Improving the Performance of Multi-Objective Evolutionary Algorithms

for Fault Tree Inference

NICOLAE RUSNAC SUPERVISORS: MATTHIAS VOLK, LISANDRO A. JIMENEZ-ROA, University of Twente,

The Netherlands
ABSTRACT

Fault trees (FTs) are models frequently used in risk management to identify
potential failures and improve a system’s reliability. They are typically cre-
ated manually in consultation with domain experts, which is time-consuming
and prone to human error. Existing multi-objective evolutionary algorithms
optimise this process by using failure data sets generated by a system for
inferring a FT. These algorithms are known to be inefficient and, in some
cases unable to find an optimal solution. In this research, the focus has
been placed on identifying better metrics for the existing genetic algorithm.
Multiple metrics were identified and analyzed such as random segmentation
accuracy, basic event impact vector distance and confusion matrix metrics. The
results show that by adding metrics from the confusion matrix, significant
improvements can be achieved in both the convergence time of the algorithm
and the number of generations it takes to converge.

Keywords: Fault tree inference, data-driven,multi-objective evolutionary
algorithms, optimization, risk management.

1 INTRODUCTION

Fault tree analysis [17] (FTA) is a systematic method for acquiring
information about a system, which can lead to improved decision-
making [17]. FTA provides several advantages, including a holistic
overview of the system and the relationships that emerge within
itself, enabling quantitative analysis by calculating the probabili-
ties of the events and a more intuitive visual representation of the
system. However, one of the drawbacks of FTs is related to their
manual construction which makes the process slow and prone to
bias. Additionally, FTA requires large data sets to create an accu-
rate overview of the system. This makes them difficult to be up to
date with a dynamic system. This paper will try to improve on the
creation aspect of FTs.

This problem has been the subject of research in the past [10, 18].
Historically, three ways of automatic FT inference have been de-

scribed: knowledge-based, model-based and data-driven [7]. Knowledge-

based systems rely on knowledge about the components and the
relationships between them. Model-based approaches focus on trans-
lating existing models, such as graphs, into FTs. Data-driven ap-
proaches use datasets for the inference of FTs.

In this paper, a data-driven approach will be the focus of the
study. Precisely, it will focus on improving the performance of the
FT-MOEA algorithm [7]. FI-MOEA is a multi-objective evolution-
ary algorithm (MOEA), inspired by biological evolution. These algo-
rithms operate on principles such as survival of the fittest, mutation
and crossover while trying to optimize multiple objectives (typically

TScIT 39, July 7, 2023, Enschede, The Netherlands

© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

conflicting) in parallel [16]. In the context of FI-MOEA, it will be
used to infer FTs from a failure data set.

The original FT-MOEA algorithm is able to infer FTs successfully
with a low error rate while also prioritizing a small size for the FTs.
The algorithm uses three objectives: Error based on the failure data
set (¢4), Error based on the Minimal Cut Sets (MCS) (§.), and FT Size
(¢s) [7]- The ¢ metric depends on the computation of MCSs, which
is exponential in complexity [15] and restricts the algorithm from
using noisy data [7].

Consequently, this research aims to remove this metric due to
its deficits in usability and scalability and introduce others that
could potentially improve convergence time and compensate for
the quality improvements introduced by ¢.

Typically in MOEAs problem specific knowledge is used to a
large extent [13, 14]. In this paper, metrics related to the structure of
the FT are considered, but also ones computed out of the confusion
matrix.

The confusion matrix metrics are considered in spite of the fact
that they are unrelated to FTs. A FT can be directly converted to a
failure data set, making such metrics convenient. Using these metrics
is useful in the context of comparing the similarity of datasets.
Additionally, they have a low computational cost. They will be used
in this research to design a new algorithm called FTI-MOEA-CM
1, Since designing an evolutionary algorithm is highly specific in
nature, this research is exploratory in its nature.

The main contributions of this paper are:

(1) Identification of metrics to be used in the algorithm

(2) An analysis of the impact of the metrics on the performance

of the algorithm

(3) An improvement in both convergence time and number of

generations till the convergence of the algorithm

(4) Other insights about the nature of the algorithm and what

factors affect its performance

In the following sections of this paper, the research questions are
presented in Section 2 and then follows a background section (Sec-
tion 3) where the relevant information for the understanding of
the paper is explained. Afterwards, the method section (Section 4)
explains the methods used during the research, followed by an ex-
periments and results (Section 5) section where the findings are
presented and interpreted. The related work (Section 6) will contain
the main sources used in this paper, and the future work (Section 7)
section explains additional future improvements to the performance
of the algorithm. Finally, the conclusion section (Section 8) will
wrap up the paper.

IRepository with the implementation of the algorithm

https://github.com/killB0x/ft-moea-cm

TScIT 39, July 7, 2023, Enschede, The Netherlands

2 RESEARCH QUESTIONS
The research questions of this study are:

e What new metrics can be identified for improving the FT-
MOEA algorithm?

e How do the metrics affect the algorithm’s performance in
terms of convergence time, number of generations until con-
vergence, size and accuracy w.r.t the dataset?

o Considering the newly identified metrics, what is the most
optimal configuration?

e How does the newly found optimal configuration compare
in terms of performance with the original algorithm?

3 BACKGROUND
3.1 Fault trees

Fault trees [17] are a graphical tool used in reliability and safety
analysis, which provide a compact representation of the ways in
which a system can fail. They consist of a few building blocks, which
will be referenced throughout this paper:

(1) Basic events (BE). They are the leaf nodes of the FT and have a
probability value representing the chance of them happening.

(2) Gates. These are operations performed on Basic Events or
Intermediate events. For the scope of this research, only OR
and AND gates will be used.

(3) Intermediate events (IE). These are vents that result from a
gate operation.

(4) Top event (TE). This is the root of the FT. It represents the
event towards which all the other events lead to.

(5) (FT) Element. This refers to either a Gate or a Basic Event.

In Fig. 1, an example of a FT is displayed. To offer a better explana-
tion of what a FT is, its elements will be explained. For example, BE2,
BE3 and BE4 are basic events. They are connected together to an
OR gate (IE3), which is an intermediate event and BE1 is connected
to an AND gate (IE1). At the top of the tree the top event TE can be
seen.

Fig. 1. Inferred FTs from the MPPS dataset using the improved version of
the FT-MOEA algorithm.

Nicolae Rusnac

Now that the concept of FTs has been explained, it is useful to
explain an integral concept related to FTA: Minimal Cut Sets (MCS).
MCS refer to the sets with a minimal number of basic events that
lead to a system failure. In the example, BE1 and BE2 form an MCS,
because their occurrence leads to the occurrence of the top event.
IE3 is an OR gate, so it will have a true value since BE1 is true. IE1
will also be true because IE3 is true, and BE1 is true. TE is an OR
gate, so it will be true since IE1 is true. The cut set is irreducible,
meaning there is no BE we can remove from the set and still have
the TE occur. The concept of MCS is important as it will be used
multiple times in the metric analysis.

3.2 Failure data sets

The failure data sets used throughout this research paper consist
of columns represented by basic events (BE), the value of the top
event for that configuration (TE) and the number of times the event
occurred (Count). Each basic event also has a probability value. How-
ever, it is not used within the scope of this research. The datasets are
complete, meaning they have a row corresponding to any basic event
configuration and are noise-free, meaning there is no corrupted data
in the dataset. Table 1 contains an example of a randomly generated
dataset for seven basic events, each with a probability of 0.5.

Table 1. Dataset example

Ob. | BE1 | BE2 | BE3 | BE4 | BE5 | BE6 | BE7 | TE | Count
0 0 0 0 0 0 0 0 1,968
2 0 0 0 0 0 0 1 0 2,039

24 0 0 1 0 1 1 1 1 1,976

128 1 1 1 1 1 1 1 1 1,947
p~ 050 050 050 0.50 0.50 0.50 0.50 N = 250,000

3.3 FT-MOEA

To explain the FT-MOEA algorithm, evolutionary algorithms should
be described first. An evolutionary algorithm [6] mimics biologi-
cal evolution. It has an initial population, mutation operations, a
selection procedure, and a fitness function. The initial population
represents the seed population used initially when the algorithm
starts. Mutation operations are applied to the existing population to
create a new, potentially improved population. To evaluate whether
the offspring population is better, a fitness function considers differ-
ent characteristics of individuals within the population. Finally, a
selection procedure is a way in determining which members of the
current generation move on to the next one.

The FT-MOEA algorithm [7] starts with an initial population of
two FTs: an AND and an OR gate linked to all the basic events.
During an evolutionary step, the FTs can be subject to seven genetic
mutation operations:

(1) Disconnect. Disconnect a basic event from the tree.

(2) Connect. Connect a disconnected basic event and connect it
to an existing gate.

(3) Swap. Move an event under a different gate.

Improving the Performance of Multi-Objective Evolutionary Algorithms for Fault Tree Inference

(4) Create. A random gate is created under a random gate in the
tree.

(5) Delete. A random gate is deleted, including its children.

(6) Cross-over. Randomly select two trees and exchange an ele-
ment between them.

(7) Change gate. A random gate is changed to the opposite type.

After mutations occur, the metric computation takes place. The
used metrics are: Error based on the failure data set (¢4), Error
based on the MCS (¢,), and FT Size (¢s). After the computation
is done, NGSA-II[4], a sorting algorithm used in multi-objective
evolutionary algorithms, is applied to select the population for the
next generation.
There are also three important parameters used in the algorithm
(7]:
o population size (ps), which represents the population that will
be selected to move on to the next generation
e maximum generations (mg), which is used as a convergence
criterion to prevent the algorithm from running indefinitely
o unchanged generations (ug), which represent the number of
generations during which the best FT has to remain un-
changed in order for the algorithm to converge

4 METHOD
4.1 Problem definition

The problem attempted to be solved in this paper is the algorithm’s
performance. We define an improvement in performance the fol-
lowing way: Let (1, a1) and (t2, az) be the performance measures
of convergence time and accuracy for two algorithms for the same
FT. In this context, accuracy can be the error with respect to the
total sum of the times a TE occurs divided by the total event count
(N). We say that an algorithm with measure (1, a1) is better than
or equivalent to an algorithm with measure (f, az), denoted as
(t1,a1) = (t2,a2), if and only if:

(t1<tyANay =ay)Va>a

Where:
- 11, t represent the convergence times of the two algorithms.
- ay, az represent the accuracies of the two algorithms.
For the purposes of this study, this notation also applies for the time
average and the accuracy average.

The problem that will be attempted to be solved in this research
is to find metrics that lead to better performance in terms of the
aforementioned metrics.

4.2 Experiment Design

For determining the performance of the algorithm, multiple tests
have been conducted. These tests use the same parameters as in
the original FT-MOEA paper [7]: population size - 400, maximum
generations - 100, unchanged generations - 20. Additionally, the
tests were performed on the HPC cluster of the University of Twente.
The tests were run 5 times each. To conduct the analysis, the data
results have been converted to charts using MATLAB scripts, from
which conclusions were inferred. In total 4 datasets have been used
to ensure the validity of the algorithm’s results. Details about the
failure datasets can be found in Table 2. The MPPS and COVID-19

TSclT 39, July 7, 2023, Enschede, The Netherlands

failure data sets are the same ones used in the original FT-MOEA
paper [7]. TS1is based on a FT used in another paper [8] that focuses
on improving the algorithm’s performance. The GPT dataset is
based on a random FT generated by Chat GPT[12]. For both TS1 and
GPT the failure datasets have been randomly generated assuming a
probability of 0.5 of occurring for each basic event.

Table 3. Confusion Matrix Properties
Predicted Positive Predicted Negative

Actual Positive | True Positive (TP) | False Negative (FN)
Actual Negative | False Positive (FP) | True Negative (TN)

4.3 Performance evaluation metrics

Multiple performance metrics have been considered for the purpose
of this research. In this section, each will be discussed, and the
reasoning behind them. Their results will be further discussed in
the Results section Section 5.

4.3.1 Confusion matrix. Using metrics based on the confusion ma-
trix (Table 3) has numerous advantages. Compared to MCS, this
metric is linear in complexity, so the metrics are much faster to com-
pute. From the dataset of a FT, six different values can be calculated
in a single iteration: P - positives, N - negatives, TP - true positives,
TN - true negatives, FP - false positives, and FN - false negatives. Us-
ing these values, a large number of metrics can be computed. From
the perspective of CPU cycles, these metrics provide an advantage,
since once the confusion matrix properties are calculated all the
other metrics can be computed without any additional overhead.

As a metric combination, errors with respect to the following
metrics have been used: error w.r.t specificity (Espec), error w.r.t
sensitivity (Esens), error w.r.t precision (Eprec), error w.r.t negative
predictive value (Eppy) and error w.r.t accuracy (Eacc). These metrics
are calculated according to the following formulas:

o Error w.r.t Sensitivity (True Positive Rate or Recall):

Esens =1 - L (l)
TP+FN
o Error w.r.t Specificity (True Negative Rate):
Egpee =1— —N _ @
TN +FP
e Error w.r.t Precision (Positive Predictive Value):
Eprec =1- TP 3)
pree TP+ FP
e Error w.r.t Negative Predictive Value:
Enpv =1- T—N (4)
TN +FN
e Error w.r.t Accuracy:
Buc=1- TP+TN)
TP+TN+FP+FN

In contrast to the (¢4) metric, these metrics do not use the count
of the occurrence of an event, but the occurrence of the event itself.
This makes a rare, but existing event more likely to be a part of the
resulting FT.

TScIT 39, July 7, 2023, Enschede, The Netherlands

Nicolae Rusnac

Table 2. The datasets used during the testing process and their configuration.

Dataset Name #BE #Gate #AND #OR Rows in dataset
MPPS 8 6 2 4 256

COVID-19 9 4 2 2 512

TS1 10 8 3 5 1024

GPT 12 10 5 5 4096

These metrics have been chosen because they are the most com-
monly used that are computed from the confusion matrix. There are
other metrics as well, but they use these metrics as their foundation.

These metrics should increase the search space of the algorithm.
They each provide a different perspective of the FT since they don’t
perfectly correlate. The more conflicting objectives there are that
don’t correlate, the bigger the explored problem space becomes.

4.3.2 Random dataset segmentation. This technique randomly shuf-
fles the rows of the failure dataset and splits it into equally sized
segments. Then the accuracy with respect to the filled segments
is calculated. Accuracy with respect to filled segments is defined
as the number of filled segments divided by the total number of
segments. A segment is considered filled if the accuracy within that
respective segment is 100%. For the purpose of this study, segments
of sizes 2,4,8 were analyzed. The reasoning behind this metric is to
first make all data points equally important by removing the times
the configuration of that specific data point occurs. Additionally, it
makes the FT less conforming to the MCS. Since an MCS already
process a true TE, the values of the other events are irrelevant. This
means that a smaller MCS will correspond to a higher number of
rows. By shuffling, we give the MCS with a lower number of rows a
higher importance, making the tree move in their direction as well.

One interesting observation related to accuracy is that an im-
provement in the tree’s structure does not necessarily correlate with
increased accuracy. The segmentation prevents small improvements
in accuracy from having a big impact.

4.3.3 Event impact vector distance. Suppose we have a dataset with
N rows and let T be the top event. We introduce a new metric based
on the Birnbaum importance measure [11]. This metric is aimed to
calculate the impact of an event E on T using the following steps:

(1) Let m(E) represent the number of occurrences of the top
event T when event E occurs. Then,

mE)= Y T (©)
i:E; occurs

where E; and T; are the instances of events E and T in the
i-th row of the dataset.
(2) Let m(—E) represent the number of occurrences of T when E
does not occur. Then,
> o)

i:E; does not occur

m(=E) =

(3) The impact I(E) of event E on T is computed as:
m(E) - m(—|E)

1B) = =7

®

Here we divide by N/2 because a failure data set contains all
the possible configurations of basic events. This means that
for each configuration of BEs where a BE occurs, there is a
similar configuration where the event does not occur.

(4) For every basic event Ej, we calculate I(E;) and create a
vector v = [I(E1),I(E2),...,I(E,)] where n is the number of
basic events.

(5) Compute the same vector for the original dataset to obtain

Vdataset-
(6) Normalize both vectors:

Vdataset ©)

and Vataset =

R v
vV=—
[Ivl|

(7) Calculate the Euclidean distance D between them:

[|Vdataset||

(10)

One potential limitation of this metric is that it compresses the
impact of all basic events into a single scalar value, D, which may
not fully represent the algorithm’s progress. A decrease in impact
difference for a highly important event could be overshadowed
by minor deviations in less important events. A potentially more
effective approach might be to consider the difference in impact
for each event as a separate objective. This is beyond the scope
of the present research as it would imply the use of MOEAs with
dynamic objectives, which would lead to refactoring big parts of
the existing codebase and significant time investment. Every BE
would correspond to an objective, meaning the number of objectives
would depend on the failure data set.

D=|¥- odataset”

4.4 Optimization techniques

The parallelization of the FT-MOEA has been considered for improv-
ing its performance as an additional optimization. This is beneficial
for computing larger trees and understanding the effect of metrics
configuration on them. To determine whether the algorithm can
benefit from such an improvement, some analysis has been done on
the way in which the computation time scales with the growth in
the number of basic events for each portion of the program.

The FT-MOEA consists of three parts which repeat every gener-
ation: creating a new population by applying genetic operations,
computing the metrics of the generated population, and applying
NSGA-II sorting for selecting the population for the next generation.
The first two parts are the best candidates for this optimization.
Generally speaking, programs that do many computations where
their order does not matter are easily parallelizable.

Applying the genetic operations to the population can be done
arbitrarily. It is important to remove duplicate trees, which can be
done after all the parallel processes finish their work. The same

Improving the Performance of Multi-Objective Evolutionary Algorithms for Fault Tree Inference

1 —FT-MOEA
—FT-MOEA-CM

Accuracy
Accuracy

0 \
80 0 10 20 30 40
Generations

(b) MPPS dataset

Generations

(a) TS1 dataset

—FT-MOEA

—FT-MOEA
0.2~ | —FT-MOEA-CM 04 \

~7% —FT-MOEA-CM

Accuracy

100

Generations

(d) COVID-19 dataset

Generations

(c) GPT dataset

Fig. 2. Visual representation of accuracy change across generations for
different datasets (the dotted lines represent the minimum and maximum
values used in the computation of the average). In this context, Accuracy
can be considered equivalent to ¢4.

principle applies to the metric calculation section of the algorithm.
The computations’ order is unimportant, so they can be done in
parallel.

5 RESULTS
5.1 Approach to algorithm improvement

Two primary methods were used to enhance the algorithm’s perfor-
mance: Literature research, involving the study of existing Multi-
Objective Evolutionary Algorithms (MOEAs) which was unsuccess-
ful due to their unique problem-specific metrics; and Exploratory
research, which was centred on analyzing the specific problem to
identify potential metrics.

5.2 Confusion Matrix Metrics vs FT-MOEA Metrics

The confusion matrix metrics (CMM) have been used as a candidate
metric against the original one used in FI-MOEA. The goal was
to find a configuration with an improved complexity compared
to MCSs. Because of this, the CMM have not been evaluated in
conjunction with ¢.. For the sake of simplicity, we will further
refer to the algorithm with the original configuration (@¢, ¢4, ¢s)
as FT-MOEA. The algorithm using the configuration resulting from
the aggregation of all the metrics described in the previous section
Section 4.3.1 (Espec, Esens Eprec> Enpvs Eacc) is FI-MOEA-CM.

5.2.1 ldentifying the optimal configuration. To find the best config-
uration of metrics all possible combinations between (Espec, Esenss
Eprec, Enpv) have been tested, in conjunction with Eacc. Eace Was
needed to be used to have a metric that determines whether the
optimal FT (E,cc = 0) has been reached. In the best cases, the subsets
configurations would yield performance similar to or slightly worse

TSclT 39, July 7, 2023, Enschede, The Netherlands

than FTI-MOEA-CM. In the worst cases, they would never reach an
optimal FT.

In some cases, other configurations were faster in terms of com-
putation time but did not reach the optimal FT. Considering the
definition provided in the Method section (Section 4), this cannot be
considered an improvement. Adding more confusion matrix metrics
does not results in additional performance overhead, since the con-
fusion matrix is already computed. Based on this information, it was
concluded that the most optimal configuration from the confusion
matrix was the one used in FI-MOEA-CM.

5.2.2 Accuracy analysis. Considering the evaluated datasets, FT-
MOEA-CM reaches the optimal tree faster in all cases in terms of
generations Figure 2. It is worth noting that the in the presented
graphs, the curve representing the Confusion Matrix Metrics is
below the one representing FT-MOEA in any recorded instance.

The distance between the slopes is the greatest in the case of
COVID-19 (Figure 2d). When using FI-MOEA, the optimal tree is
not reached. This is likely due to the fact that the algorithm gets
stuck in local optima. Since it is only guided by three objectives, the
genetic mutation operators might not be impactful enough to move
out of the local optima towards a better solution. This shows that
the Matrix Metrics explore the search space in a way that originally
was not possible, which leads not only to faster convergence in
terms of generations but also to previously unaccessible optimal
trees.

Another observation is that when the FTI-MOEA-CM is used,
the algorithm tends to deviate considerably less from the average.
The value intervals in the case of the FI-MOEA are wider. This
shows that the FI-MOEA-CM is more consistent, yielding a more
predictable behaviour.

The faster drop towards the optimal solution in the case of FT-
MOEA-CM is likely due to the number of metrics used and what
they reveal about the problem. Having metrics that represent un-
correlated metrics is useful because each will cause the problem to
consider new solutions that move towards the optimal tree. Highly
correlated objectives will not add much value since they will not
reveal new ways for achieving an optimal solution.

5.2.3 Size analysis. Unlike accuracy, variability in size is similar
for both configurations (Figure 3). One common pattern that can be
noticed is that the FTs tend to first quickly grow in size and decrease
slowly over time until they reach the optimal tree.

In the case of FI-MOEA-CM, the algorithm starts exploring larger
FTs quicker compared to FT-MOEA. This is best observed in the
GPT dataset (Fig. 3c), where the explored FTs reach sizes over 100
in some cases.

The quicker spike in size might be caused by the increase in
objectives. Considering that in NSGA-II each objective has equal
weight, adding more objectives decreases the influence of each
objective. Size becomes less important, so the algorithm gets to
explore larger FT. This is amplified by the fact that MOEAs are
generally used to find solutions for conflicting objectives, but in this
instance, we only have two real conflicting objectives: the size of
the tree and how closely related the FT is to the dataset. The Matrix
Metrics, for example, are somewhat correlated, since they all would
have an error rate of 0 when the FT corresponds perfectly to the

TScIT 39, July 7, 2023, Enschede, The Netherlands

0 —FT-MOEA-CM 0 —FT-MOEA-CM
0 50 100 0 10 20 30 40
Generations Generations

(a) TS1 dataset (b) MPPS dataset

W~ 100
100 N —FT-MOEA .
ol —FT-MOEA-CM 80 \
: 2 60 b :
" (]
T 40 : .
20, —FT-MOEA
o —FT-MOEA-CM
0 50 100
Generations Generations

(c) GPT dataset (d) COVID-19 dataset

Fig. 3. Visual representation of size change across generations for different
datasets (the dotted lines represent the minimum and maximum value used
in the computation of the average)

dataset. So, in this sense, the weight of the objectives related to the
dataset is higher than the size.

Exploring larger FTs comes at the cost of an increase in metrics
computation time. This creates a trade-off between exploring larger
trees and keeping the algorithm efficient. Since in this case size
becomes less important, the algorithm can choose to follow a route
with larger FTs instead of one with fewer trees which also leads to
convergence in a comparable number of generations.

We can notice that in all cases, FTI-MOEA-CM results in a smaller
FT, except for the GPT dataset (Fig. 3c). The exploration of larger
trees increases the number of generations it takes for the algorithm
to reduce its size.

5.24 Time analysis. In all the studied cases, the convergence time
was faster than the original algorithm (Figure 4). An interesting
observation is that in all cases, except for COVID-19, the time per
generation is larger in FI-MOEA-CM. As mentioned in the previous
subsection (Section 5.2.3), this is likely caused by the larger subtrees
explored. The inverse of this is noticeable in the COVID-19 dataset,
where FT-MOEA explores larger trees, resulting in a larger time
spent per generation.

Looking at the MPPS size chart (Figure 3b), we can see that in both
cases a pretty similar pattern is followed resulting in also a similar
pattern in terms of time spent. This might indicate that, at least for
smaller FTs ¢, is not a very time-consuming metric. The precise
effects of the metric should be studied further to gather a better
understanding of its impact on the performance of the algorithm.

5.2.5 Analysis conclusion. To conclude the analysis of this metric,
it is important to understand whether this metric led to an improve-
ment in the algorithm. Earlier, in the problem definition, it was
stated that the algorithm would yield an improvement if and only if,

Nicolae Rusnac

15000 5000

—FT-MOEA —FT-MOEA

4000

Z3000
Q

Time (s)

£ 2000
1000

0 50 100 0 10 20 30 40
Generations Generations

(a) TS1 dataset (b) MPPS dataset

15000 15000
% 10000 % 10000
(o] Q
£ £
= 5000 = 5000

—FT-MOEA —FT-MOEA
—FT-MOEA-CM —FT-MOEA-CM

0 50 100 0 50 100
Generations Generations

(c) GPT dataset (d) COVID-19 dataset

Fig. 4. Visual representation of time across generations for different datasets
(the dotted lines represent the minimum and maximum values used in the
computation of the average)

either the accuracy of the Matrix Metrics configuration would result
in better accuracy than FT-MOEA or if it would result in a better
time with no worse accuracy. Considering that in all cases, the algo-
rithm converged faster, the changes in metrics can be considered
an improvement to the algorithm.

5.3 Scalability

The old version of the algorithm did not scale very well. It relies
on the computation of MCSs for reaching the global optima (¢4 = 0
and ¢, = 0). The problem is that computing MCSs has exponential
complexity in the number of BEs, which makes it difficult for the
algorithm to handle larger cases.

This problem should be reduced when using CMM. However,
during the analysis in Section 5.2, it became clear that in order
to reach solutions faster or to reach some solutions at all, larger
FTs need to be explored. To calculate a metric, like accuracy, for
example, for each row in the data set, it is necessary to waste a
number of cycles the size of a tree to find the value a particular
configuration of basic events would yield. So if a dataset has 214,
it would take approximately 2!4 operations to iterate through the
dataset. To calculate accuracy, for example, 214 « TreeSize would
have to be calculated.

Perhaps a solution to this problem to be tried in the future is to
save FTs in memory and only compute the confusion matrix for the
rows that have been subjected to change based on the events that
were changed in the structure of the FT. We can find the rows which
affect these events using a similar process to the one described in
the Event impact vector distance subsection. It is also likely that
multiple FTs move from one generation to the next one. For those,
it is also possible to save the metrics in memory to not compute
them again.

Improving the Performance of Multi-Objective Evolutionary Algorithms for Fault Tree Inference

C ion Time for Each Category
200 T T T

I Metric
4 NSGA

180

I Generation

N
o

Computation Time (Seconds)
=] 3
o o

Fig. 5. Computational resources wasted in one iteration of FT-MOEA-CM

Another important problem hindering larger trees’ computabil-
ity is the population generation process. Currently, many similar
trees are generated on which metrics are computed, which only
wastes computing power. In its current state, the algorithm checks
for duplicate identical trees only. This, however, overlooks many
identical, slightly different trees. For example, if we consider the
following trees T1 = AND(BE1, BE2), T2 = AND(BE1, BE2) and T3 =
AND(BE2, BE1), where AND represents a gate to which basic events
are connected, then the algorithm would consider T1 to be identical
to T2 but not to T3.

The best solution to scale, however, which would improve the
performance most significantly, is the spreading of the computa-
tion tasks across multiple CPUs. In the next section, this type of
optimization will be discussed.

5.4 Multi-processing

To get a better understanding of how multi-processing might impact
the algorithm, for each dataset, for one emulation for each main
section of the algorithm: the generations of the population, the
metric computation and the NSGA-II sorting, the average time per
generation will be calculated with the metric configuration used in
the original algorithm. The times have been measured for all the
datasets described in Table 2. The bars are organized from left to
right in increasing order regarding the number of BEs.

Analyzing Figure 5, the time spent in NSGA-II sorting is likely
constant; however, a positive correlation between the number of
BEs and elapsed time can be noticed in the population generation
and metric computation phases.

Based on these findings, the implementation of the algorithm
has been changed to using multiple processes in these two parts of
the code. This has been done using the multiprocessing library in
Python.

TSclT 39, July 7, 2023, Enschede, The Netherlands

5000 -
—FT-MOEA MultiProc 3000 ' —FT-MOEA-CM MultiProc, -~
4000 —FT-MOEA —FT-MOEA-CM g
23000 £2000
£ £
£ 2000 =
= = 1000
1000
0 0
0 10 20 30 40 0 10 20 30 40

Generations Generations

(a) Time performance using FT- (b) Time performance using FT-
MOEA metric configuration MOEA-CM metric configuration

Fig. 6. Multiprocessing time analysis (the dotted lines represent the mini-
mum and maximum values used in the computation of the average)

Figure 5 presents the algorithm’s behaviour when multiprocess-
ing with 16 CPUs. A significant improvement in performance in
both the original configuration of the FT-MOEA algorithm and
FT-MOEA-CM can be noticed. Additionally, it can be seen that us-
ing multiprocessing yields more consistent results as the deviation
between runs in terms of time becomes smaller.

These results are promising. However, more work is needed to
understand the full effects of this optimization better. It would be
useful to understand better the relation between the computation
time of the population generation phase in the algorithm and the
size of the FT.

We can see that the results presented in Figure 6 are conformed
to the bar chart presented in Figure 5. If we consider the time perfor-
mance when multiprocessing in both cases presented in Figure 6. the
time difference is negligible. This is because the metric computation
represents a smaller time portion in this dataset.

5.5 Other metrics

The other metrics that were discussed in Section 4.3.2 and Sec-
tion 4.3.3 did not show a significant improvement. When used in-
stead of @ the results were far worse. In some cases, there was
some improvement when used with it. The following subsections
will explain the reasoning behind the lack of improvement.

5.5.1 Random dataset segmentation. This metric has shown limited
improvements when used with FTI-MOEA. The results, however,
were inconsistent and only noticeable when using a segment size
of 4. When using a segment size of 2, there was essentially no
change in performance, likely since this metric would resemble ¢ .
When using a segment size of 8 there would also be no change in
performance. This is probably caused by the fact that the genetic
operators used do not change the FT enough for it to increase under
such conditions.

The positive results in the case of using a segment size of 4 might
be attributed to the reasons stated in the method section (Section 4).
It is also likely that its presence lowered the influence of the size
objective, resulting in better performance.

Additionally, the value of this metric might yield different results
for the same FT. This is problematic because, in some cases, worse
FTs might be selected over better FTs due to the random nature of
the algorithm.

TScIT 39, July 7, 2023, Enschede, The Netherlands

5.5.2 Eventimpact vector distance. This metric had no improvement
in performance at all. This is likely due to the reasons stated in the
methods section (Section 4), precisely that a scalar value is not a
good fit for calculating differences between many vectors with the
goal of improving them.

6 RELATED WORK

The area of FT inference using MOEAs is relatively unexplored,
posing a unique challenge when seeking direct literature precedents.
Few studies delve into the details of fitness functions in genetic
algorithms, key areas of this research.

Generally speaking, there are different approaches to inferring
FTs: knowledge-based, model-based and data-driven. Carpiagno and
Poucet [1] discuss multiple approaches to knowledge-based fault
tree inference. They focus on representing what is known about
the system through knowledge representation models, later used
to infer the FT. Dickerson et al[5] discuss a model-based approach
to inferring fault trees from an existing model, precisely UML dia-
grams. This approach focuses on essentially translating an existing
model to an FT. In this study the focus will be placed on data-driven
approaches, precisely those that use evolutionary algorithms.

In the context of evolutionary algorithms, the first attempt was
carried by Linard et al. [9]. The paper describes a genetic algorithm
for inferring FTs using a one-dimensional fitness function based
on accuracy based on failure data sets. The main drawback of the
algorithm is that it can grow into arbitrarily large trees, because size
is not considered. Additionally, since it does not use other metrics,
it converges slower.

The paper by Jimenz-Roa et al. [7] introduces the use of MOEA to
infer FTs from failure data sets. The algorithm presented in the paper
uses the NSGA-II sorting method. Additionally, it uses additional
objectives related to MCSs, and accuracy in size. Compared to the
algorithm presented by Linard et al. [9], it leads to faster convergence
and smaller FTs. The main drawbacks of the algorithm are the slow
computation of MCS and its inability to handle noisy data.

This research [8] introduced the use of symmetries and modules
to optimise the inference process of FTs when using MOEAs. It
focuses on identifying similar parts in the FT structure for faster
computation of the FT. It essentially uses a similar algorithm to
the one used by Jimenz-Roa et al. [7], adding heuristics for faster
computation. However, it does not directly provide any insights
about improving evolutionary algorithms in this context.

7 FUTURE WORK

Although this paper has brought some contributions to the initial
algorithms, there are still multiple aspects of the algorithm to study
that could improve it.

o Further Confusion Matrix Metrics Analysis Although some of
the more basic metrics have been used in this paper, other in-
teresting metrics must be studied. Metrics such as the Matthews
correlation coefficient and Balanced accuracy could improve
the algorithm’s performance. According to the relevant liter-
ature, they might be better compared to accuracy [2, 3].

e Noisy Data In the original FT-MOEA paper, there was testing
done on noisy data. Originally, it was not possible to calculate

Nicolae Rusnac

the MCSs under such conditions. FT-MOEA with the metrics
presented here should deal better with noisy data, but further
research is needed.

e Deeper Algorithm Performance Analysis Some interesting re-
sults have emerged from using multiprocessing. There still
are odd behaviours, like only using confusion matrix metrics
taking longer to compute compared to the initial configu-
ration of the algorithm. An in-depth analysis in this regard
could yield performance improvements. Also, it would be use-
ful to further understand in which way parts of the algorithm
affect its performance.

o Caching Metric Data Other improvements could be made from
the perspective of the software. Likely, using some sort of
caching to compute metrics in the FT could show positive
results. Computing the metrics more smartly is likely possible.
Considering a mutation operation in most cases results in
the change of a single event or a gate, it is not necessary to
recompute the metric for the entire dataset, but only for the
affected portion of the dataset by that change.

o Improved Equivalence Comparison in FTs Creating a more pow-
erful filter that would prevent equal FTs from being evaluated
twice will likely result in better performance.

8 CONCLUSION

The problem tackled in this research is improving the performance
of the FI-MOEA algorithm. The focus was placed on identifying
metrics that would replace a metric based on MCS, considering it
was problematic from a complexity perspective and would prevent
the algorithm from working with noisy data.

Several new metrics were identified, such as the Random segmen-
tation metric, Event impact vector metric and Confusion Matrix
matrix. Their performance was evaluated in relation to accuracy,
time, size and number of generations until the algorithm’s conver-
gence. It was concluded that the first two metrics did not show much
improvement. Still, the algorithm based on the confusion matrix
has shown significant improvements in terms of time, accuracy
and generations until convergence. The new metric configuration
performs consistently across various failure data sets varying in BE
count.

The findings have notable implications in the field of multi-
objective evolutionary algorithms that focus on the data-driven
inference of models, especially in the case of FTs, by outlining the
potential of the use of confusion matrix metric in improving algo-
rithm performance.

Improving the Performance of Multi-Objective Evolutionary Algorithms for Fault Tree Inference

REFERENCES

[1]

[2]

[3]

[4]

[5

—

[6]

7

[

[8

—

[o

[10]

(1]

[12]
[13]

[14]

(15]
[16]

[17]

A. Carpignano and A. Poucet. 1994. Computer Assisted Fault Tree Construction:
A review of methods and concerns. Reliability Engineering amp;amp; System
Safety 44, 3 (1994), 265-278. https://doi.org/10.1016/0951-8320(94)90018-3
Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC Genomics 21, 1 (Jan 2020). https://doi.org/10.1186/s12864-019-
6413-7

Davide Chicco, Niklas Tétsch, and Giuseppe Jurman. 2021. The Matthews Cor-
relation Coefficient (MCC) is more reliable than balanced accuracy, bookmaker
informedness, and markedness in two-class confusion matrix evaluation. BioData
Mining 14, 1 (Feb 2021). https://doi.org/10.1186/513040-021-00244-2

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-IL. IEEE Transactions on Evolutionary Computation
6,2 (2002), 182-197. https://doi.org/10.1109/4235.996017

Charles E. Dickerson, Rosmira Roslan, and Siyuan Ji. 2018. A formal transforma-
tion method for automated fault tree generation from a UML activity model. IEEE
Transactions on Reliability 67, 3 (2018), 1219-1236. https://doi.org/10.1109/tr.2018.
2849013

AE. Eiben and J.E. Smith. 2015. Introduction to evolutionary computing. Springer.
25-48 pages.

Lisandro A. Jimenez-Roa, Tom Heskes, Tiedo Tinga, and Marielle Stoelinga. 2023.
Automatic inference of fault tree models via multi-objective evolutionary algo-
rithms. IEEE Transactions on Dependable and Secure Computing (2023), 1-12.
https://doi.org/10.1109/tdsc.2022.3203805

Lisandro Arturo Jimenez-Roa, Matthias Volk, and Mariélle Stoelinga. 2022. Data-
driven inference of fault tree models exploiting symmetry and modularization.
Lecture Notes in Computer Science (2022), 46—61. https://doi.org/10.1007/978-3-
031-14835-4 4

Alexis Linard, Doina Bucur, and Mariélle Stoelinga. 2019. Fault trees from data:
Efficient Learning with an evolutionary algorithm. Dependable Software Engineer-
ing. Theories, Tools, and Applications (2019), 19-37. https://doi.org/10.1007/978-3-
030-35540-1_2

Faida Mhenni, Nga Nguyen, and Jean-Yves Choley. 2014. Automatic fault tree
generation from SysML system models. 2014 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (2014). https://doi.org/10.1109/aim.2014.
6878163

Patryk Miziula and Jorge Navarro. 2019. Birnbaum importance measure for
reliability systems with dependent components. IEEE Transactions on Reliability
68, 2 (2019), 439-450. https://doi.org/10.1109/tr.2019.2895400

OpenAl 2023. GPT-4. https://openai.com/research/gpt-4.

Pedro J. Ponce de Ledn, José M. Ifiesta, Jorge Calvo-Zaragoza, and David Rizo. 2016.
Data-based melody generation through multi-objective evolutionary computation.
Journal of Mathematics and Music 10, 2 (may 3 2016), 173-192. [Online; accessed
2023-06-09].

T. Devi Prasad and Nam-Sik Park. 2004. Multiobjective genetic algorithms for
design of water distribution networks. Journal of Water Resources Planning and
Management 130, 1 (1 2004), 73-82. [Online; accessed 2023-06-09].

A. Rauzy. 2001. Mathematical foundations of minimal cutsets. IEEE Transactions
on Reliability 50, 4 (2001), 389-396. [Online; accessed 2023-06-09].

Tomasz G. Smolinski. 2014. Multi-objective evolutionary algorithms. Springer New
York, New York, NY, 1-4. [Online; accessed 2023-06-09].

W. E. Vesely. 1981. Fault Tree Handbook. Nuclear Regulatory Commission. 8-22
pages. [Online; accessed 2023-06-09].

[18] Jianwen Xiang, Kazuo Yanoo, Yoshiharu Maeno, and Kumiko Tadano. 2011. Auto-

matic synthesis of static fault trees from System Models. 2011 Fifth International
Conference on Secure Software Integration and Reliability Improvement (2011).
https://doi.org/10.1109/ssiri.2011.32

TSclT 39, July 7, 2023, Enschede, The Netherlands

https://doi.org/10.1016/0951-8320(94)90018-3
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s13040-021-00244-z
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/tr.2018.2849013
https://doi.org/10.1109/tr.2018.2849013
https://doi.org/10.1109/tdsc.2022.3203805
https://doi.org/10.1007/978-3-031-14835-4_4
https://doi.org/10.1007/978-3-031-14835-4_4
https://doi.org/10.1007/978-3-030-35540-1_2
https://doi.org/10.1007/978-3-030-35540-1_2
https://doi.org/10.1109/aim.2014.6878163
https://doi.org/10.1109/aim.2014.6878163
https://doi.org/10.1109/tr.2019.2895400
https://openai.com/research/gpt-4
https://doi.org/10.1109/ssiri.2011.32

TScIT 39, July 7, 2023, Enschede, The Netherlands

Appendices

7Eprec Enpv
0.06 —FT-MOEA-CM

Accuracy

0 10 20 30 40
Generations

(a) Eprec+Enpy vs. FTI-MOEA-CM

0.1
_Eprec
0.08 — FT-MOEA-CM
>
§0.06
3
0.04
2
0.02
0

0 10 20 30 40
Generations

(c) Eprec vs. FI-MOEA-CM

0.1

—E E,
prec spec

0.08 —FT-MOEA-CM

0 10 20 30 40

Generations
(€) Eprec+Espec vs. FT-MOEA-CM
0.1
0.08
>
§0.06

3
80.04
<

0.02

0 10 20 30 40

Generations

(8) Esens vs. FT-MOEA-CM

0.1
_Espec
0.08 —FT-MOEA-CM
>
§0.06
3
0 0.04
<
0.02
0
0 10 20 30 40
Generations

(i) Espec vs. FT-MOEA-CM

Fig. 7. Visual representation of accuracy change across generations for
different configurations evaluated on dataset COVID-19. In this context,

Accuracy

0 10 20 30 40
Generations

(b) Enpy vs. F-MOEA-CM
0.1

—E E,
prec —sens

0.08 —FT-MOEA-CM

0 10 20 30 40
Generations

(d) Eprec+Esens vs. FT-MOEA-CM

0.08

Accuracy

0 10 20 30 40

Generations
(f) Eprec vs. FT-MOEA-CM
0.1
_Espec Enpv
0.08 —FT-MOEA-CM
>
§0.06
3
30.04
<
0.02
0

0 10 20 30 40
Generations

(h) Espec+Enpy vs. FT-MOEA-CM

0.08

—E, E
spec sens

—FT-MOEA-CM

Accuracy

0 10 20 30 40
Generations

(j) Espec+Esens vs. FT-MOEA-CM

Accuracy can be considered equivalent to ¢4.

0.15
—E__E
prec npv
—FT-MOEA-CM
3 0.1
g
3
3
< 0.05
0
0 10 20 30 40
Generations

() Eprec+Enpy vs. FTI-MOEA-CM

0.15
3 0.1
g
3
8
< 0.05
0
0 10 20 30 40
Generations
(c) Eprec vs. FT-MOEA-CM
0.15
3 0.1
g
3
3
< 0.05

0 20 40 60
Generations

(€) Eprec+Espec vs. FT-MOEA-CM

0.15

Accuracy
o

o ©
(5] -—h

20 30 40
Generations

(g) Esens vs. FI-MOEA-CM

0 10

0.15
—E
spec
—FT-MOEA-CM
3 0.1
g
3
S
< 0.05
0

0 10 20 30 40
Generations

(i) Espec vs. FT-MOEA-CM

Accuracy

Accuracy

Nicolae Rusnac

0.15
T Tnpv
—FT-MOEA-CM
0.1
0.05
0

0 10 20 30 40
Generations

(b) Enpy vs. FT-MOEA-CM

0.15
—E___E
prec sens
—FT-MOEA-CM
0.1
0.05
0

0 10 20 30 40
Generations

(d) Eprec+Esens vs. FTI-MOEA-CM

0.15

Accuracy
o
o

o
o
o

0 10 20 30 40
Generations

(f) Eprec vs. FI-MOEA-CM

0.15
—E E
spec npv
—FT-MOEA-CM
2 0.1
g
3
8
<0.05
0

0 10 20 30 40
Generations

(h) Espec+Enpy vs. FT-MOEA-CM

0.15
—E E,
spec sens
—FT-MOEA-CM
2 0.1
g
3
8
<0.05
0

0 10 20 30 40
Generations

(j) Espec+Esens vs. FT-MOEA-CM

Fig. 8. Visual representation of accuracy change across generations for dif-
ferent configurations evaluated on dataset MPPS. In this context, Accuracy

can be considered equivalent to ¢4.

10

Improving the Performance of Multi-Objective Evolutionary Algorithms for Fault Tree Inference

E
prec

'spec

Metric Value
o

0 10 20 30 40 0 10 20 30 40
Generations Generations

(a) COVID-19 dataset (b) MPPS dataset

Fig. 9. Metric behaviour in MPPS and COVID-19 datasets across genera-
tions in FI-MOEA-CM.

11

TSclT 39, July 7, 2023, Enschede, The Netherlands

A PLOTS FOR DIFFERENT CONFIGURATIONS OF
CONFUSION MATRIX METRIX

In this appendix, different configurations of the confusion matrix
metrics will be presented in comparison with FTI-MOEA-CM in Fig-
ure 7 and Figure 8. E;cc was used in conjunction with the metric
combinations specified in all cases. In Figure 9, the behaviour of
different metrics is presented as the algorithm approaches the opti-
mal solution. These measurements were used to find the optimal
configuration of the algorithm and gain a better understanding of
how it works.

	Abstract
	1 Introduction
	2 Research questions
	3 Background
	3.1 Fault trees
	3.2 Failure data sets
	3.3 FT-MOEA

	4 Method
	4.1 Problem definition
	4.2 Experiment Design
	4.3 Performance evaluation metrics
	4.4 Optimization techniques

	5 Results
	5.1 Approach to algorithm improvement
	5.2 Confusion Matrix Metrics vs FT-MOEA Metrics
	5.3 Scalability
	5.4 Multi-processing
	5.5 Other metrics

	6 Related Work
	7 Future work
	8 Conclusion
	References
	Appendices
	A Plots for different configurations of confusion matrix metrix

