
The effect of IP prefixes on BGP visibility
THOMAS VAN DEN BERG, University of Twente, The Netherlands

Anycast is mostly used for hosting Domain Name System (DNS) servers,
Content Delivery Networks (CDNs), and other purposes, enabling multiple
devices to share a single IP address by leveraging the Border Gateway Proto-
col (BGP) to decide which device to route a packet to. Research exists on how
these catchments of Anycast networks form. In this paper, we investigate the
impact of IP prefix diversity on network visibility. We want to give insight
into the size of discrepancies in the catchment between identical Anycast
deployments with different IP addresses. We used Verfploeter [4], a tool to
measure catchments of Anycast services, and the TANGLED testbed [3]. To
reach our goal, we modified Verfploeter to be able to send requests from
multiple source addresses simultaneously. Our results show that 0.5% of the
IP addresses we measured responded differently based on the IP prefix we
used to reach them.

Additional Key Words and Phrases: Anycast, IP prefix, Catchment, BGP,
Verfploeter

1 INTRODUCTION
BGP [9] is used to exchange prefix reachability information across
different Autonomous Systems (AS) [12]. BGP has many attributes
for configuration options, and the treatment of these attributes is up
to network operators [8]. The flexibility of BGP can be both positive
and negative for network operators. For one, it allows for Anycast
networks, where multiple devices (also called Points of Presence
(PoPs)) use the same IP address or prefix. On the other hand, the
flexibility and its subsequent complexity can cause difficulties in
optimizing catchments (the mappings of PoPs to clients they serve)
for better performance. Some routing policy aspects could center
around the preferential treatment of specific IP prefixes over oth-
ers. Therefore, prefixes are not guaranteed to be evaluated purely
by their merits. For example, some prefixes could be ranked differ-
ently due to business agreements, which can be hard to implement
correctly [2]. Because it can be hard to correctly implement these
routing policies, some legacy routing policy remnants could re-
main in effect after the business agreements have expired. This
uncertainty makes it harder to estimate the Anycast catchments
of different IP prefixes, even after the routing policies should have
returned to neutrally evaluating a prefix.

1.1 Methodology
We aim to explore the visibility difference between IP prefixes with
the same AS configurations. We will first create a method for com-
paring visibility between prefixes. Next, we plan to minimize the
effect of time between measurements on the resulting catchments
by modifying the tools we use to measure catchments. Afterward,
we will examine whether minimizing the effect of time also de-
creased the differences in catchments between different IP prefixes.
Finally, we will measure the catchments of our different IP prefixes

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

using the most stable configuration we have found and compare the
measurements using our method for comparing visibility between
prefixes.

1.2 Research questions
This paper focuses on the following research question: RQ: To what
degree is the visibility of Anycast deployments affected by the IP pre-
fixes? To answer this research question, we have used the following
sub-research questions:

• SRQ1: How can the difference in the visibility of Anycast
deployments be compared using catchment measurements?

• SRQ2: How can we change the usage of the testing tools to
improve the stability of a single prefix?

• SRQ3: How can the catchment similarity between IP pre-
fixes be affected by the changes in usage of our testing tools
(SRQ2)?

1.3 Contributions
The contribution of this paperwill be to provide amethod to evaluate
the differences in visibility between different IP prefixes. Research
on the visibility differences of individual IP prefixes across time
[7, 10, 14, 16] exists, but these studies focus mainly on how time, not
the IP prefix, affects visibility. We aim to give insight into the scope
of visibility differences between IP prefixes by analyzing catchments
between Anycast deployments using the same testbed but differing
IP prefixes.

The remaining part of the paper is organized as follows: First, we
will examine the related works to this research and their relevance
in the next section. Next, we will explore how we plan to answer
our research questions in our methodologies. Then, we outline our
results for each (sub-)research question in a dedicated section. Af-
terward, we will outline possible future work based on our findings.
Finally, the last section contains the conclusions of this research.

2 RELATED WORK
This section will discuss some related works we plan to use when
writing this paper.

De Vries et al. created a tool to be used to measure catchments
called Verfploeter [4]. This tool uses what they called “passive van-
tage points (VPs)," network nodes not controlled by the researchers
used for measurements. These VPs differ from VPs of other mea-
surement tools, referred to by De Vries et al. as “active VPs." For
the rest of this paper, what the Verfploeter paper called passive VPs
will be referred to as “Verfploeter passive VPs (VpVPs)." Verfploeter
sends requests to these VpVPs and analyzes their responses, includ-
ing which PoP received the reply. It can send tens of thousands of
these requests per second, but the authors recommend limiting the
request rate to around 6,000 requests per second. They can then use
this data to get an idea of the catchment of an Anycast network.
Hendriks created a fork of Verfploeter called MAnycast-extended,
which modernizes and extends Verfploeter [5]. This fork, among

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


TScIT 37, July 8, 2022, Enschede, The Netherlands Thomas van den Berg

other things, allows the clients to send requests instead of a cen-
tralized server. Bertholdo et al. described an Anycast testbed for
academic purposes [3]. It uses PoPs deployed all across the globe.
An earlier approach to measuring catchments was using the RIPE
Atlas tool [1] by RIPE NCC.

There also already exists research into how we can analyze catch-
ment measurements. One such paper is about partitioning the inter-
net using catchments [11] by Schomp and Al-Dalky. They describe a
method to partition the internet into a limited number of partitions
and find where the visibility of these partitions diverges instead of
comparing individual vantage points. They found that some part
of the routing is seemingly random to external parties. Another
paper evaluating the differences between catchment visibility is
about the differences between IPv4 and IPv6 Anycast deployments
[15] by Wicaksana. This paper compared the catchments of Anycast
networks using different versions of the Internet Protocol. They use
a percentage of the measurements where routes diverge as the main
result. This percentage is an acceptable measurement here since
they explicitly state multiple times that they desire total conver-
gence. They also reason that as IPv6 proliferates, the routes should
converge. Additionally, Rexford et al. investigated the stability of
popular BGP routes [10]. Finally, Sommese et al. developed a method
to find Anycast deployments using the Verfploeter tool on the TAN-
GLED testbed [13]. This method leverages multiple Verfploeter mea-
surements of the same source addresses and compares their results.
If a measured address replies to multiple TANGLED PoPs, its /24
prefix is assumed to be using Anycast. They note their accuracy in
finding unicast addresses but also found that many of the Anycast
addresses their approach finds might be false positives. These false
positives could be due to multiple factors, including but not limited
to preferred routes by AS operators or traffic engineering.

Khan et al. analyzed the accuracy of IP prefix information in Inter-
net Routing Registries (IRRs) [6]. IRRs contain routing information
about the different ASes and contain information updated by the
people running the ASes. In this research, the authors look at how
up-to-date and accurate the information that ASes put into IRRs is.

3 METHODOLOGIES
We have created our sub-research questions to aid us in answering
our main research question. RQ requires us to compare the differ-
ences in catchments using different IP prefixes and account for other
variables, such as the time between measurements of the prefixes.
SRQ1 has been added to help us create a method to compare these
differences. SRQ2 aims to minimize the effect of time on the results
of the measurements by increasing catchment stability. Once we
have answered SRQ2, we will have found a method to do measure-
ments with more stable results. We expect this method to result in
fewer differences when measuring between IP prefixes since any
time-related instability would also occur when gathering these mea-
surements. SRQ3 thus aims to see if this assumption is correct by
verifying whether the difference decreases when increasing time-
related stability. We will already have worked toward answering our
main research question by answering our sub-research questions.
We can therefore focus more on the results we get rather than how

we want to obtain results once we start answering the main research
question.

3.1 On answering SRQ1
For our first research question, we aim to develop a method of eval-
uating the catchment similarity between IP prefixes to improve
results. We plan to combine multiple strategies to achieve this goal.
The first strategy is to look at related works and see what other
approaches exist. Some papers we have found [10, 11] have already
done some work comparing routes on the internet. We could use
the paper about BGP route stability [10] to compare approaches to
identifying route stability and set the expectations for our experi-
ments. We will use the other paper [11] if we need another way to
look at the catchment differences. The second strategy would be to
look at which tools are available to us and their capabilities. The
tools most relevant for this task are Verfploeter [4] and the RIPE
Atlas platform [1]. The first tool will likely be used because of its
flexibility, while the RIPE Atlas platform requires more coordination
with external parties. Finally, we can also use measurement metrics
to compare the measurements, like the percentage of VpVPs where
the catchment differs. If we have time to run multiple tests for each
source address we are testing, we could even look at the differences
in the stability of the routes. Using these strategies, we hope to
come up with a way to compare the catchment data from different
Anycast measurements.

3.2 On answering SRQ2
Another aspect of stabilizing measurements is decreasing the time
between these measurements. Verfploeter can ping the VpVPs in a
pseudorandom order to avoid rate limits and abuse complaints [4].
Because measurements can take longer than 10 minutes, it takes
quite a long time between the requests to a single VpVP. The worst-
case scenario is around 20 minutes, but if we do not shuffle the
hitlist every time, the time between requests to a VpVP would be
about 10 minutes. We could adapt Verfploeter to measure multiple
source addresses at the same time. By sending ICMP ECHO requests
(also commonly known as ping-requests) for the different source
addresses to the same VpVP directly after each other, we minimize
the time between the requests to a VpVP. As stated before, the rec-
ommended rate of requests is about 6,000 per second. The suggested
approach of consecutively sending ICMP ECHO requests for differ-
ent source addresses to the same VpVPs would increase the traffic to
this VpVP in the short term. It would also enable a single Verfploeter
measurement to measure multiple Anycast deployments. To avoid
rate limits and abuse complaints, we should divide the number of
requests per second by the number of source addresses since we
send requests to different source addresses without rate-limiting.
With this decreased request rate and alternative approach, we could
still see 1,000 requests per second from each address when mea-
suring six different source addresses. This results in a significantly
smaller time difference between sending the first and last request to
a single VpVP. By decreasing the time between requests to a single
VpVP with a factor up to more than 100,000 when testing six source
addresses and even more when with fewer addresses, we hope to
increase the stability of our measurements.

2



The effect of IP prefixes on BGP visibility TScIT 37, July 8, 2022, Enschede, The Netherlands

3.3 On answering SRQ3
With this sub-research question, we aim to see if the methods de-
scribed in SRQ2 affect the difference in catchment between IP pre-
fixes. If themethods from SRQ2 had little influence on the catchment
stability, we expect these methods to have little effect on the catch-
ment stability between source addresses on different IP prefixes. We
reason that if the methods from SRQ2 affect the catchment stability
a lot, then the variety in the routes stems from factors other than
the IP prefix. We expect that unstable catchments from evaluating a
single IP prefix would result in more notable differences between
catchments when comparing different IP prefixes. These differences,
however, have multiple possible reasons, not just the differing IP
prefixes. If we achieved perfect catchment stability for single IP
prefixes, we would expect that most of the differences in catchment
between IP prefixes stem from diverging routing policies based on
IP prefixes.

3.4 On answering the main research question
To answer the research question, we can run experiments to see how
stable catchments are across different IP prefixes. We will use the
approach to measure catchment similarity from SRQ1 to compare
the results from the measurements. We will run the experiments
with the configurations we have explored for SRQ3. SRQ2 is not
directly used to aid in answering the main research question. It just
serves to answer SRQ3. In the end, we hope to see the effect of
IP prefixes on the catchment of different source addresses, with as
little interference from other variables as possible.

4 COMPARING VISIBILITY OF ANYCAST
MEASUREMENTS

We will look into ways to compare the visibility of different IP
prefixes in this section. We split this problem into two parts. First,
we aim to isolate the measured differences caused by using different
IP prefixes rather than other factors. Second, we need to find a way
to interpret the resulting differences.
Conceptually, four factors can influence the differences found

between measurements. Three of these factors are somewhat con-
trollable by us. These factors are the packet content, packet origin,
and time at which we send the packet. The final factor is what we
call routing decisions. We use routing decisions to describe anything
a network operator might use to diverge routing paths not based
on the previous three factors.

In our case, the only impactful difference in packet content should
be the source address. Since we want to measure this impact, the
difference in packet content from this will not be an issue. We also
found two possible aspects regarding packet origin differences. The
first is which network link we use, and the second is the source
address we use to send the packet. To neutralize the impact of the
network link, we will take all measurements of a VpVP from all
Anycast PoPs, thus using the same network links every time. We
aim to measure the difference in catchment when using different IP
prefixes, so we want the difference in source addresses to exist. We
aim to send measurement packets with minimal delay between them
for the time aspect. The internet is not static and constantly chang-
ing, so less time between measurements will mean fewer changes.

The final factor influencing differences between measurements is
the effect of routing decisions. As stated before, in the paper about
partitioning the internet using catchments [11], some routing hap-
pens according to rules that are, in essence, random. One such rule
would be routing the packet according to the hash of its port number.
These routing rules should route similar packets similarly, so we
expect this to have a minimal impact.

We have found some papers that deal with interpreting catchment
measurements [11, 15]. Just like the paper comparing IPv4 to IPv6
[15], we could use a percentage of the measurements where routes
diverge as the main result. In our case, just as Wicaksana, we also
want the routes to converge, but unlike them, we have not found
a reason to suspect the improvement of the situation soon. The
paper that partitioned the internet using catchment data [11] also
presented an interesting approach to interpreting different results.
We could determine what percentage of these partitions diverge
based on the IP prefix if we partitioned the internet according to our
results. This approach requires many different Anycast deployments,
however. We only have access to a single customizable deployment,
so if we wanted to do multiple measurements, we would not be
able to do these simultaneously. The fact that we can not do the
measurements simultaneously creates an issue. We suspect time
to be a significant source of noise in our results, so if we run long
experiments, we drastically increase the amount of noise in our data.
Sadly, such a partition is thus likely unsuitable for us.

4.1 Isolating our measurements
As stated previously, we expect four reasons for routes to diverge.
One of these is the difference in packet content, mainly stemming
from the different IP prefixes. Two others are packet origin and
time, which we can aim to minimize by changing Verfploeter [4]
to send requests to measure different source addresses from all
Anycast PoPs to the same VpVP directly after each other. The final
reason is the effect of routing decisions, which we can measure by
customizing Verfploeter to get multiple measurements for the same
IP prefix from the same VpVPs.
We can minimize the time between measurements of a single

VpVP by changing our testing tools, which is what we aim to do
when modifying Verfploeter (5). It can never become zero, but it
should be possible to send the requests to the same VpVP from the
same PoP for different source addresses directly after each other
without rate limiting.

We cannot affect the differences in routing that we attribute to
routing decisions because we do not control the routing behavior of
other Autonomous Systems. The opaqueness of routing decisions
can cause us to believe that some IP prefixes with diverging routing
behavior behave identically or cause us to conclude that IP prefixes
with the same routing behavior behave differently. As previously
discussed, we do not expect a significant impact of routing decisions
based on factors other than the IP prefix on our measurements. If
our results show that such an impact exists, we will try to mitigate
the effects of these other routing decisions. One way to mitigate
these effects is to run more measurements probing VpVPs multiple
times using source addresses from a single IP prefix. Then we can
look if they route to the same set of Anycast PoPs and if the ratios

3



TScIT 37, July 8, 2022, Enschede, The Netherlands Thomas van den Berg

of traffic received by Anycast PoPs are similar. This approach does
require us to send more requests, which increases the time it takes
to measure a single VpVP, increasing the risk of something along
the route changing during the measurement. We also risk harassing
VpVPs or other links if we send too many measurement requests
without rate-limiting.

4.2 Interpreting the results
As stated before, partitioning the internet would require us to change
our experiments to take longer. Experiments taking longer increases
the risk of routing changes occurring in the meantime on the inter-
net. Therefore, we will first focus on percentages of VpVPs occurring
in the same catchment. We might find that the results when using
a single measurement with multiple IP prefixes might not be satis-
factory. In this case, we could try to run more measurements after
changing the deployments or change our experiment to measure
VpVPs multiple times using the same IP prefix. Both of these ap-
proaches would increase the time it takes to measure, thus adding
some noise to the data from changes in routes across the internet.

4.3 Summary
Interpreting the results is not only a crucial part of our study, but
our approach also depends on the results. We might find that our
measurement noise is negligible depending on the results of our
tests after modifying Verfploeter (5) or that we need to account for
noise.

5 EXAMINING THE EFFECT OF TIME BETWEEN
MEASUREMENTS ON ROUTE STABILITY

In this section, we will modify Verfploeter to minimize the time be-
tween requests to the same VpVP to see if this affects route stability.
We use a fork of Verfploeter called MAnycast-extended [5]. As

stated before, this fork allows the Verfploeter clients to send the
requests. We want to take it a step further and send requests to the
same VpVP directly after each other without rate-limiting.

5.1 Testing the effect of time on catchments
After we made our changes to MAnycast-extended, which we de-
scribe in Appendix B, we want to compare the differences in catch-
ment between multiple runs with different amounts of time between
them. Our modified version cannot determine whether a response
replies to a request of the first or second test, meaning we cannot
apply MAnycast2’s approach with the same accuracy as we can
when we can separate results. We could try to modify Verfploeter
to include information to separate the tests in the results, but this
fell outside of the scope of this study. Therefore, we decided to run
two tests. The first would compare running our modified version of
Verfploeter twice with a single source address to running it once
with two identical source addresses. Here, we can not ascertain
whether networks are using Anycast as well as before because we
don’t know which request resulted in which responses when using
multiple identical source addresses. Next, we would test using two
different IP addresses in the same /31 IP prefix in the same manner.

We can remove Anycast addresses with greater accuracy using dif-
ferent IP addresses, but we risk ECMP load balancing distorting our
results.

As can be seen from the results in Figure 1, using multiple source
addresses seems to reduce test results where an IP address only
responds to a single source address. This decrease is especially ap-
parent when we use multiple source addresses of the same /32 prefix,
where we classified no VpVPs as only responding once. It is unlikely
that all VpVPs answered requests of both tests, especially when
we compare the results to what happens when we use an identical
/31 IP prefix instead of an identical /32 prefix. The lack of “One
occurrence” results is due to a limitation of our approach. Only
VpVPs that replied once can be classified as “One occurrence” when
using multiple source addresses of the same /32 IP prefix. We can
not determine whether these requests came from the first source
address or the second if they replied to multiple requests. Therefore,
we cannot classify a VpVP as replying to only one test if we use
multiple identical source addresses. As long as the VpVP responds
more than once, even if these replies were to the same source ad-
dress, we must classify the VpVP as replying to both tests. We can
also see that using the same /31 IP prefix instead of the same /32
prefix did not affect the share of measurements determined to have
reached other Anycast networks. Additionally, as expected, when
using two different IP addresses in the same /31 prefix, the share of
measurements responding to different PoPs increases significantly.

6 EXAMINING THE EFFECT OF USING MULTIPLE
SOURCE ADDRESSES (5) ON CATCHMENT
SIMILARITY BETWEEN IP PREFIXES

In this section, we will find out whether the changes from SRQ2
affected the results when we compare IP prefixes.
To determine the effect of using multiple source addresses, we

ran a test where we looked for catchment similarity in two dif-
ferent ways. First, by running a test with a single source address
twice and comparing the catchment, followed by a test with two
source addresses and comparing the catchment between the source
addresses.

As we expected, we can see in the results in Figure 2 that, just as
with the comparison between using single and multiple addresses
within the same /31 prefix (Figure 1), the most significant result
is a decrease in the number of passive VPs which only replied
once. It also seems that occasionally the number of different replies
increases when using multiple measurements with a single source
address. This increase is, however, not substantial enough to draw
any meaningful conclusions.

In general, minimizing the amount of time seems not to do much
more than decrease the number of passive VPs who reply once.
The results might have been more significant if the tests using
single source addresses took longer, resulting in more time between
measurements. However, we remain convinced that the decrease in
time between requests to the individual VPs was the right choice,
even if the effect is not very apparent.

4



The effect of IP prefixes on BGP visibility TScIT 37, July 8, 2022, Enschede, The Netherlands

7 THE EFFECT OF IP PREFIXES ON DEPLOYMENT
VISIBILITY

Now we will compare a /31 and /23 prefix to determine whether
the /24 prefix matters for the visibility of an Anycast network. We
repeated this test five times to ensure some stability in our results.
We have put all our results in Figure 3. As is visible in this figure,
the different /32 prefixes seem to vary more in catchment than the
/24 prefixes. This unexpected result could be the case because of
ECMP load balancing. It could be the case that ECMP load balancing
rules state that adjacent IP addresses should take different routes
but that it is more random when only the 24th bit differs. Because
of these results, we ran another test where we modified the 32nd
bit. We hope that this test will allow us to classify VpVPs using
ECMP. To filter out ECMP results, we ran a test with four source
addresses with different 24th and 32nd bits. First, we filtered out
the “Anycast" and “One occurrence" results, and then we classified
results that responded to different PoPs when varying the 32nd bit
of the source address as ECMP. After this, we just compared PoPs
between the source addresses with different 24th bits to find which
results diverge in visibility due to the IP prefix. We put the results of
this test in Figure 4. In these results, around 0.5% of the VpVPs that
responded seem to discriminate based on the IP prefix. However,
the scope of this test was quite limited, and it would be interesting
to see how a /23 IP prefix compares to a smaller prefix.

Another disclaimer could be that we compare two different /24 IP
prefixes in the same /23 prefix. This relatively small prefix difference
means there could be discrimination when using /24 prefixes further
apart, but this would require more resources to test.

8 FUTURE WORK
There are two types of future work that we have found which we
believe would be beneficial. The first is more testing using different
source addresses, BGP configurations, and more extensive tests. The
second is by improving the Verfploeter application further. As has
been discovered in subsection C.3, flushing results immediately to
disk causes some clients to crash.

When it comes to doing more testing, there are multiple possible
approaches. One of the most interesting ones would be to change
the BGP configurations or IP addresses. These tests could aim to
see if IP prefixes that lie further apart do show a difference. Further-
more, more research into ECMP routing could explore the role this
load-balancing technique plays in catchment overlap. Finally, more
extensive testing could prove valuable because of the limited scope
of our tests. More prolonged testing with more IP addresses could
increase our knowledge of the role of prefix discrimination on the
internet.
As stated before, Verfploeter clients can crash when flushing re-

sults to disk immediately, and we expect this to be the case because
result flushing causes a packet to not arrive in time. Flushing results
to disk before the program finishes is beneficial since this would
allow for experiments with more source or target addresses or more
probes. There is probably a better approach using multithreading
than writing every single result to disk independently, which could
be added. Furthermore, the fact that clients can crash when some-
thing goes wrong with a packet should be resolved. It happens more

frequently when flushing to disk immediately but logically is a risk
when something goes wrong with a packet either way. The crash
message states that the issue manifests when unwrapping the data
field of a Task message. This location is strange, however, since
according to the Protocol Buffers data structure, this is a ‘oneof’
field. It does not make sense that this field is optional in Rust if this
field means one of the options and not one or none. I do not know
enough about the Protocol Buffers data structure to say what ‘oneof’
should look like. Either way, maybe a more modern version of the
Protocol Buffers libraries for Rust fix this issue, or a rewrite of the
Verfploeter protocol is possible to avoid this issue. This issue with
Protocol Buffers is only an issue of error clarity, and the fact that a
packet arrives incomplete is the issue causing the program to crash.
I don’t know enough about the sockets used to offer good insight
here, but it should be possible to ask the server to repeat the packet
if it arrives corrupted instead of just crashing the client.
Upon this suggested work’s completion, we could have a better

view of the internet and better tools to measure catchments.

9 CONCLUSION
We think it is legitimate to say that nearly nothing went as expected
with our experiments. From a relatively simple modification of the
order of packets consistently crashing the Verfploeter CLI to the
stability of results increasing from using different /32 prefixes to /24
prefixes. However, this lack of predictability makes the conclusions
more interesting.

In creating a method to compare the visibility of catchment mea-
surements, we learned that there are multiple ways to present our
catchment measurements, some of which are more interesting than
others. One limitation of the more elaborate approaches to classify-
ing results is that it would take a large amount of data, which fell
outside the scope of this study.
When we wanted to determine the effect time had on our mea-

surements, we found many limitations of the Verfploeter-based
measurement tools we planned to use. Some limitations had solu-
tions (such as the issues with Verfploeter crashing), but others have
no apparent answer, or we left them as future work.
We also looked at whether our modifications of Verfploeter af-

fected the results for our main research question. While answering
this sub-research question, we did not knowwe would be classifying
ECMP yet. We saw some differences in measurements, for instance,
the decrease in VpVPs that participated in only a single test. Because
the test where we classify ECMP VpVPs used four source addresses,
we expect the effect of our modifications to be even more significant
here.

Our research question concludes that there seem to be VpVPs that
differ in routing based on the /24 IP prefix. Initially, when comparing
a /23 to an /31 prefix, we saw little difference due to ECMP, but after
we changed the test to filter out these results, we found that 0.5% of
VpVPs seemed to change routing behavior based on the /24 prefix.
It is positive to see that this percentage is small because this means
that, for the most part, the internet is working as intended and not
discriminating on IP prefixes.

5



TScIT 37, July 8, 2022, Enschede, The Netherlands Thomas van den Berg

REFERENCES
[1] RIPE Network Coordination Centre 2010. Home | RIPE Atlas. RIPE Network

Coordination Centre. https://atlas.ripe.net/
[2] Leandro M. Bertholdo. 2021. Did you validate your routing policies? https:

//blog.apnic.net/2021/09/22/did-you-validate-your-routing-policies/
[3] Leandro M. Bertholdo, João M. Ceron, Wouter B. de Vries, Ricardo de Oliveira

Schmidt, Lisandro Zambenedetti Granville, Roland van Rijswijk-Deij, and Aiko
Pras. 2021. TANGLED: A Cooperative Anycast Testbed. In 2021 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM) (2021-05). 766–771.
ISSN: 1573-0077.

[4] Wouter B. De Vries, Ricardo De O. Schmidt, Wes Hardaker, John Heidemann,
Pieter-Tjerk De Boer, and Aiko Pras. 2017. Broad and load-aware anycast map-
ping with verfploeter. In Proceedings of the 2017 Internet Measurement Conference
(London United Kingdom, 2017-11). ACM, 477–488. https://doi.org/10.1145/
3131365.3131371

[5] Remi Hendriks. 2023. Hendriks, R. (Remi, student M-CS) / manycast-extended ·
GITLAB. https://gitlab.utwente.nl/s1978047/manycast-extended

[6] Akmal Khan, Hyun-chul Kim, Taekyoung Kwon, and Yanghee Choi. 2013. A
Comparative Study on IP Prefixes and Their Origin Ases in BGP and the IRR.
SIGCOMM Comput. Commun. Rev. 43, 3 (jul 2013), 16–24. https://doi.org/10.1145/
2500098.2500101

[7] Qi Li, Mingwei Xu, Jianping Wu, Patrick P. C. Lee, and Dah Ming Chiu. 2011.
Toward a practical approach for BGP stability with root cause check. 71, 8 (2011),
1098–1110. https://doi.org/10.1016/j.jpdc.2011.04.009

[8] Tony Li, Ravi Chandra, and Paul S. Traina. 1996. BGP Communities Attribute.
RFC 1997. https://doi.org/10.17487/RFC1997

[9] Yakov Rekhter, Tony Li, and Susan Hares. 2006. A border gateway protocol 4
(BGP-4). Technical Report.

[10] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. 2002. BGP routing stability
of popular destinations. In Proceedings of the second ACM SIGCOMMWorkshop
on Internet measurment - IMW ’02 (Marseille, France, 2002). ACM Press, 197.
https://doi.org/10.1145/637201.637232

[11] Kyle Schomp and Rami Al-Dalky. 2020. Partitioning the Internet Using Anycast
Catchments. SIGCOMM Comput. Commun. Rev. 50, 4 (oct 2020), 3–9. https:
//doi.org/10.1145/3431832.3431834

[12] Pavlos Sermpezis and Vasileios Kotronis. 2019. Inferring Catchment in Internet
Routing. Proc. ACM Meas. Anal. Comput. Syst. 3, 2, Article 30 (jun 2019), 31 pages.
https://doi.org/10.1145/3341617.3326145

[13] Raffaele Sommese, Leandro Bertholdo, Gautam Akiwate, Mattijs Jonker, Roland
van Rijswijk-Deij, Alberto Dainotti, KC Claffy, and Anna Sperotto. 2020. MAny-
cast2. In Proceedings of the ACM Internet Measurement Conference. ACM. https:
//doi.org/10.1145/3419394.3423646

[14] Yi Wang, Michael Schapira, and Jennifer Rexford. 2009. Neighbor-specific BGP:
more flexible routing policies while improving global stability. In Proceedings of the
eleventh international joint conference on Measurement and modeling of computer
systems (New York, NY, USA, 2009-06-15) (SIGMETRICS ’09). Association for
Computing Machinery, 217–228. https://doi.org/10.1145/1555349.1555375

[15] M.A. Wicaksana. 2016. IPv4 vs IPv6 Anycast Catchment: a Root DNS Study.
http://essay.utwente.nl/70921/

[16] Yan Yang, Xingang Shi, Qiang Ma, Yahui Li, Xia Yin, and Zhiliang Wang. 2022.
Path stability in partially deployed secure BGP routing. 206 (2022), 108762. https:
//doi.org/10.1016/j.comnet.2022.108762

A FIGURES

1 2 3 4 5

98

100

Run

%
of

re
sp
on

se
s /32 S /32 M /31 S /31 M

(a) Identical

1 2 3 4 5
0

1

2

3

Run

%
of

re
sp
on

se
s /32 S /32 M /31 S /31 M

(b) Different

1 2 3 4 5
0

0.5

1

Run

%
of

re
sp
on

se
s /32 S /32 M /31 S /31 M

(c) One occurrence

1 2 3 4 5
0

0.2

0.4

Run

%
of

re
sp
on

se
s /32 S /32 M /31 S /31 M

(d) Anycast

Fig. 1. Comparing visibility between source addresses in the same /31 prefix.
Measurements marked with /𝑥 use the the same /𝑥 IP prefix, and S means
that the measurement used only a single source address (so the comparison
was done by running the measurement twice and comparing the results)
while measurements marked with M used multiple source addresses. The
run number is noted down because the test was repeated five times, and it
shows which test run the result was a part of.

6

https://atlas.ripe.net/
https://blog.apnic.net/2021/09/22/did-you-validate-your-routing-policies/
https://blog.apnic.net/2021/09/22/did-you-validate-your-routing-policies/
https://doi.org/10.1145/3131365.3131371
https://doi.org/10.1145/3131365.3131371
https://gitlab.utwente.nl/s1978047/manycast-extended
https://doi.org/10.1145/2500098.2500101
https://doi.org/10.1145/2500098.2500101
https://doi.org/10.1016/j.jpdc.2011.04.009
https://doi.org/10.17487/RFC1997
https://doi.org/10.1145/637201.637232
https://doi.org/10.1145/3431832.3431834
https://doi.org/10.1145/3431832.3431834
https://doi.org/10.1145/3341617.3326145
https://doi.org/10.1145/3419394.3423646
https://doi.org/10.1145/3419394.3423646
https://doi.org/10.1145/1555349.1555375
http://essay.utwente.nl/70921/
https://doi.org/10.1016/j.comnet.2022.108762
https://doi.org/10.1016/j.comnet.2022.108762


The effect of IP prefixes on BGP visibility TScIT 37, July 8, 2022, Enschede, The Netherlands

1 2 3 4 5

96.5

97

97.5

Run

%
of

re
sp
on

se
s Single Multiple

(a) Identical

1 2 3 4 5

2.3

2.4

Run

%
of

re
sp
on

se
s Single Multiple

(b) Different

1 2 3 4 5

0.4

0.6

0.8

1

Run

%
of

re
sp
on

se
s Single Multiple

(c) One occurrence

1 2 3 4 5

0.38

0.39

Run

%
of

re
sp
on

se
s Single Multiple

(d) Anycast

Fig. 2. Comparing the effect of time on catchment overlap on different
source addresses in the same /23 IP prefix. S means that the measurement
used only a single source address (so the comparison was done by running
the measurement twice and comparing the results) while measurements
marked with M used multiple source addresses. The run number is noted
down because the test was repeated five times, and it shows which test run
the result was a part of.

1 2 3 4 5
97

97.1

97.2

Run

%
of

re
sp
on

se
s /31 /23

(a) Identical

1 2 3 4 5

2.2
2.22
2.24
2.26
2.28

Run

%
of

re
sp
on

se
s /31 /23

(b) Different

1 2 3 4 5

0.26

0.28

0.3

0.32

Run

%
of

re
sp
on

se
s /31 /23

(c) One occurrence

1 2 3 4 5

0.38

0.38

0.39

Run

%
of

re
sp
on

se
s /31 /23

(d) Anycast

Fig. 3. Comparing visibility between source addresses in different /32 and
/24 prefixes. Measurements marked with /𝑥 use the the same /𝑥 IP prefix.
The run number is noted down because the test was repeated five times,
and it shows which test run the result was a part of.

7



TScIT 37, July 8, 2022, Enschede, The Netherlands Thomas van den Berg

1 2 3 4 5

95.2

95.4

95.6

Run

%
of

re
sp
on

se
s

(a) Identical

1 2 3 4 5
0.4
0.45
0.5
0.55
0.6

Run

%
of

re
sp
on

se
s

(b) Different

1 2 3 4 5
0.21
0.22
0.22
0.23
0.23

Run

%
of

re
sp
on

se
s

(c) One occurrence

1 2 3 4 5
0.39
0.4
0.4
0.41
0.41

Run

%
of

re
sp
on

se
s

(d) Anycast

1 2 3 4 5
3.3

3.4

3.5

3.6

Run

%
of

re
sp
on

se
s

(e) ECMP

Fig. 4. Comparing visibility between source addresses in different /24 pre-
fixes with ECMP classification. The run number is noted down because the
test was repeated five times, and it shows which test run the result was a
part of.

B MODIFICATION OF MANYCAST-EXTENDED
We modified MAnycast-extended to support multiple source ad-
dresses, allowing measurements to measure all source addresses in
a single test. We removed the option to set a client source address.
Custom source addresses for clients could be added back in but were
not needed for our tests. We tried to minimize the amount of code
we changed because it is easy to get overly ambitious while making
simple modifications. Therefore we tried to limit ourselves to chang-
ing code only for good reasons: (i) to add needed functionality, (ii)
to make code more readable and safer, and (iii) to save time. Most
of our changes were to make MAnycast-extended accept multiple
source addresses and to ensure we send requests to the same VpVPs
with differing source addresses without delay.

After these changes, we started running experiments and ran
into an issue where the CLI process would get killed as the test
progressed. We later discovered that the program crashed because
the system the command line interface (CLI) ran on ran out of
memory. After reading more of the code for the CLI, we discovered
that all test results are kept in memory until the test completes, and
then the results are flushed to disk. So if we have all PoPs sending
requests and multiple requests for different source addresses, we fill
up the memory and the program crashes. We have three possible
solutions for this problem that fit the scope of this paper. We can
decrease the number of results we receive, flush everything to disk
earlier, or increase thememory available to the CLI.We discuss these
options and our findings when trying them out in the appendix C.
From these findings, we concluded that it would be best for this
study to use the CLI on a machine with more resources available,
which is what we did for the rest of the experiments.

C COMPARING APPROACHES TO PREVENTING THE
CLI FROM CRASHING

In this part of the appendix, we try to find the best way to avoid our
CLI running out of memory.

C.1 Decreasing amount of results
One thing we could do to decrease the number of results is to send
requests from a single client. This approach’s most substantial side
effect would be that it would become harder to filter out Anycast net-
works from our results using the method described by MAnycast2
[13]. When a VpVP replies to two different PoPs, we cannot deter-
mine whether this was due to the VpVP being part of an Anycast
network or because the VpVP responded differently to the individ-
ual measurements. Therefore, we have to rely more on an external
dataset.
To test whether these datasets are accurate, we ran a test using

the base version of MAnycast-extended and looked at the results.
The test sent requests from all clients, so multiple responses are
expected per IP address. Depending on the results, we suspect some
IP addresses that replied to be hosting an Anycast network. If an
IP address we pinged replied to multiple of our PoPs, we presume
this IP address hosts an Anycast network. We expect this because
we suspect our clients’ requests reached various PoPs of the VpVP,
which replied to different PoPs on the TANGLED testbed. We can
then see the overlap between a dataset of Anycast networks [13]

8



The effect of IP prefixes on BGP visibility TScIT 37, July 8, 2022, Enschede, The Netherlands

Replies In
dataset

Suspected
Anycast

Suspected
not in
dataset

In dataset
not suspected

2629865 0.2967 0.3412 25.0209 8.7072
2629277 0.2968 0.3415 25.0244 8.6896
2629008 0.2968 0.3405 24.6623 8.6757
2628924 0.2969 0.3422 25.2750 8.6896
2628549 0.2970 0.3418 25.1079 8.7035

Table 1. A comparison of the MAnycast2 dataset to our found Anycast
networks using the MAnycast2 method.

Not filtered Dataset filtered Suspect filtered Both filtered
99.3317 99.6393 99.6479 99.6480
99.3035 99.6442 99.6538 99.6538
99.3036 99.6542 99.6658 99.6659
99.3226 99.6390 99.6479 99.6479

Table 2. Catchment overlap using different filtering methods when using
probes from multiple clients.

Not filtered Dataset filtered Suspect filtered Both filtered
97.6462 98.7727 98.7763 98.7729
97.6171 98.7437 98.7473 98.7439
97.7655 98.9248 98.9277 98.9250
98.0539 99.0469 99.0500 99.0475

Table 3. Catchment overlap using different filtering methods when using
probes from a single client.

and our found data. We have put the results of 5 tests into a table
(See Table 1).

As can be seen, around a quarter of all the IP addresses we suspect
of being part of an Anycast network are missing from the dataset.
This high inaccuracy makes sense because the dataset is six months
old and partially outdated. It does present a problem for us, however,
as we can show by reanalyzing our results. We want to show the
effect of only using a single probe compared to using multiple, so
Tables 2 and 3 show the difference in catchment overlap. In this
data, our accuracy drops from more than 99.6% when using filters
on the dataset from multiple probes to often less than 99% when
using filters and using only a single PoP to send requests. We could
use a single probe to collect data to prevent the CLI from crashing,
but it would add substantial noise to the data.

C.2 Flushing everything to disk sooner
Another approach could be to flush the results to disk before the
program runs out of memory. This approach does require us to
modify the program further, but it would allow us to run tests with-
out considering the number of results we collect. We will, however,
need to check that we do not miss packets while the program is
writing to disk. To do so, we will compare our modified version
without directly writing to disk with one that does immediately
write to disk. We need to utilize a smaller IP list or fewer probing
clients for this test. Otherwise, the version of our program that

1 2 3 4 5
0

2

4

·107

Run

A
m
ou

nt
of

re
sp
on

se
s

Immediately flushing Flushing at the end

Fig. 5. Comparing amount of results when immediately flushing to disk
or waiting until the end of the experiment. The run number is noted down
because the test was repeated five times, and it shows which test run the
result was a part of.

1 2 3 4 5
0
1
2
3
4 ·107

Run
A
m
ou

nt
of

re
sp
on

se
s

Fig. 6. Responses when running locally outside of the testbed. The run
number is noted down because the test was repeated five times, and it
shows which test run the result was a part of.

does not write to disk will crash. We ran a test where we ran the
modified version that flushed to disk immediately, followed by one
that kept all results in memory. Then, we repeated this five times
and plotted the results in Figure 5. We can see that, for some reason,
the number of results seems to decrease over time. Initially, we got
33 million responses. After the first run, it dropped to 6.6 million
with the second and third runs and to 1.8 million responses from
the fourth run onward. Looking at the number of responses after
they have stabilized, we can see no difference between flushing to
disk immediately or waiting.

C.3 Expanding the resources available to the CLI
The easiest way to expand the resources available to the CLI is
to run the CLI on another machine. Running the CLI on another
machine will always be less stable because it introduces another
point of failure. We will also need to check if the extra latency to the
CLI causes it to skip responses, as we did when testing the CLI that
immediately flushes to disk. We cannot easily script a test where
we switch between running the CLI on TANGLED or locally, so we
will run it multiple times locally and compare the number of results
to previous tests (which happened less than 8 hours before, but the
clients and server were restarted in between tests).

As can be seen from the results plotted in Figure 6, this time, we
don’t see a decrease in the number of responses as we did before,
and the amount of replies remains high. To verify these results, we
ran more tests. We started by repeating the test on the machine
with more resources. After this, we tried to run the same test on

9



TScIT 37, July 8, 2022, Enschede, The Netherlands Thomas van den Berg

the testbed itself. When we ran it on the testbed, however, it kept
killing the CLI, which indicates that the number of results became
too great to keep in memory. To resolve the crashes, we resorted to
flushing everything immediately to disk, which revealed a similar
pattern as before of the number of results decreasing over time,
this time even more quickly. Afterward, we ran the CLI on the
testbed without immediately flushing and still received few results.
Finally, we ran the CLI locally with more resources available without
immediately flushing and got similar results to the testbed. Baffled
by these results, we checked the Verfploeter clients. Then we saw
many of them had crashed, explaining the fewer results we received

over time. The error messages indicated that the program crashed
because some Tasks were missing data. The data was seemingly
only missing when running the CLI and immediately flushing to
disk. A hypothesis could be that the CLI or server might receive
results from some Clients before it finished sending the start packets
to the Clients and that the extra delay of immediately flushing to
disk corrupts such packets. This theory would require further code
digging or testing to confirm. Due to limited time constraints, this
will be left as future work if there is interest. Therefore, for this
study, we will use the CLI without immediately flushing to disk on
a machine with more resources than the TANGLED control node.

10


	Abstract
	1 Introduction
	1.1 Methodology
	1.2 Research questions
	1.3 Contributions

	2 Related Work
	3 Methodologies
	3.1 On answering [srq1]SRQ1
	3.2 On answering [srq2]SRQ2
	3.3 On answering [srq3]SRQ3
	3.4 On answering the [rq]main research question

	4 Comparing visibility of Anycast measurements
	4.1 Isolating our measurements
	4.2 Interpreting the results
	4.3 Summary

	5 Examining the effect of time between measurements on route stability
	5.1 Testing the effect of time on catchments

	6 Examining the effect of using multiple source addresses (5) on catchment similarity between IP prefixes
	7 The effect of IP prefixes on deployment visibility
	8 Future work
	9 Conclusion
	References
	A Figures
	B Modification of MAnycast-extended
	C Comparing approaches to preventing the CLI from crashing
	C.1 Decreasing amount of results
	C.2 Flushing everything to disk sooner
	C.3 Expanding the resources available to the CLI


