improve perceptual transparency, There exist other variations
on LSB coding that aim to reduce perceptual transparency, it is
possible that these might get a better SNR score and manage to beat
StegHide and TAN.

Because of the above mentioned reasons the results of analysis
should not be taken as proof that no improvements have been made
in audio steganography in the nearly two decades since StegHide
and Hide4PGP were first developed. Rather, it simply means that
more research need to be done and more methods need to be com-
pared to determine which method is the current state of the art.

The fact that none of the methods proved resilient against even
the slightest amount of additive noise points to a possible fault
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with the robustness testing methodology used. Additionally other
types of signal corruption such as high pass filters or phone line
emulation were considered but could not be included in the paper
because of time constraints, as such the robustness analysis may
not be representative of the real world.

9.1 Limitations and future work

Some limitations of this research and other possible avenues for
future research are summarized in a list below:

e Computational intensity metric: As alluded to in the in-
troduction, audio steganography is uniquely suited for real
time communication, a fourth key metric to measure the com-
putational intensity of a given method could be considered to
evaluate if a method is suitable for real time communication
and how much CPU power such a system would require.
Steganalysis tools: Due to time constraints this paper did
not investigate the ability of the methods to evade detection
by the state of the art steganalysis tools, it is possible that the
adversarial GAN based method would have outperformed the
other methods in this kind of testing. Future research should
include this kind of testing.

o Secret text types: Modern machine learning based steganog-
raphy methods likely perform differently based on the type/dis-
tribution of the secret text used, future research could investi-
gate how large these differences are and what the implications
are for the training data selection.

More methods: This comparative analysis included only two
methods due to time constraints and source code availability,
future work could reuse the automated scripts developed
for this paper to save time and focus on comparing many
different methods instead.

Robustness testing: There is no standard way to evaluate
robustness, this research used additive background noise, but
other signal degradation scenarios such as high pass filters,
phone line simulation, and re-encoding could also be tested.
Ideally a whole literature review could be dedicated to re-
searching all the different types of signal degradation and
which ones are the most relevant to different usage scenarios.
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Table 3. All reviewed datasets and their respective deficiencies based on the numbered criteria established in section 5.

Name

Description

Deficiencies

NOIZEUS [43]

Consists of 30 spoken sentences corrupted with eight dif-
ferent real-world noise signals taken from the AURORA
dataset, which includes noise recordings such as suburban
vehicles and ambient street noise.

- (1) Includes only spoken English and it thus not represen-
tative of other languages or audio types like music.

- (3) Audio is provided at 128 kb/s.

Consists of recordings of 630 different speakers recorded
at at 256 kb/s. This dataset is free for non-commercial use

- (1) Includes only spoken English and it thus not represen-

E;M/ff 46] and was designed for the development and evaluation of | tative of other languages or audio types like music.
T automatic speech recognition systems.
Consists of music files in 10 genres with 100 audio files | - (1) Genres in this dataset include primarily western styles
each, all at a length of 30 seconds and bitrate of 352 kb/s. | (classical, blues, hiphop, etc.) and is thus not representa-
GTZAN [38] ) . . » : r
This dataset was originally created for the development and | tive of traditional music from other cultures or indigenous
evaluation of genre detection machine learning systems. | groups.
Consists of polish speech recordings of 45 different speak-
ers saying 365 different utterances (letters, digits, 200 | - (1) Includes only spoken Polish and it thus not represen-
CORPORA [14] | names, and 114 sentences). This dataset was originally de- | tative of other languages or audio types like music. - (5)

signed for the development and evaluation of automatic
speech recognition systems.

Unknown copyright status.

Speaker Recog-
nition Dataset

Found on Kaggle, this dataset contains recordings of
speeches of five prominent leaders. Each recording is 1
second long and has a bitrate of 256 kb/s.

- (1) Includes only spoken English and it thus not represen-
tative of other languages or audio types like music.

Consists of around 1150 utterances selected from out-of-

- (1) Includes only spoken English and it thus not represen-

CMU_ARCTIC . . . . . .
2] - copyright texts recorded at a bitrate of 256 kb/s. tative of other languages or audio types like music.
An extension of the TI-Digits speech dataset where the | () .Includes only sp oken.Enghsh and background noise
. . . and it thus not representative of other languages or audio
samples have been distorted in ways representative of the . .
AURORA-5 . o types like music.
real world, such as simulated cellular network transmission . . . .
. o . - (5) Although technically free to use, still requires a paid
and different types of additive background noise. . -
academic subscription to access.
An collection of 2000 environmental audio recordings, all | - (1) Includes only environmental noise and no speech or
ESC-50 [30] .
5 seconds long and recorded at 44.1 kHz. music.
Table 4. Discovered robustness evaluation features. The feature selected for use in this research is marked with green check mark.
Name Description Range Evaluation
Accuracy of message extraction. Ranging from :h]iﬁzlgalrl;liemtzOjr;netnc’ commenly found in ma-
ACC [39] where 100% means all secret data was extracted with- | (0%, 100%) &pap .
. . - Not commonly used in steganography papers, found
out error, (essentially the inverse of BER). . .
in only one reviewed paper.
BER [74 Bit Error Rate. Percentage of bits erroneously + Easily understood metric.
[17, 41, 42] transmitted or received, essentially the inverse of ac- | (0%, 100%)| + Very commonly used in steganography papers, in-

curacy, where 0% BER means 100% ACC.

cluded in around half of all reviewed papers.
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Table 5. Discovered perceptual transparency evaluation features. The feature selected for use in this research is marked with green check mark.

Name Description Range Evaluation
2y | + Objective and easily calculated.
Mean Squared Error. The error level between the | (0,65535%) . .
. L .. | + Easily understood metric.
MSE [12, 16] original cover audio signal and the produced stego | for 16-bit e L .
. . . - Unlimited range, making it difficult to interpret when
audio signal. Where lower values mean less noise. | audio . .
noise becomes audible.
Peak signal-to-noise ratio. Represents the ratio (—codb
between the maximum power of the cover audio and 96.32d l;) + Objective and easily calculated.
PSNR [46] the noise/distortion added during the steganography fo; 16bit | Uses the logarithmic decibel unit, more representa-
process in decibels. (Note that PSNR is essentially . tive of how the HAS perceives sound.
. . audio
MSE adjusted for signal power).
["4 signal to Noise Ratio. Represents the ratio be-
:Keen.th;:dr.n:\xtr.num dI:iO‘(Iivfir O,f thtehcoxt/er audio arﬁd g;;ozill;) + Objective and easily calculated.
SNR [16, 17] ¢ noisefdistortion added during the s eganograp Y ) ., | + Uses the logarithmic decibel unit, more representa-
process in decibels. Where codb is no noise and 0db | for 16-bit | . .
; ) . . tive of how the HAS perceives sound.
is pure noise, with the recommended SNR for an | audio
audio signal being around 30db or higher [17].
Perceptual Evaluation of Speech Quality. Sub- - Based on opinion scores that requires many partici-
PESO jective quality assessment based on opinion scores. (1.0,45) pants/much time to be accurate
[16, 25, 31] Part of an international standard, which prescribes B + Commonly used, included 50% of reviewed papers.
T that PESQ scores should be > 3.5. + International standard and ITU-T recommendation.
Squared Pearson Correlation Coefficient. Used
for measuring the quality of an audio signal based + Objective and easily calculated.
SPCC [17] . . . (0,1) . .
on the correlation of samples. Higher values indicate - Uncommon, found in only one reviewed paper.
higher quality.
COI‘I‘elathTl coefﬁc.lerhlt failctor. Statistical ql}antlty + Objective and easily calculated.
CCf [16] for measuring the similarity between two signals, | (—1,1) . .
. . . - Uncommon, found in only one reviewed paper.
where 1 means the signals are identical.

Table 6. Discovered capacity evaluation evaluation features. The feature selected for use in this research is marked with green check mark.

Name

Description

Review

EP, % [16, 25]

{74 Embedding Percentage. What percentage of bits in
the stego audio file are used for embedding the secret data.
Where 0% means none of the bits are used for embedding
the secret data, i.e. the cover audio is left unchanged.

+ Commonly found in machine learning papers.

+ Easily compared and understood because of the well

defined range.

BC, bits [20]

Bit count. The total/absolute number of bits in the stego

audio file that are used for embedding the secret data.

- Highly depended on the length of the used cover audio.
- Not easily compared because of large values.

ER, kb/s [8]

Embedding Rate. The average number of secret bits hid-
den in the stego file per second, often defined in Kilo-
bits/second.

- Intrinsically linked to the bit rate of the cover audio.
+ Also used for denoting audio bit rates.
+ Commonly used in steganography papers.
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