
Investigating Availability Computation with Exponential Failure Rates
and Fixed-Time Repair Delays
SILAS DE GRAAF, University of Twente, The Netherlands

Fault tree analysis is a widely used method for assessing system risks and
reliability. In repairable fault trees, components are typically modeled with
exponentially distributed failure and repair rates. However, a novel approach
is to consider the repair time of these components to be fixed. Researchers at
the University of Twente have developed a theorem for computing the time-
specific availability of such components. Currently, the applicability of the
theorem to real-life scenarios is unexplored, and there is a lack of practical
implementations. Moreover, the theorem’s current state lacks exploration of
potential extensions. An existing case study was identified to demonstrate
the practical applicability of the theorem. Furthermore, a Python tool was
developed which utilizes the new approach. The study also explored exten-
sions to the basic theorem. These include the calculation of other properties
for components with an exponentially distributed failure rate and fixed time
delay, as well as the availability computation for components with more
complex failure behaviour. Through experiments, insights were gained into
the change in component availability over time. The most significant finding
is that accurately describing failure behaviour and considering fixed repair
times improves our ability to estimate component availability effectively.
Ultimately, the study serves as a first expedition into the possibilities pre-
sented by the novel approach. Multiple avenues for future research into the
topic are identified.

Additional Key Words and Phrases: Fault Tree Analysis, Repairable Fault
Trees, Fixed Repair Time, Availability, Phase-Type Failure

1 INTRODUCTION
Fault tree analysis is a commonly used technique in safety and
reliability engineering to assess the durability of safety-critical sys-
tems. The technique is based on the assumption that the connection
between individual components and events of a system can be ex-
pressed as a combination of logic gates. See Figure 1 for an example.
The top level node represents a critical event such as system failure
or any other undesired outcome. The leaf nodes represent basic
events such as a component failure or a human error. Qualitative
analysis of a fault tree diagram makes it possible to identify criti-
cal parts of a system by constructing the minimum combinations
of basic events that cause the critical event, also called minimal
cut sets. When it is possible to model the behaviour of individual
components, it becomes feasible to conduct a quantitative analysis.
Quantitative analysis enables engineers to go beyond qualitative
assessments and obtain numerical values that provide a deeper un-
derstanding of the system’s reliability and availability. Examples
of fields that make use of fault tree analysis include, but are not
limited to, aerospace engineering [7], social sciences [10], nuclear
engineering [9] and aviation engineering [20, 13].

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Fig. 1. Example of a fault tree diagram [11].

Currently, a prevalentmethod ofmodeling individual components
is by means of continuous-time Markov chains (CTMC). Each state
in the chain represents a specific condition of the component, which
coincides with one of the two possible values a component can take
in the fault tree: ’working’ or ’broken’. The transitions between
states occur probabilistically over continuous time, governed by
exponentially distributed variables. An enhancement to basic fault
tree models is the idea of repairable fault trees. In basic fault tree
models, states which represent the component being broken are
absorbing, that is, they never return to a working state. In repairable
fault trees, components can be replaced or repaired. The time that
it takes to perform such an operation can be expressed in a CTMC
with a transition back to a working state.

A novel approach is to consider the required time for a repair as
a fixed value. An advantage of this approach is that the required
time for a repair of a component is often much more predictable
than its failure. Repair processes are typically planned, and the
necessary resources, such as spare parts and maintenance personnel,
are allocated in advance. As a result, in some cases, the repair time for
a component can be estimated with a reasonable level of accuracy.
By using a fixed repair delay instead of a repair rate, the model
provides a more realistic representation of the system. This implies
more realistic values of properties computed from the model as
well. Models which contain this combination of failure rates with
fixed repair delays will henceforth be referred to as CTMC with
fixed delay (CTFD). These CTFDs have thus far not been considered
in the literature. A theorem to compute the availability at a given
time for a CTFD with two states has been developed by Dr. E.M.
Hahn and Dr. M.A. Lopuhaä-Zwakenberg from the FMT group at
the University of Twente.

Definition 1.1. The availability of a system at time 𝑡 is equal to
the probability that the system is in a working state at 𝑡 .

An illustration of such a CTFD system is depicted in Figure 2. In
this example, the state S1 represents the working state, while S2

1

TScIT 39, July 7, 2023, Enschede, The Netherlands SILAS DE GRAAF

Fig. 2. Basic 2-state CTFD with exponential failure rate 𝜆 and fixed repair
time 𝑟 .

represents the broken state. Definition 1.1 makes it clear that we are
targeting time-specific properties of fault tree models as opposed
to long-term values. Further mentions of availability should be
considered to refer to the time-specific availability. When this is not
the case, this is made explicitly clear. The aforementioned theorem
is presented below.

Theorem 1.2. Let component C be an stochastically independent
basic event of a fault tree diagram with a failure rate 𝜆 and a fixed
repair delay 𝑟 . Then the availability 𝑃𝐶 (𝑡) can be calculated using the
following formula:

𝑃𝐶 (𝑡) =
⌊ 𝑡𝑟 ⌋∑︁
𝑖=0

(𝜆(𝑡 − 𝑖𝑟))𝑖
𝑖!

e−𝜆 (𝑡−𝑖𝑟) .

The intuition behind Theorem 1.2 is that due to the fixed repair
time there is a limit on the amount of failures that can occur within
a timeframe. The availability is equal to the probability of being in
a working state at the end of this timeframe. We can split up this
probability into a finite number of cases, where each case represents
a number of failures. Hence, there exists a case that covers the
maximum number of failures, no failures at all and any amount in
between. In each case, we account for being unable to fail during a
repair. Therefore we subtract the total repair time from the amount
of time available within the timeframe. We can then, for each case,
compute the probability that the number of failures occur within
the remaining time.

The formal proof for Theorem 1.2 is currently under development
and will be released in a later paper. Even so, the practical appli-
cability of the theorem to real-life scenarios remains unexplored.
Furthermore, there is a notable absence of any practical implemen-
tation of the theorem, hindering the ability to conduct experiments
and lacking a reference for other researchers to create their own im-
plementation or build upon. Finally, the current state of the theorem
remains limited, with no research undertaken to explore potential
extensions. This research aims to address these three key problems
by investigating the following research questions:

(1) Which case studies exist for which the usage of the approach
is appropriate?

(2) How can Theorem 1.2 be implemented for use in fault tree
analysis?

(3) How does the availability behaviour of a component described
by the 2-state CTFDmodel differ from other models, and what
specific patterns or characteristics does it exhibit?

(4) How can Theorem 1.2 be extended to support the computation
of more complex properties?

(5) How can Theorem 1.2 be extended to support more complex
CTFD models?

If a case study can be found for which it is reasonable to assume
the usage of fixed repair delays, it serves as substantial validation
for the practical applicability of Theorem 1.2. To find suitable case
studies, we will perform a literature review. Section 2 will encom-
pass both the methodology employed and the outcomes of this
review. A Python tool which utilizes Theorem 1.2 to conduct fault
tree analysis will be developed to facilitate experimentation and
serve as a foundation upon which the theorem can be expanded.
Architectural choices as well as implementation details will be pro-
vided in Section 3. Some experiments will be run with the tool to
analyze the change in availability for individual components as well
as complex systems. Next, this behaviour will be compared to that
of other models, including the traditional approach of modeling a
component according to an exponentially distributed failure and
repair rate. The results and interpretations of these experiments are
presented in Section 5. To find possible extensions to the computed
properties, existing literature in the field of fault tree analysis will
be explored. Any interesting properties that are found are then con-
sidered to determine their computability within our 2-state CTFD
model. Extensions to the 2-state CTFD model will be considered
as well. The results of this can be found in Section 4. In Section 6,
the research findings will be summarized and analyzed. This will
include an assessment of the case study’s validation of the fixed
repair delay assumption, the insights obtained through the tool’s
implementation and application, and potential extensions of the
theorem. Finally, new avenues for future research and refinement
of Theorem 1.2 will be proposed.

2 PRACTICAL APPLICABILITY
In order for a theorem to gain widespread acceptance within the
research community, it is crucial to establish the practical relevance
of the theorem. This section aims to identify relevant case studies
from existing literature, where it is reasonable to assume that the
repair or replacement of components can be accomplished within
a fixed time. To locate such case studies, we made use of FFORT,
a benchmark suite developed by the University of Twente, which
includes a variety of fault tree diagrams and their original sources
[15, 12]. We employed a selection procedure to make sure that the
selected case studies adhered to three conditions.

2.1 Case study selection procedure
Firstly, the fault tree diagram corresponding to the case study should
contain only basic fault tree diagram gates. These include AND, OR
and K-of-M (voting) gates. AND gates in a fault tree diagram fail if
and only if all children have failed. OR gates in a fault tree diagram
fail if and only if one or more children have failed. K-of-M gates, also
referred to as voting gates, fail when K out of N children have failed.
In dynamic fault tree analysis, more complex gates exist, such as
priority AND gates, sequence enforcers or functional dependency
gates. These gates have in common that they enforce some con-
ditional behaviour from their children, such as a certain order in
which they must fail. This violates the precondition in Theorem 1.2,

2

Investigating Availability Computation with Exponential Failure Rates and Fixed-Time Repair Delays TScIT 39, July 7, 2023, Enschede, The Netherlands

Fig. 3. Example of shared basic events.

which states that the theorem only holds for stochastically indepen-
dent basic events. Due to the elaborate search functions of FFORT,
it was an easy task to filter out the case studies that did not meet
this condition.

The second condition was that each node in the fault tree diagram
of the case study could only be the child of at most one parent. An
example of a violation of this kind is given in Figure 3, where the
basic event with label ’2’ has two parents and is thus ’shared’ by
its parents. The reason for this condition is once more to prevent
dependencies between events. Since a fault tree diagram has one top
level node of which all other nodes are descendants, when a node
has multiple parents, those parents eventually converge. In most
cases, this implies that they are not independent from each other, as
both are dependent on the node with multiple parents. Although a
dependency of this sort does not violate the precondition in Theorem
1.2, as all basic events are still stochastically independent from each
other, it complicates the calculation of properties of the overall
system. Budde and Stoelinga [2] proposed algorithms to effectively
propagate properties through trees with shared subtrees. However,
as this complexity does not contribute to the research objectives, it
falls outside the scope of this study. A simple look over the visualized
fault tree diagrams was enough to filter out any case studies which
did not ensure the independence of all events.

The final step in the procedure was to read through all remaining
case studies and find out if the assumption of fixed repair delay is
reasonable to make. When this seemed to be the case, additional
sources were sought that substantiated the assumption. Ultimately,
the selection procedure culminated in the selection of a case study
about a repairable critical computer system, namely the Radio Block
Center (RBC).

2.2 Case study: Radio Block Center
The growing demand for performance, reliability, and safety in rail-
ways has led to the widespread use of computer-based railway con-
trol systems. Automatic train protection systems play a crucial role
in supervising train speed by by ensuring compliance with speed
profiles. They do so by calculating braking curves and initiating the
braking process if necessary. The European Railway Traffic Man-
agement System / European Train Control System (ERTMS/ETCS)
serves as the standard for modern European railway signaling and
control systems [16]. ERTMS/ETCS encompasses three levels of
increasing complexity and performance, which can be implemented
individually or in combination. Pilot projects across Europe have
been developed to test different levels of ERTMS/ETCS. For example,

Component MTBF[h] MTTR[min] MTTR (modified)
CPU board 1.35 ∗ 105 10 10 ∗ 106

Bus 2.25 ∗ 105 15 15 ∗ 106
FPGA 3.33 ∗ 108 15 15 ∗ 106

Power supply 5.5 ∗ 104 10 10 ∗ 106
GSM-R card 1.752 ∗ 105 10 10 ∗ 106
WAR card 4 ∗ 105 10 10 ∗ 106

Table 1. Mean failure and repair times of components in Figure 4 [6].

in Italy, ERTMS/ETCS level 2 is implemented in high-speed rail-
ways. This level relies on a continuous radio signaling system using
GSM-Railway (GSM-R) for communication between the onboard
system and the ground system. At level 2, the RBC plays a vital
role in ensuring safe train spacing by managing information from
the onboard subsystem and the Interlocking subsystem. The RBC
computes and transmits movement authorities to trains via GSM-R
based on the received positioning and track status information. The
failure of an RBC is critical, as it could lead to a complete signaling
system failure.

To allow for the testing of different repair policies on the availabil-
ity of the RBC, a fault tree diagram was composed by researchers
of the University of Napoli [6]. This diagram can be found in Figure
4. The dotted lines in the figure can be ignored, as they represent
an ’off-line repair’, which is a repair policy that is not relevant to
this study. By examining data sheets of commercial devices and
empirical observations, they also found reference values for the
Mean Time Between Failure (MTBF) and the Mean Time To Repair
(MTTR) for each individual component. These values can be found
in Table 1. The modified values are for use in a later experiment and
can be ignored for now.

2.3 Analysis
The RBC is a critical subsystemwithin the ERTMS/ETCS. The impor-
tance of the RBC in guaranteeing safe train spacing and managing
movement authorities necessitates timely repairs in the event of
failures or malfunctions. As such, it is subject to strict maintenance
and repair protocols to ensure the continuous and reliable operation
of the signaling system [3]. Due to this, repair time is mostly depen-
dent on the accessibility of spare parts [5]. With well-established
supply chains and inventory management systems, railway author-
ities can ensure the availability of spare parts needed for repairs.
This allows for a streamlined repair process, affirming the assump-
tion that the time required to replace faulty components is fixed.
Obviously, unforeseen circumstances or exceptional cases may oc-
cur, resulting in deviations from a fixed repair delay. Nonetheless,
the industry’s focus on maintaining high levels of reliability and
minimizing downtime makes it reasonable to assume fixed repair
times. As the case study matches the three conditions of the selec-
tion procedure, it serves as a valid example to show the practical
applicability of Theorem 1.2.

3 THEOREM IMPLEMENTATION
We developed a tool with the purpose of providing an example for
future researchers and facilitating experimentation. The tool utilizes

3

TScIT 39, July 7, 2023, Enschede, The Netherlands SILAS DE GRAAF

Fig. 4. RBC fault tree diagram [6].

Theorem 1.2 to compute the availability at a given time for nodes
in a fault tree diagram whose basic events can be described by an
exponentially distributed failure rate with a fixed repair delay, as
depicted in Figure 2. Since the foremost consideration in building
the tool was not to create the most efficient implementation, but
to lay a foundation that could be easily understood and adapted
by others, a high-level programming language was chosen for de-
velopment. Python was selected for this purpose, as it has simple
syntax with many well-maintained libraries that can be used for
complex calculations. Furthermore, it was decided that the project
would be containerized into a Docker image, so it could be run on
any operating system without issues.

1 toplevel RBC;
2 RBC or Power WANinterface SystemBUS GSM -Rinterface TMR;
3 Power and PowerSupply1 PowerSupply2 PowerSupply3;
4 WANinterface and WANcard1 WANcard2;
5 SystemBUS and BUS1 BUS2;
6 GSM -Rinterface and GSM -RCard1 GSM -RCard2;
7 TMR or CPUcore voter;
8 CPUcore 2of3 CPUboard1 CPUboard2 CPUboard3;
9 voter and FPGA1 FPGA2;
10 BUS1 fixed failure =4.4444e-6 repair =0.25;
11 BUS2 fixed failure =4.4444e-6 repair =0.25;
12 FPGA1 fixed failure =3.003e-9 repair =0.25;
13 FPGA2 fixed failure =3.003e-9 repair =0.25;
14 PowerSupply1 fixed failure =1.8182e-5 repair =0.1667;
15 PowerSupply2 fixed failure =1.8182e-5 repair =0.1667;
16 PowerSupply3 fixed failure =1.8182e-5 repair =0.1667;
17 WANcard1 fixed failure =2.5e-6 repair =0.1667;
18 WANcard2 fixed failure =2.5e-6 repair =0.1667;
19 GSM -RCard1 fixed failure =5.7078e-6 repair =0.1667;
20 GSM -RCard2 fixed failure =5.7078e-6 repair =0.1667;
21 CPUboard1 fixed failure =7.4074e-6 repair =0.1667;
22 CPUboard2 fixed failure =7.4074e-6 repair =0.1667;
23 CPUboard3 fixed failure =7.4074e-6 repair =0.1667;

Listing 1. Input format example.

3.1 Input format
Functionally, the tool was build for two main purposes. Firstly, the
calculation of the availability of a component in a fault tree dia-
gram, at specific points in time. Secondly, the visualization of the
behaviour of that same property over time in a graph. Both depend
on the input of a fault tree diagram. For the input format of this
diagram, a modified version of the Galileo textual input format was
chosen [17]. The format was developed by researchers of the Uni-
versity of Virginia, to enable the analysis of dynamic fault trees.
As explained before, dynamic fault trees can contain more com-
plex gates which are not considered in this study. Therefore, the
modified input format only allows for the inclusion of AND, OR
and K-of-M gates. Moreover, all properties of basic events except
for ’lambda’ have been removed from the format. The remaining
property describes the failure rate of a component and has been
renamed to ’failure’ to enhance readability. We introduced a new
keyword positioned directly after the name of an individual compo-
nent, which describes the model type the component adheres to. A
component following the basic model from Figure 2 is characterized
by the keyword ’fixed’. Finally, a new property called ’repair’ has
been introduced, which represents the fixed repair time of such
a component. For an example of how the fault tree diagram from
the case study, depicted in Figure 4 with values from Table 1, can
be described by this input format, see Listing 1. The failure rate of
each component is equal to the inverse of MTBF −MTTR [14]. The
MTTR is already a fixed repair time, therefore it only needs to be
converted from minutes to hours so both the failure rate and repair
time are of the same time unit.

3.2 Availability computation
The availability of an individaul component can be calculated using
Theorem 1.2. However, in order to compute the availability of the top
level node, it is also necessary to propagate the availability through
the intermediate logic gates. Since only systems with independent
events are considered, the availability of gate nodes can be calculated

4

Investigating Availability Computation with Exponential Failure Rates and Fixed-Time Repair Delays TScIT 39, July 7, 2023, Enschede, The Netherlands

with a bottom-up approach [14]. For an AND gate, the availability
is equal to the complement of the probability that all its children
have failed. This approach is formalized in Theorem 3.1.

Theorem 3.1. Let gate𝐺 be an AND gate with independent children
𝑏1 ..𝑏𝑚 and let 𝑝𝑖 (𝑡) be the availability of child𝑏𝑖 . Then the availability
𝑃𝐺 (𝑡) can be calculated using the following formula:

𝑃𝐺 (𝑡) = 1 −
𝑚∏
𝑖=1

(1 − 𝑝𝑖 (𝑡)).

The computation for an OR gate is even simpler. An OR gate is
only available as long as all its children are working, since it fails as
soon as one of its children does. The equation that follows can be
found in Theorem 3.2.

Theorem 3.2. Let gate 𝐺 be an OR gate with independent children
𝑏1 ..𝑏𝑚 and let 𝑝𝑖 (𝑡) be the availability of child𝑏𝑖 . Then the availability
𝑃𝐺 (𝑡) can be calculated using the following formula:

𝑃𝐺 (𝑡) =
𝑚∏
𝑖=1

𝑝𝑖 (𝑡) .

The steps to calculate the availability of a K-of-M gate become a
little more involved. The gate is available as long as any combination
of less than 𝐾 of its children have failed. Therefore, the availability
of the gate can be calculated by summing up all probabilities of less
than 𝐾 children failing. This can result in very large expressions
when 𝐾 is large. To simplify the process, we can use polynomial
multiplication. Firstly, a polynomial of degree one is assigned to each
child. The coefficient of the first term is equal to the availability of
that node, while the second coefficient takes the value of the failure
probability. Then, when we compute the product of all polynomials,
the coefficient of term 𝑖 , is equal to the probability of 𝑖 children
failing. We formalize this in Theorem 3.3.

Theorem 3.3. Let gate 𝐺 be an K-of-M gate with independent
children 𝑏1 ..𝑏𝑀 and let 𝑝𝑖 (𝑡) be the availability of child 𝑏𝑖 . Then let:

𝑓 (𝑥) =
𝑀∏
𝑖=1

𝑝𝑖 (𝑡) + (1 − 𝑝𝑖 (𝑡))𝑥

=

𝑀∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 .

Now define:

𝑆 = {𝑎0, ..., 𝑎𝐾−1}.
Then the availability 𝑃𝐺 (𝑡) can be calculated using the following
formula:

𝑃𝐺 (𝑡) =
∑︁
𝑥∈𝑆

𝑥 .

3.3 Operational details
The tool takes a path as a command-line argument. This argument
refers to the file that contains a fault tree diagram expressed in
the input format described above. The content of the file is then
parsed and transformed into an in-memory representation of the
fault tree diagram. To guarantee the submission of a valid fault tree
diagram, multiple checks are made throughout this process. Helpful

error messages assist the user in locating the problem when such a
check fails. Besides a path to the input file, various other parameters
can be included. A required argument specifies whether the tool
should calculate and output specific values or visualize its results
in a graph. Depending on which of these functions was chosen,
the other arguments dictate the time points at which the values
are computed or step size, destination path for the output and time
interval over which the graph is plotted. Optionally, the name of a
specific node can be supplied for which these calculations will be
made. If not included, this value will default to the critical event.
Alternatively, the tool is equipped with an interactive mode which
can be enabled by setting a flag. This means that only the input
file and function of the tool need to be specified up front. After the
checks over the input file have succeeded, the command line utility
will repeatedly prompt the user for the missing arguments. Each
time, the output is printed or saved to an output file, after which the
user can supply different arguments. Since the fault tree diagram
does not have to be reloaded every time, this allows for an easy way
to experiment with different parameters. Furthermore, in this mode,
every result is cached to prevent redundant calculations, resulting
in improved tool performance and speed.

4 EXTENSION EXPLORATION
The utilization of a fixed repair time extends beyond the computa-
tion of time-specific availability. To illuminate additional possibili-
ties, we explore two potential directions for extensions to Theorem
1.2. Firstly, the computation of other properties over the 2-state
CTFD model described in Figure 2. Secondly, the calculation of the
availability for more complex CTFD models.

4.1 Property extension
Ruiters and Stoelinga [14] identify five relevant properties for con-
ducting quantitative analysis of continuous-time fault trees. Among
these is the availability, which we have adequately explored. We
define the remaining properties and introduce equations for com-
puting them over the 2-state CTFD model. Moreover, we present
potential approaches derived from background literature for esti-
mating their value in more complex systems.

4.1.1 Reliability.

Definition 4.1. The reliability of a system up to time 𝑡 is equal to
the probability that the system does not fail within time 𝑡 .

For a single component, the computation of this property is trivial.
Referring to Figure 2, we want to compute the probability that the
component stays in S1. We simplify Theorem 1.2 by removing the
summation and filling in 𝑖 = 0 to achieve this.

Theorem 4.2. Let component C be an independent basic event of a
fault tree diagram with a failure rate 𝜆 and a fixed repair delay 𝑟 . Then
the reliability 𝑃𝐶 (𝑡) can be calculated using the following formula:

𝑃𝐶 (𝑡) = 𝜆𝑡e−𝜆𝑡 .

Since the component should remain operational for the entire du-
ration, the repair time does not play a role. Computing the reliability
of other nodes in a fault tree is more complex. Take for example
an AND gate. One would have to compute the probability that all

5

TScIT 39, July 7, 2023, Enschede, The Netherlands SILAS DE GRAAF

Fig. 5. CTFD with phase-type failure behaviour. 𝜆1, 𝜆2, ..., 𝜆𝑛−1 represent
exponentially distributed failure rates and 𝑟 denotes the fixed repair time.

its children were in a failed state at the same time within time 𝑡 .
Durga Rao et al. [4] have shown that Monte Carlo simulations can
achieve reasonable approximations for the reliability of a system
with repairable components.

4.1.2 Mean Time To Failure.

Definition 4.3. The Mean Time To Failure is defined as the ex-
pected time it takes for a system to go from operational to failing.

A distinction can be made between the MTTF and the Mean
Time To First Failure (MTTFF), which is the expected time it takes
for a system to fail after it first becomes operational. For a single
component with failure rate 𝜆, both values are equal to 1/𝜆. Amari
and Akers [1] have shown that the MTTF and MTTFF of more
complex systems can be approximated accurately and efficiently
using the Vesely failure rate [18].

4.1.3 Mean Time Between Failure.

Definition 4.4. The Mean Time Between Failure (MTBF) is defined
as the mean time between two consecutive failures.

The MTBF can be expressed as MTBF = MTTF +MTTR, where
MTTR is the Mean Time To Repair. For individual components with
failure rate 𝜆 and repair time 𝑟 , the MTBF can therefore be calculated
as follows: MTBF = 1/𝜆 + 𝑟 . The MTTR of complex systems can
once again be approximated using the Vesley failure rate approach
by Amari and Akers [1].

4.1.4 Expected Number of Failures.

Definition 4.5. The Expected Number of Failures (ENF) is defined
as the expected number of failures of a system within time 𝑡 .

The ENF can be calculated directly from the MTBF in the follow-
ing way: ENF = 𝑡

MTBF .

4.2 Base model extension
There are many ways in which the 2-state CTFD model can be ex-
tended. For this first exploration, the focus lay on making it possible
to describe more complex failure behaviours while retaining the
assumption of a fixed repair delay. Specifically, a phase-type failure
behaviour that could be split up into multiple states, where each
transition to the following state is exponentially distributed. The
final state ultimately represents the failure of the component, which
can then be restored to the first working state with a fixed repair
time. Such a CTFD model is depicted in Figure 5.
To compute the availability at time 𝑡 of such a component, we

take an approach similar to Theorem 1.2. Because of the fixed repair
time 𝑟 , there is a limit on the maximum number of failures that can

Component Failure rate (𝜆) Repair time (r)
C1 0.01 1.0
C2 0.1 1.0
C3 1.0 1.0
C4 10.0 1.0
C5 100.0 1.0

Table 2. Failure rates and repair times for individual components.

Fig. 6. Availability change over time for individual components that follow
the basic 2-state CTFD model. The values for the failure rate and repair
time of these components can be found in Table 2.

have occurred in 𝑡 , namely ⌊ 𝑡𝑟 ⌋. We can construct a finite CTMC
with each state representing one of the working states in Figure
5 after a specific number of failures. STORM [8] is a probabilistic
model checker, capable of taking such a CTMC and computing the
probability of being in a specific state at a certain time. By calculating
all probabilities of being in a working state after at most ⌊ 𝑡𝑟 ⌋ failures,
and summing them up, the availability of the component at time 𝑡
can be computed accurately. This approach was implemented in the
tool by incorporating the Stormpy [19] library.

5 EXPERIMENTS
With a working tool at our disposal, some experiments can be run
to gain insights into the behaviour of components which work in
accordance with the model presented in Figure 2.

5.1 Individual components
Firstly, we will compare the change in availability over time for
components with the same fixed repair times but variable failure
rates. Through this comparative analysis, we can discern the impact
of the relationship between these two properties on component
availability. Specific values assigned to each component in the ex-
periment are provided in Table 2. Inputting these values in the tool
yields the graph depicted in Figure 6. Upon analyzing the results,
several notable observations emerge.

We see that the availability of components does not exhibit a con-
sistent pattern across the board. Nevertheless, certain similarities

6

Investigating Availability Computation with Exponential Failure Rates and Fixed-Time Repair Delays TScIT 39, July 7, 2023, Enschede, The Netherlands

1 # python main.py -i input/input.txt calc
2 Name of node to compute availability for (leave empty

for top level node):
3
4 Compute availability at this/these time(s):
5 0 1 10 100 1000 10000
6 Availability is:
7 * 1.0 at t=0.0
8 * 0.9999999999976432 at t=1.0
9 * 0.9999999999976432 at t=10.0
10 * 0.9999999999976432 at t=100.0
11 * 0.9999999999976432 at t=1000.0
12 * 0.9999999999976432 at t=10000.0

Listing 2. Tool output of availability computation of RBC system displayed
in Figure 4 at specific points in time. Original values from Table 1 are used
for the individual components.

can be discerned. Primarily, the availability of all components initi-
ates at a value of 1. Subsequently, it gradually declines in accordance
with their respective failure rates until reaching the 1.0 time unit
mark. This aligns logically with the fact that the availability ceases
to drop once the repair time elapses, as repairing the component
restores its functionality.
Another noteworthy similarity lies in the tendency of the avail-

ability to converge towards a specific value. Components with lower
failure rates achieve this convergence shortly after surpassing the
first repair time. Conversely, components characterized by higher
failure rates display a wave-like pattern in their availability, gradu-
ally converging to the long-term value over time. The value at which
the value ultimately stabilizes is called the long-term availability.

Definition 5.1. The long-term availability of a system is equal
to the probability that the system is in a working state as time 𝑡
approaches infinity.

Components with infrequent failure events relative to their repair
time experience swifter convergence, as the repairs occur less fre-
quently compared to their overall operational duration. Conversely,
components with higher failure rates encounter more frequent fail-
ures, leading to a longer duration before their availability converges
to the long-term value.

5.2 Complex systems
To see how this behaviour translates into amore complex system, we
examine the case study on RBCs from Section 2.2. However, we know
that RBCs are expected to be highly reliable systems, since their
failure could cause massive disruptions to railroad traffic and even
lead to large safety hazards. The values in Table 1 indeed show that
the repair time of components is negligible relative to their failure
rate, which predicts a high and constant availability. Calculating
the availability of the system at a selection of specific moments
in time, presented in Listing 2, quickly confirms this expectation.
Although expected, it does not make for an interesting visualization.
Therefore, we modified the original repair times to make them less
negligible in comparison to the failure rates. These amended values
can be also found in Table 1. The corresponding graph is pictured
in Figure 7.
Noteworthy similarities can be observed when comparing the

graph with Figure 6. Once again, we witness a decline in availabil-
ity until reaching a specific point in time. This point aligns with

Fig. 7. Availability change over time for RBC system displayed in Figure 4.
Modified values in Table 1 are used for the individual components.

the shortest repair time in Table 1. Additionally, a semblance of a
wave-like pattern emerges, albeit with some deviations attributed
to variations in component failure rates. Eventually, the availability
converges to a specific value, mirroring the behaviour of individual
components. It is important to note that the values presented are
not realistic for this case study. Nonetheless, the visualization serves
as an illustrative example, showcasing how the availability of less
reliable systems could fluctuate over time, particularly in scenarios
where the expected time to fail and the repair time of components
are closely aligned.

5.3 Behaviour comparison
Having described the behaviour of components that adhere to the 2-
state CTFD model, we can now draw a comparison to the behaviour
observed in components governed by a different model. Specifically,
we will examine models that consider repair rates instead of fixed
repair times, as well as models featuring more intricate failure be-
haviour, as illustrated in Figure 5. Both these model types were
added to the tool by making use of the Stormpy [19] library. To
allow for an accurate comparison, the expected failure and repair
times are kept the same for each model. The change in availability
over time for these components can be found in Figure 8.

Analyzing the results reveals a distinct disparity when consider-
ing a fixed repair time versus a repair rate. It becomes evident that
both C1 and C3 exhibit fluctuating availability, whereas C2 initially
declines to the long-term availability and remains stable thereafter.
Eventually, all components converge to this value, but it is worth
noting that C3 takes the longest time to reach convergence and
experiences larger fluctuations compared to C1. From this, we can
conclude that describing a more complex failure behaviour when
applicable has significance on the ability to predict the availabil-
ity of a component. Moreover, the results show that considering a
fixed repair time can have substantial impact on the accuracy of
time-specific availability predictions as well.

7

TScIT 39, July 7, 2023, Enschede, The Netherlands SILAS DE GRAAF

Fig. 8. Availability change over time for individual components following
distinct models. C1 follows the basic 2-state CTFD model from Figure 2 with
𝜆 = 4.0 and 𝑟 = 1.0. C2 Follows the same model as C1 but with a repair rate
instead of a fixed repair time where 𝜆 = 4.0 and 𝑟 = 1.0. C3 follows a 4-state
variant of the model from Figure 5 with 𝜆1 = 8.0, 𝜆2 = 16.0, 𝜆3 = 16.0 and
𝑟 = 1.0.

6 CONCLUSION
This research explored the practical applicability of a novel approach
to compute the availability of components that can be described
by an exponentially distributed failure time and a fixed repair de-
lay. Furthermore, we sought to realize a foundation upon which
future research into the topic could be made by creating a tool
for experimentation and identifying several potential directions
for expansions to the theorem. Finally, by using the tool to con-
duct experiments, insights were gained into the usefulness of the
theorem.
To show the practical applicability of Theorem 1.2, an existing

case study from the literature was analyzed, namely the Radio Block
Center [6]. The failure rate of its individual components are stochas-
tically independent. Additionally, supporting sources reinforce the
assumption of a fixed repair delay. Still, the process is dependent
on the availability of spare parts which could mean a significant de-
viation from the fixed repair time when spare parts are unavailable.
However, assuming an exponentially distributed repair time does
not offer a more accurate depiction of the situation. Considering
the large consequences of a system failure, it is also reasonable to
assume that spare parts are kept in adequate supply under normal
conditions. Through this case study, we have effectively substan-
tiated the practical relevance and applicability of Theorem 1.2 in
real-world scenarios.
A tool was developed with the intention of serving as a funda-

mental framework upon which other researchers can build. The
tool was specifically designed for experimentation purposes. Fault
tree diagrams can be inputted according to a modified version of
the Galileo textual input format [17]. Then, by utilizing Theorems
1.2, 3.1, 3.2 and 3.3, the availability of any node in the tree can be
computed.

Two potential directions for the extension of Theorem 1.2 were
explored. Firstly, the computation of other relevant properties for
the quantitative analysis of continuous-time fault trees. The study
presented formulas for calculating these properties for individual
components, along with potential approaches for approximating
them in more intricate systems. Secondly, we considered how to
calculate the availability of CTFD models with a phase-type failure
behaviour and a fixed repair time. This similarity to the 2-state
CTFD model enables us to adopt a comparable approach to the one
employed in developing Theorem 1.2. By making use of STORM [8],
we are able to accurately calculate the availability of these types of
models as well.

Through experimental analysis, we found that the availability of
components characterized by the CTFD model in Figure 2 changes
over time until it converges to the long-term availability. The speed
of this convergence is contingent upon the relationship between the
failure rate and the repair time of the component. Components with
a low failure rate relative to their repair time converge faster then
components with the opposite characteristic. The same behaviour is
displayed by more complex systems. From these findings, it can be
concluded that the analysis of time-specific availability holds greater
significance for systems with lower reliability, as the convergence
towards the long-term value occurs at a slower pace.

It was shown that this behaviour differs significantly from that of
the traditional approach, where the repair time is considered to be
exponentially distributed. In the traditional approach, availability
quickly converges to its long-term value, rendering time-specific
analysis useless. Another comparison was made with components
with a fixed repair delay that follow a phase-type failure behaviour
instead of a single failure rate. It was found that these components
display more fluctuation in availability and take longer to converge
to the long-term value. Consequently, we conclude that by accu-
rately describing failure behaviour and employing appropriate re-
pair time considerations, we can improve our ability to effectively
estimate the time-specific availability of systems.

6.1 Future work
This novel topic offers numerous unexplored research directions
worthy of investigation. An interesting approach could be to for-
malize the impact of the relationship between the failure rate and
fixed repair time on the availability behaviour. With the foundation
build, the road is now open for other researchers to extend the tool
with additional features. A good start could be to implement the
properties described in Section 4.1 in the tool, which would expand
its capabilities to analyze complex system behaviours. Finally, more
complex CTFD models can be investigated. For example, models
with multiple states from which a repair can take place.

ACKNOWLEDGEMENTS
Thanks to Dr. E.M. Hahn for his feedback and continued supervision
over the duration of this research project. Also, thanks to Dr. M.
Volk for his help in getting started with the Stormpy library. Finally,
thanks to Dr. M.A. Lopuhaä-Zwakenberg for his help in considering
extensions to the basic theorem.

8

Investigating Availability Computation with Exponential Failure Rates and Fixed-Time Repair Delays TScIT 39, July 7, 2023, Enschede, The Netherlands

REFERENCES
[1] S.V. Amari and J.B. Akers. “Reliability analysis of large fault trees using the

Vesely failure rate”. In: Proceedings of the Annual Reliability and Maintainability
Symposium (2004), pp. 391–396. issn: 0149144X. doi: 10 .1109/RAMS.2004 .
1285481.

[2] C. Budde and M. Stoelinga. Efficient Algorithms for Quantitative Attack Tree
Analysis. May 2021.

[3] C. Darmenia. Alstom ETCS Trackside Maintenance Manual. 1st ed. Sydney: Syd-
ney Trains, Mar. 2019.

[4] K. Durga Rao et al. “Dynamic fault tree analysis using Monte Carlo simulation
in probabilistic safety assessment”. In: Reliability Engineering & System Safety
94.4 (Apr. 2009), pp. 872–883. issn: 0951-8320. doi: 10.1016/J.RESS.2008.09.007.

[5] F. Flammini et al. “AMultiformalismModular Approach to ERTMS/ETCS Failure
Modelling”. In: International Journal of Reliability, Quality and Safety Engineering
21 (June 2014), p. 1450001. doi: 10.1142/S0218539314500016.

[6] F. Flammini et al. “Using repairable fault trees for the evaluation of design
choices for critical repairable systems”. In: Ninth IEEE International Symposium
on High-Assurance Systems Engineering (HASE’05). 2005, pp. 163–172. doi: 10.
1109/HASE.2005.26.

[7] B.E. Goldberg et al. System engineering toolbox for design-oriented engineers.
Tech. rep. Alabama: National Aeronautics and Space Administration, Dec. 1994,
pp. 35–3. url: https://ntrs.nasa.gov/citations/19950012517.

[8] C. Hensel et al. “The probabilistic model checker Storm”. In: International Journal
on Software Tools for Technology Transfer 24.4 (2022), pp. 589–610. issn: 1433-
2787. doi: 10.1007/s10009-021-00633-z. url: https://doi.org/10.1007/s10009-
021-00633-z.

[9] H.G. Kang et al. “An overview of risk quantification issues for digitalized nuclear
power plants using a static fault tree”. In: Nuclear Engineering and Technology
41.6 (2009), pp. 849–858.

[10] P. Lacey. “An Application of Fault Tree Analysis to the Identification and
Management of Risks in Government Funded Human Service Delivery”. In: 2nd

International Conference on Public Policy and Social Sciences. Ed. by K. Singh and
B. Singh. Kuching, Nov. 2011.

[11] Offnfopt. File:fault tree.svg. Oct. 2016. url: https://commons.wikimedia.org/
wiki/File:Fault_tree.svg.

[12] M. Peppelman. FFORT Collection. 2019.
[13] H. Ren, X. Chen, and Y. Chen. “Chapter 6 - Fault Tree Analysis for Composite

Structural Damage”. In: Reliability Based Aircraft Maintenance Optimization
and Applications. Academic Press, 2017, pp. 115–131. isbn: 978-0-12-812668-4.
doi: https : / /doi .org/10 .1016/B978- 0- 12- 812668- 4 .00006- X. url: https :
//www.sciencedirect.com/science/article/pii/B978012812668400006X.

[14] E. Ruijters and M. Stoelinga. “Fault tree analysis: A survey of the state-of-the-
art in modeling, analysis and tools”. In: Computer Science Review 15-16 (2015),
pp. 29–62. issn: 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2015.03.001.
url: https://www.sciencedirect.com/science/article/pii/S1574013715000027.

[15] E. Ruijters et al. “Ffort: A Benchmark Suite for Fault Tree Analysis”. In: June
2019, pp. 878–885. doi: 10.3850/978-981-11-2724-3{_}0641-cd.

[16] B. Stamm, E. Lepailleur, and A. Hougardy. Responsibilities and rules for the
assignment of values to ETCS variables. Ed. by D. Degravre. 2.1.0. European
Railway Agency, Nov. 2010.

[17] K. Sullivan and J.B. Dugan. Galileo User’s Manual & Design Overview. 2.11-Alpha.
University of Virginia, 1998.

[18] W.E. Vesely. “A time-dependent methodology for fault tree evaluation”. In:
Nuclear Engineering and Design 13.2 (1970), pp. 337–360. issn: 0029-5493. doi:
https://doi.org/10.1016/0029-5493(70)90167-6. url: https://www.sciencedirect.
com/science/article/pii/0029549370901676.

[19] M. Volk et al. moves-rwth/stormpy: v1.8.0. June 2023. doi: 10 . 5281 / zenodo .
8025504. url: https://doi.org/10.5281/zenodo.8025504.

[20] P. Wang. “Chapter 5 - Preliminary System Safety Assessment”. In: Civil Air-
craft Electrical Power System Safety Assessment. Ed. by P. Wang. Butterworth-
Heinemann, 2017, pp. 101–156. isbn: 978-0-08-100721-1. doi: https://doi.org/
10.1016/B978-0-08-100721-1.00005-4. url: https://www.sciencedirect.com/
science/article/pii/B9780081007211000054.

9

https://doi.org/10.1109/RAMS.2004.1285481
https://doi.org/10.1109/RAMS.2004.1285481
https://doi.org/10.1016/J.RESS.2008.09.007
https://doi.org/10.1142/S0218539314500016
https://doi.org/10.1109/HASE.2005.26
https://doi.org/10.1109/HASE.2005.26
https://ntrs.nasa.gov/citations/19950012517
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://commons.wikimedia.org/wiki/File:Fault_tree.svg
https://commons.wikimedia.org/wiki/File:Fault_tree.svg
https://doi.org/https://doi.org/10.1016/B978-0-12-812668-4.00006-X
https://www.sciencedirect.com/science/article/pii/B978012812668400006X
https://www.sciencedirect.com/science/article/pii/B978012812668400006X
https://doi.org/https://doi.org/10.1016/j.cosrev.2015.03.001
https://www.sciencedirect.com/science/article/pii/S1574013715000027
https://doi.org/10.3850/978-981-11-2724-3{_}0641-cd
https://doi.org/https://doi.org/10.1016/0029-5493(70)90167-6
https://www.sciencedirect.com/science/article/pii/0029549370901676
https://www.sciencedirect.com/science/article/pii/0029549370901676
https://doi.org/10.5281/zenodo.8025504
https://doi.org/10.5281/zenodo.8025504
https://doi.org/10.5281/zenodo.8025504
https://doi.org/https://doi.org/10.1016/B978-0-08-100721-1.00005-4
https://doi.org/https://doi.org/10.1016/B978-0-08-100721-1.00005-4
https://www.sciencedirect.com/science/article/pii/B9780081007211000054
https://www.sciencedirect.com/science/article/pii/B9780081007211000054

	Abstract
	1 Introduction
	2 Practical Applicability
	2.1 Case study selection procedure
	2.2 Case study: Radio Block Center
	2.3 Analysis

	3 Theorem Implementation
	3.1 Input format
	3.2 Availability computation
	3.3 Operational details

	4 Extension Exploration
	4.1 Property extension
	4.2 Base model extension

	5 Experiments
	5.1 Individual components
	5.2 Complex systems
	5.3 Behaviour comparison

	6 Conclusion
	6.1 Future work

