
Exploring The State of Rate Limiting in IPv6
PIETER VAN HEIJNINGEN, University of Twente, The Netherlands

The rapid adoption of IPv6 and the availability of large address blocks pose
new challenges for rate limiting in computer networking. Traditionally, rate
limiting has been implemented on a per-IP basis in IPv4 networks. However
because of the extensive address space in IPv6, users are assigned large
ranges of address, rendering per-IP rate limiting inadequate. This paper
aims to investigate the current state of rate limiting in IPv6 by addressing
several research questions. Firstly, the implementation of IPv6 rate limiting
in open-source software will be examined. Secondly, the approaches taken by
various cloud providers in implementing IPv6 rate limiting will be analyzed.
Additionally, the paper explores the policies of organizations involved in
address assignment and their rationale behind the size of address blocks
assigned to users. The methodology involves examining documentation
and conducting local stress tests. The paper provides new insights into the
current state of IPv6 rate limiting, given the scarcity of research in this area,
although concretely addressing all research questions may be challenging.

1 INTRODUCTION
In computer networking, rate limiting is the act of limiting the
amount of requests that a given user can perform in a predefined
span of time. This is done to prevent a single attacker from over-
loading the server and/or to prevent web scraping.
Traditionally, with IPv4, rate limiting is implemented on a per-IP
basis. For the most part, this works fine, due to the limited amount
of IPv4 addresses available. Which makes getting access to a large
quantity to use is hard and/or expensive.
However with IPv6, this changes. For example RIPE NCC recom-
mends that end users are assigned multiple /64 blocks of IPv6 ad-
dresses [36]. To elaborate further on why this causes an issue: A /64
block of IPv6 addresses gives the user access to 264 distinct addresses.
So theoretically, if an attacker would cycle through his entire /64
block for every request, he could send half a million requests every
microsecond for a year before the server would see the same IPv6
address again. Clearly per-IP rate limiting for IPv6 is not sufficient.
IPv6 adoption is steadily growing, this can for example be seen by
Google’s user statistics. Which shows an increase in the percentage
of users that access their services over IPv6. With a current adoption
rate of 45% [19].
Therefore, with more and more of the Internet supporting IPv6 this
issue only becomes more important.

2 BACKGROUND
In this section relevant background information in order to under-
stand this paper will be provided.

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

2.1 CIDR notation
When talking about ranges of IP addresses, CIDR notation is used.
This is a slash, followed by the number of bits in the address that
are fixed.
For example the University of Twente owns the 2001:067c:2564::/48
IPv6 address range. As IPv6 addresses are 128 bits, this gives them
access to 2128−48 distinct addresses. All with the same fixed begin-
ning.

2.2 Tunnel brokers
IPv4 to IPv6 tunnel broker services as defined by RFC 3053 can
provide the service of IPv6 connectivity for users who otherwise do
not have access to IPv6 [16].
The existence of these services are of importance to this paper as it
makes it trivial for an attacker to have access to a large IPv6 address
range. For example Hurricane Electric offers /48 tunnels all over the
world for free [15].

2.3 Address assignment
Who gets to own and control which IPv6 address range is decided
by a hierarchical structure of organisations. At the top is IANA, who
assigns address space to 5 regional internet registries (RIR), who
in turn assign their address space to local internet registries (LIR),
then to internet service providers (ISP). Who finally assign to end
users [22, 23].
In practice, the distinction between LIRs and ISPs is a bit blurred.
Mainly because they both receive an Autonomous System Number
(ASN) from their overarching RIR. This AS number is used to assign,
and own IPv4 and IPv6 address ranges.

2.4 DoS attacks
One interesting aspect of this topic is its usage in Denial-of-service
attacks. Which usually involves one or many (DDoS) computers
sending requests to a server in an attempt to make the service inac-
cessible for regular users. Currently, most large scale DDoS attacks
are done over IPv4, and make use of IP spoofing [31]. However the
large ranges of IP addresses available under IPv6 could remove the
need for IP spoofing. Making DDoS attacks harder to detect and
more sophisticated.

2.5 Web servers, WAFs and reverse proxies
Various software products that implement rate limiting will be
tested, and these software products fall under different categories,
which will be explained in this section.
First, we have web servers. Web servers are primarily used to han-
dle incoming requests and deliver web content to users. Most web
servers also implement rate limiting mechanisms.
Quite often a reverse proxy is deployed between the web server
and the open internet. Reverse proxies are commonly used for load
balancing purposes or to add an additional layer of security, such
as with rate limiting. It’s worth noting that some web servers, like

1

TScIT 39, July 7, 2023, Enschede, The Netherlands Pieter van Heijningen

NGINX and Apache, can also act as reverse proxies.
To enhance the security of web applications, Web Application Fire-
walls (WAFs) are often employed. WAFs serve as an extra layer of
defense against common vulnerabilities such as SQL injection and
cross-site scripting (XSS). Additionally, WAFs may also implement
distributed denial-of-service (DDoS) prevention mechanisms, which
could be considered rate limiting. However, by design often exact
implementation details can be hard to determine.

3 PREVIOUS WORK
One interesting paper is one from Frank Li and David Freeman [30].
In the paper they research Facebook’s users who use IPv6 vs who
use IPv4. For us the interesting part is the research they did on
rate limiting. Where, through statistical analysis, they found that
typically a single IPv4 address behaves most similar to an entire /48
or /56 IPv6 subnet when looking at a user level. In other words, if a
user only uses one IPv4 address he behaves most similar to a user
using a large IPv6 subnet. So they suggest rate limiting at this level.
A recent blog post from Adam Pritchard further emphasises the
important of this issue [42]. He suggests as a solution to rate limit
per /64 block instead of per-IP or even to disable IPv6 all together.
However he notes both of these solutions are far from perfect.

Finally a paper from Maximilian Golla et al [32]. Here they explore
the state of rate limiting in general, specifically focused at brute-
forcing passwords. In this paper it is made clear that exclusively
focusing on IP-based rate limiting in their case is not sufficient, but
other factors like cookies or session tokens should also be consid-
ered.

4 PROBLEM STATEMENTS
As is evident by the scarcity of academic papers about this topic
and Adam’s blog post [42]. This subject is under-researched. There-
fore the focus of this paper will be quite broad. With the following
research question:

What is the current state of HTTP rate limiting on the web when
utilising IPv6?.

This can be answered with the following sub-questions:

• RQ1: How do various open-source web servers, WAFs and
proxies implement IPv6 rate limiting?

• RQ2: How do various cloud providers implement IPv6 rate
limiting?

• RQ3: At the various organisations handling address assign-
ment, what are the policies on the size of block that gets
assigned to users? And what is the reasoning behind them?

• RQ4: How to effectively rate limit IPv6 requests?

During the research, all of these will be considered. But during
the research it will be decided which research questions are looked
at more in-depth.

5 METHODOLOGY

5.1 Answering RQ1
For various open-source web servers, Web Application Firewalls
and proxies we will either look at their code base to see how rate
limiting is implemented. Or alternatively perform local stress tests
on our own machine to determine this.

When relevant, also the memory usage of the software will be anal-
ysed. The theory is that when attacking a server with lots different
IPv6 addresses, the server’s memory could be exhausted by trying
to keep track of all addresses for rate limiting purposes. For example
storing every address in a /64 IPv6 block would take 264 ∗ 128 bits
of memory/storage, or 295.1 exabytes.

5.1.1 Performing requests. To perform these tests, the following
test machine will be used:
A desktop computer running Ubuntu server 22.04 as its operating
system, which has the piece of software to be tested installed. The
specifications of this machine are as follows: 12 core Ryzen 5 3600
CPU (max 4.2 GHz), 16 GB of 3200 Mhz DDR4 RAM, and a 500GB
Samsung 960 EVO SATA SSD.
On the same machine, local requests to the software to be tested
will be performed using a bash command utilising freebind [11] as
described in Listing 1

Listing 1. Script to bluk send requests

ip -6 route add local fd66 :1234:5678:90 ab

::/64 dev lo

time yes "url=localhost" | head --lines

REQ_NUM | freebind --random fd66

:1234:5678:90 ab::/64 -- curl --http1.1 -6

-H "Connection: close" --parallel --

parallel -immediate --parallel -max 0 --

config -

First, an iptables route is set up to assign an arbitrary /64 block of
the unique local IPv6 unicast address [20]. Effectively simulating a
usable /64 block, which can only access localhost.
For the second command, everything is ran under time, which mea-
sures the time it took to execute all the requests. The command
first generates an infinite list of lines containing "url=localhost"
using yes. Then this is piped to head, which limits the number of
lines by REQ_NUM, thus in turn limiting the number of requests
to be made. Then this is piped to freebind, which makes use of the
entire previously assigned prefix to randomise which /128 address
of the /64 block is used for each request using --random. Finally
requests are all sent in parallel using curl with the following flags: -
-parallel, to enable requests to be performed in parallel instead of
in series, --parallel-immediate, to always make it open a connec-
tion, instead of waiting for another connection to become available,
--parallel-max 0, to allow unlimited parallel connections.
Then finally --http1.1 -H "Connection: close" to send the
Connection: close header with each request, to allow a new socket
connection to be opened every time. Thus allowing for a new IPv6
address, for this header to work the HTTP/1.1 standard is required

2

Exploring The State of Rate Limiting in IPv6 TScIT 39, July 7, 2023, Enschede, The Netherlands

One downside of this command is that the long list of URLs gener-
ated by yes are stored in memory, which occupies multiple gigabytes
of system memory for large REQ_NUM.

5.1.2 Monitoring system performance. To monitor the impact on
system performance the rate limiting implementation has, the pidstat
program from the sysstat package will be used [45]. Which will be
used to log CPU and memory usage at an interval of 1 second using
a bash script [49].

5.2 Answering RQ2
We will look at their publicly available documentation for various
cloud providers to see how they have implemented it.

5.3 Answering RQ3
We will research the various organisations who are responsible for
addressing and look at their publicly available policies and docu-
mentation. For technical reasoning we will investigate further into
the IPv6 RFCs.
Finallywewill verify the real-world implementation of these policies
by statistically analysing a IPv6 hitlist, which is a list that contains
all currently active IPv6 addresses.

5.3.1 Attacker model. When answering this research question, var-
ious types of attackers will be taken into account. The first type will
be an attacker with access to a normal internet connection, like his
home network. Secondly, an attacker with access to an AS number,
which for many RIRs is quite trivial to get access to, including RIPE
NCC. Where any organisation or person can obtain an AS number
through some verification and payment [39].
Finally nation-state attackers will be considered.

5.4 Answering RQ4
We will use the information from the previous research questions
to determine if it is possible to have an effective rate limiting IPv6
algorithm.
Once all these questions have been answered to some extend, it

should give a satisfactory overview of the current state of IPv6 rate
limiting on the web.

6 RESULTS

6.1 RQ1
We decided to research the most widely-used open-source web
servers, as measured by % websites that use them world wide ac-
cording to w3techs [50]. All web servers will be tested on two
aspects, first on what rules are implemented and secondly how their
implementation would handle keeping track of many IPv6 addresses
in memory. A summary of the results can be found in table 1.

6.1.1 NGINX (34.4% of the web). NGINX, according to w3techs is
currently the most popular publicly facing piece of web software.
Note NGINX can function as either a web server directly or as a
reverse proxy.
As can be publicly found in the NGINX documentation, default rate
limiting behaviour on IPv6 is per-IP [41]. However the key variable
in limit_req_zone can be modified to allow blocking for /64, or larger

Software Importance Implementation
NGINX 34.4% market share Per-IP by default
Apache 32.1% market share Third-party, Per-IP
Microsoft-IIS 5.5% market share Per-IP
Node.js 2% market share Third-party, Per-IP
Caddy 47.8k GitHub stars No defaults given
HAProxy 3.8k GitHub stars Per-IP by default
Traefik 43.5k GitHub stars Per-IP by default

Table 1. RQ1 summary

subnets [29].

Performance impact. The impact on performance of the rate limit-
ing solution was analysed. As a baseline, first a test was run with the
default NGINX configuration, which had no rate limiting enabled.
This test had a REQ_NUM of 50 million, which it completed in 56
minutes and 21 seconds. Processing requests at a consistent rate of
887 thousand a minute.
Then, rate limiting was enabled using the ngx_http_limit_req_mod-
ule [41]. utilising the configuration described in Listing 2

Listing 2. NGINX config snippet

limit_req_zone $binary_remote_addr zone=

mylimit :1000m rate=1r/m;

server {

listen 80 default_server;

listen [::]:80 default_server;

limit_req zone=mylimit;

To show the biggest effect, the strictest possible rate limiting was
implemented, only allowing 1 request per minute per IP. Further-
more, inside of limit_req_zone the zone size can be specified, which
is the maximum memory size used for rate limiting purposes.
According to the official documentation 128 bytes is used to store
a single rate limiting state [41]. Knowing that, plus the previously
measured consistent rate of 887 thousand requests a minute. We
can expect about 113.5 megabytes of added memory usage from the
rate limiting solution. The zone size set at 1000 megabytes should
therefore be sufficient.
This configuration was applied, the access.log file was cleared, and
NGINX was restarted. And rate limiting was confirmed to be work-
ing. Then the same test, of 50 million requests was performed again,
which completed in 56 minutes and 54 seconds. The method of evad-
ing rate limiting rules utilising freebind did indeed succeed, as all
50 million requests completed successfully. While only 60 requests
should have been allowed from the same source.
The impact the the rate limiting solution had can be seen in the
found in figure 1 and 2
Code and raw data that was used to generate these plots can be

found in the accompanying repository [49].
A couple of things can be seen from the graphs:
First of all in the CPU graph, CPU usage keeps increasing over time,
and will likely keep increasing. But given that this also occurs with

3

TScIT 39, July 7, 2023, Enschede, The Netherlands Pieter van Heijningen

Fig. 1. NGINX CPU graph

Fig. 2. NGINX memory graph

the default configuration, although at a lesser extreme. While in-
teresting, due to this reason, we consider it out of scope for further
investigation into this rate limiting topic.
Secondly, the predicted 113.5 megabyte increase can be clearly seen
in the memory usage graph. Confirming what was stated in the
documentation. However the steep drop off at the 2500 second mark
with the rate limiting configuration is strange, this also coincides
with a slow down of CPU usage in the other graph at the same time.
To confirm that this was not a fluke, multiple test were run, which
produced similar results.

In conclusion, it seems, given a reasonable amount of server system
memory, that it not possible to saturate all a said memory with a
poorly configured NGINX rate limiting set up by a single attacker.

This is mainly due to the maximum time interval that can be set
up is one minute, and the attacker, even if he operates on localhost,
cannot send that many requests in that timeframe to even saturate
more than 140 mbytes of memory.

6.1.2 Apache (32.1% of the web). Same as with NGINX, Apache is a
popular alternative supporting many of the same features, thus it
can function as a web server or a reverse proxy.
While Apache does not have official support for rate limiting, various
third-party modules where researched. Which practically all do per-
IP rate limiting. Testing the memory aspect did not seem relevant
as most third-party modules are either outdated or deprecated.

6.1.3 Microsoft-IIS (5.5% of the web). Microsoft-IIS is Microsoft’s
webserver, which can also act as a reverse proxy.
Publicly available documentation for Microsoft’s IIS server states
rate limits are implemented on a per-IP basis [33].

6.1.4 Node.js (2% of the web). Same case as with Apache, there
are various third-party packages that allow for rate limiting. But
virtually none look at more than per-IP for IPv6.

6.1.5 Caddy. No usage statistics could be found on Caddy, but it
is the most popular project on github with the tag web-server at
47.8 thousand stars, therefore it was relevant to discuss [18]. In their
documentation it can be found that there’s two modules you can use
to implement rate limiting [12]. Both of them have easy support for
blocking per address range instead of per-IP, but worryingly no rec-
ommendation on how to handle IPv6 is given in the documentation.
Plus the RussellLuo/caddy-ext module has a default zone_size, as in
the number of addresses that are stored in memory simultaneously,
of 10 000. Which is insufficient in preventing IPv6 attacks.

6.1.6 HAProxy. Is a popular reverse proxy server solution used by
many high-traffic websites [21]. With currently 3.8 thousand stars
on GitHub. An official blog post that gives four examples on how to
implement rate limiting makes no mention of blocking per IP range
nor of IPv6 [43]. Therefore we think it is reasonable to assume that
no proper IPv6 rate limiting is supported by default.

6.1.7 Traefik. Is another popular reverse proxy server solution
used by many high-traffic websites [46] with 43.5 thousand stars
on GitHub. Their public documentation has an extensive page on
how to configure rate limiting, but no mention of IPv6 or IP ranges.
Therefore per-ip rate limiting for IPv6 can be assumed [47].

6.1.8 WAFs. Investigation into various popular, open source WAFs
was done, including ModSecurity, Naxsi and IronBee. But it was
found that rate limiting seems to generally not be in the scope of
WAFs responsibilities. Instead it is often implemented at the reverse
proxy or web server level. Part of their solutions does include DDoS
protection, but for obvious reasons exact implementation details
are not shared.

To conclude, in the open-source space clearly very little is known
about the impact that IPv6 can have on rate limiting. As is shown
by us not being able to find a single open-source web server that
does anything more than per-IP rate limiting for IPv6 by default.

4

Exploring The State of Rate Limiting in IPv6 TScIT 39, July 7, 2023, Enschede, The Netherlands

6.2 RQ2
6.2.1 Cloudflare. Today one of the largest cloud providers is Cloud-
flare, with around 80% of websites utilising a CDN network using
them and/or their Web Application Firewall (WAF) [26]. How they
handle IPv6 rate limiting is pretty clear, they block it per /64 range
as stated by their official documentation [25].

6.2.2 AWS. Another big cloud provider is Amazon’s AWS. As is
also mentioned in Adam Pritchard’s blog post, they don’t seem
to mention anything regarding how they specifically handle IPv6.
However it is indeed concerning that their WAF can only block up
to 10 000 IP addresses [10, 42].

6.2.3 Others. To keep things concise, various other cloud providers
where researched, which all make no mention of how they handle
IPv6 in their public documentation of their WAFs. This list includes;
Azure, IBM Cloud, Google Cloud and Alibaba cloud [4, 14, 24, 34].
Exact implementation details are therefore anyone’s guess.

6.3 RQ3
6.3.1 Recommendations from RFC and RIRs. RFC6177 states some
best practices regarding how RIRs should make recommendations
on the IPv6 address block size are assigned to end users [44]. As a
result of that, RIPE NCC, LACNIC, APNIC and AFRINIC have more
or less the same policy on IPv6 address assignment. In that they
assign one or more /64 blocks to end users [1, 5, 27, 36]. Interestingly
enough, ARIN on the other hand recommends end users receive a
/48 block [7]. From a rate limiting perspective this could be inter-
esting, as this means that users using ARINs IPv6 space generally
have access to larger blocks.

The reasoning behind assigning seemingly large IPv6 blocks to send
users is simple. RFC4862 introduces SLAAC, which is a mechanism
that allows for address assignment without a DHCP server in IPv6.
For this to work properly a /64 block is required. [35]. Assigning
multiple /64 blocks allows the end user to partition its network into
seperate subnets.

Furthermore, RFC6177 states that they want to make it as effortless
as possible for businesses to get a /48 block to avoid businesses
having to resort to IPv6-to-IPv6 Network Address Translation once
they run out of /64 subnets [44].

6.3.2 Implementation of ISP. To get a better idea on how ISP im-
plement these recommendations we compiled a list from various
large ISP in the table which can be found in Appendix A. Due to the
language barrier, only English speaking countries we’re researched,
plus The Netherlands, spanning over 3 different RIRs. Only ISPs for
which some kind of source could be found where included.
From the results it becomes clear that ISP operating under a certain
region do not necessarily follow their RIRs recommendations, and in
general are more generous in the size of the block that gets assigned
to end users. While on the other hand, for the US-based ISPs, users
are assigned less than is recommended by ARIN.

6.3.3 IPv6 hitlist. Finally to get an even better understanding of
how ISPs implement these policies one source of data we can look

at are IPv6 hitlists. One of the most complete currently available
IPv6 hitlists was chosen [17, 51].

This data of all 6.7 million responsive IPv6 addresses was analysed
using a Python script [49]. With as output the number of active ad-
dresses under each active /48 block. This was chosen as a /48 block,
given some small exceptions, should be the the largest assigned
prefix to end users, as stated by RIR and RFC policies discussed in
the previous section. Finally this data was clustered by known IPv6
address ranges of each RIR according to IANA [23].

Using data from 2023-05-27, this script produced results which can
be found in table 2

RI
R

A
cti
ve
/48
’s

Av
g.
ac
tiv
e c
ou
nt
/48

1k
+ a
cti
ve
/48
’s

LACNIC 17131 8.56 12 (0.07%)
RIPE NCC 148959 29.0 784 (0.53%)
ARIN 29937 36.34 125 (0.41%)
APNIC 46774 18.56 69 (0.14%)
AFRINIC 1101 11.16 0

Table 2. /48 block data per RIR region

Given the idea behind IPv6 addresses, where each device on a
network has its own, open to the internet public IP address. We can
get some idea on the prefix sizes assigned to end users from this
table for each different region. For example for RIPE NCCs region,
there are on average less IPv6 addresses behind an active /48 block
than for ARIN. Which likely means end users get assigned larger
address ranges under RIPE NCC than under ARIN. Interestingly
enough this conflicts with the ISP policy’s stated by the respective
RIR regions, but as was also discussed, ISPs do not always tend to
follow these recommendations.

To get an even better understanding of this data, we also looked
at the distribution of active address counts per /48 block. This way
we can get some insight into how many /48 blocks are heavily pop-
ulated per RIR region. These results can be found in figure 3 and
figure 4

One thing that becomes more obvious when looking at figure 4, is
that mainly RIPE NCCs and ARINs distributions looks very similar.
While for example AFRINIC clearly assigns larger sizes. But this
could also be due to the scarcity of internet connectivity in Africa.
To give some more insight on the interesting case of /48 blocks

with lots of active addresses, in table 2 we provide the exact counts
of the number of /48 blocks with 1000 or more active addresses.
A reasonable assumption to make, is that a /48 block with more

than 1000 active address can’t possibly be a single end user, and is
likely an ISP that smaller assigns parts of a /48 block to end users. To
reaffirm this, consider that the average household won’t have more

5

TScIT 39, July 7, 2023, Enschede, The Netherlands Pieter van Heijningen

Fig. 3. /48 distribution per RIR

Fig. 4. CDF chart of /48 distribution per RIR (excluding 1k+)

than 1000 devices connected to the internet. With the assumption
and the above data, we can make some interesting observations:
First of all, in contrary to conclusions made previously in this sub-
section, and in the "implementation of ISP’s." subsection. The table
above does, slightly seem to reflect the policies of the RIR regions,
most notably when comparing RIPE NCC and ARIN like before.
Under ARIN, 0.41% of all /48 blocks have more than 1000 active
addresses. While under RIPE, this is 0.53%. Thus, possibly showing
that end users under ARIN get larger prefix sizes, but this different
is not too large. A strong conclusion can’t be made, because not
all addresses are from end users, some might be routers or servers
operated by organisations.

One thing this data does show, is that rate-limiting by /48 block for

IPv6 indeed might cause issues for normal end users. As a single
/48 block could easily represent more than a thousand devices.

6.3.4 Tunnel brokers. Like mentioned before, IPv4 to IPv6 tunnel
brokers exist. Which can give any attacker who has an internet
connection access to a /48 block. These services are generally free
to use and require no personal information [15, 16]. Therefore it
can be assumed that any knowledgeable attacker can have access
to a /48 block.

6.3.5 Attackers with access to AS number(s). For attackers with an
ASN under RIPE NCC, one could request a IPv6 address range. To
do this, you need to be an RIPE NCC member, which costs 1000
EUR, plus an annual membership fee of around 1500 EUR [40]. How-
ever you can then request a /29 IPv6 block without any additional
justification [37]. It is also worth nothing that a user can obtain a
provider independent (PI) /48 assignment, which does not require a
membership, but requires a sponsoring LIR with a RIPE membership
[38].
Similarly for ASNs under ARIN, a /32 IPv6 block can be obtained
with relative ease and little justification [9]. Costs are a bit lower
with ARIN, with a 800 USD sign up fee, and a 1150 USD annual fee
[8].
For APNIC, some more justification for address space seems to be
required. As their "Proof of Internet number resource needs". To get
a similarly sized block (/32) at APNIC they ask for a 500 AUD sign
up fee and a 2025 AUD annual membership fee [6].
For LACNIC, with some small justification a /32 could be obtained.
At the cost of a 2100 USD initial fee plus that same amount annually
[28]. Finally, for AFRINIC they have quite strict policies on proving
that you are an internet provider [2]. But they will provide a /32 at
the cost of a one time payment of 1650 USD and an annual fee of
2500 USD [3].
Finally, table 3 summarises these findings. With these findings, we

RIR Justification Prefix Cost in USD
LACNIC Little /32 $2100 and $2100 annually
RIPE NCC None /29 $1091 and $1637 annually
ARIN Little /32 $800 and $1150 annually
APNIC Strict /32 $342 and $1386 annually
AFRINIC Strict /32 $1650 and $2500 annually

Table 3. Cost for an ASN + prefix

can conclude that a motivated, well funded, attacker residing in
LACNIC, RIPE NCC or ARINs regions can relatively easily get ac-
cess to an entire /32 IPv6 block.
As for nation-state attackers, as they could have access to multiple
ASNs from multiple ISPs as demonstrated in a nation-state DDoS
attack on Google in 2017 [13]. Therefore access to multiple /32 IPv6
blocks can be assumed.

6.4 RQ4
Combining the information gathered from the previous sub-research
questions, we can give some advise on how IPv6 rate limiting should
be approached.

6

Exploring The State of Rate Limiting in IPv6 TScIT 39, July 7, 2023, Enschede, The Netherlands

First of all, rate should at least be done per /64 block, this is how
arguably the industry leader, Cloudflare implements it. This is rea-
sonable, as per RFC spec a minimum of a /64 block should be as-
signed per end user [44]. Making this limit higher, like /48 might
cause some issues for real users, as in RQ3 was found that many
of the same /48 blocks are used hundreds if not thousands of end
users. On top of that, while per-/48 blocking is too strict, it is also
useless against an attacker who is motivated enough to acquire a
ASN number. Which gives them access to a /32 or more in many
RIR regions. Effectively giving them 216 usable addresses in per-/48
rate limiting.

Given difficulty to obtain a new IPv6 prefix to use, whether that
is through an ISP or through a RIR via an ASN. We think the best
approach to prevent abuse is to monitor for either /56, /48 or /32
blocks that suddenly have a large spike in requests, and then per-
manently block that range. Thus requiring the attacker to obtain
a new IPv6 address range. System administrators can decide the
whitelist of block the range based on based on previous traffic data,
associated ASN, request rate and types of requests to determine if
this is an attack or benign user traffic/growth.
This should stopmost attackers who does not have access to a botnet,
that, combined with blocking per-/64 seems to be most reasonable.
This approach does have the flaw of if an attacker knows about this
implementation, he can just simply scale up his DDoS attack slowly,
thus not showing any suspicion. A pseudo code implementation
of this idea can be found in Listing 3, which modifies the standard
leaky-bucket design of implementing rate limiting [48] slightly
Furthermore the reasoning behind the partially manual approach is
the infrequency of IPv6 based attacks being performed at this point
in time.

Listing 3. Pseudo code IPv6 rate limiting implementation

def on_ipv6_request(request):

take the first 64 bits

small_prefix = request.ip.bits()[:64]

take the first 48 bits

large_prefix = request.ip.bits()[:48]

if bucket_is_full(small_prefix):

block_request ()

if bucket_is_full(large_prefix) and not

whitelisted(large_prefix):

notify_sysadmin ()

pass_request ()

pass_request ()

7 CONCLUSION
In conclusion, this paper has highlighted the poor state of IPv6 rate
limiting support across the entire industry. Both in the enterprise
and open source solutions. This can be seen by the fact that, with
very few exceptions, per-IP IPv6 rate limiting is enabled by default.
Which as shown, is completely useless against almost all users who

have an IPv6-enabled internet connection.
A watertight, automated solution is difficult imagine. However it is
important that the internet community at least becomes aware of
this issue.
Finally, for future work. More work can be done in researching the
effect of memory usage of a large-scale IPv6 DDoS attack on more
software implementations could be performed. Which in turn might
find some insights for a more proper solution for IPv6 based rate
limiting, one which would require less manual work.

REFERENCES
[1] AFRINIC. 2013. IPv6 Address Allocation and Assignment Policy | AFPUB-2013-v6-

001. https://afrinic.net/ipv6-address-allocation-and-assignment-policy-afpub-
2013-v6-001

[2] AFRINIC. 2023. How to become an AFRINIC Resource Member. https://afrinic.
net/become-member#eligibility

[3] AFRINIC. 2023. Membership Fee and Payment Facilities. https://afrinic.net/
membership/cost#calculator

[4] Alibaba. 2022. Configuring rate limiting. https://www.alibabacloud.com/help/
en/alibaba-cloud-cdn/latest/configure-rate-limiting

[5] APNIC. 2013. APNIC guidelines for IPv6 allocation and assignment re-
quests. https://www.lacnic.net/684/2/lacnic/4-ipv6-address-allocation-and-
assignment-policies

[6] APNIC. 2023. Get IP: Before You Begin. https://www.apnic.net/get-ip/
[7] ARIN. 2004. IPv6 Address Allocation and Assignment Policy. https://www.arin.

net/vault/policy/archive/ipv6_policy.html
[8] ARIN. 2023. Fee Schedule. https://www.arin.net/resources/fees/fee_schedule/

#internet-service-providers-isps
[9] ARIN. 2023. Requesting IP Addresses or ASNs. https://www.arin.net/resources/

guide/request/
[10] AWS. 2023. Rate-based rule statement. https://docs.aws.amazon.com/waf/latest/

developerguide/waf-rule-statement-type-rate-based.html
[11] B. Blechschmidt. 2023. Freebind. https://github.com/blechschmidt/freebind.
[12] caddy documentation. 2023. Module http.handlers.rate_limit. https://caddyserver.

com/docs/modules/http.handlers.rate_limit
[13] Catalin Cimpanu. 2020. Google says it mitigated a 2.54 Tbps DDoS attack in 2017,

largest known to date. https://www.zdnet.com/article/google-says-it-mitigated-
a-2-54-tbps-ddos-attack-in-2017-largest-known-to-date/

[14] Google Cloud. 2023. Rate limiting overview. https://cloud.google.com/armor/
docs/rate-limiting-overview

[15] Hurricane Electric. 2023. Hurricane Electric Free IPv6 Tunnel Broker. https:
//www.tunnelbroker.net/

[16] Dr. Paolo Fasano, Dr. Ivano Guardini, Alain Durand, and Domenico Lento. 2001.
IPv6 Tunnel Broker. RFC 3053. https://doi.org/10.17487/RFC3053

[17] Oliver Gasser, Quirin Scheitle, Pawel Foremski, Qasim Lone, Maciej Korczynski,
Stephen D. Strowes, Luuk Hendriks, and Georg Carle. 2018. Clusters in the
Expanse: Understanding and Unbiasing IPv6 Hitlists. In Proceedings of the 2018
Internet Measurement Conference (Boston, MA, USA). ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3278532.3278564

[18] Github. 2023. web-server. https://github.com/topics/web-server
[19] Google. 2023. IPv6 Adoption. https://www.google.com/intl/en/ipv6/statistics.

html#tab=ipv6-adoption
[20] Brian Haberman and Bob Hinden. 2005. Unique Local IPv6 Unicast Addresses.

RFC 4193. https://doi.org/10.17487/RFC4193
[21] HAProxy. 2023. They use it ! https://www.haproxy.org/they-use-it.html
[22] Russ Housley, John Curran, GeoffHuston, and David R. Conrad. 2013. The Internet

Numbers Registry System. RFC 7020. https://doi.org/10.17487/RFC7020
[23] IANA. 2019. IPv6 Global Unicast Address Assignments. https:

//www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-
address-assignments.xhtml

[24] IBM. 2020. Configuring rate limiting. https://cloud.ibm.com/docs/cis?topic=cis-
cis-rate-limiting

[25] Cloudflare Inc. 2023. Configuring Cloudflare Rate Limiting (previous ver-
sion). https://developers.cloudflare.com/support/firewall/tools/configuring-
cloudflare-rate-limiting/

[26] kinsta. 2023. kinsta. https://kinsta.com/cloudflare-market-share/
[27] LACNIC. 2023. IPv6 ADDRESS ALLOCATION AND ASSIGNMENT POLI-

CIES. https://www.lacnic.net/684/2/lacnic/4-ipv6-address-allocation-and-
assignment-policies

[28] LACNIC. 2023. ISP IPv6 Fees. https://www.lacnic.net/5450/2/lacnic/isp-ipv6-fees
[29] ldrg. 2022. Reply: How to protect a web application from IPv6 bots? https:

//serverfault.com/a/1102191

7

https://afrinic.net/ipv6-address-allocation-and-assignment-policy-afpub-2013-v6-001
https://afrinic.net/ipv6-address-allocation-and-assignment-policy-afpub-2013-v6-001
https://afrinic.net/become-member#eligibility
https://afrinic.net/become-member#eligibility
https://afrinic.net/membership/cost#calculator
https://afrinic.net/membership/cost#calculator
https://www.alibabacloud.com/help/en/alibaba-cloud-cdn/latest/configure-rate-limiting
https://www.alibabacloud.com/help/en/alibaba-cloud-cdn/latest/configure-rate-limiting
https://www.lacnic.net/684/2/lacnic/4-ipv6-address-allocation-and-assignment-policies
https://www.lacnic.net/684/2/lacnic/4-ipv6-address-allocation-and-assignment-policies
https://www.apnic.net/get-ip/
https://www.arin.net/vault/policy/archive/ipv6_policy.html
https://www.arin.net/vault/policy/archive/ipv6_policy.html
https://www.arin.net/resources/fees/fee_schedule/#internet-service-providers-isps
https://www.arin.net/resources/fees/fee_schedule/#internet-service-providers-isps
https://www.arin.net/resources/guide/request/
https://www.arin.net/resources/guide/request/
https://docs.aws.amazon.com/waf/latest/developerguide/waf-rule-statement-type-rate-based.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-rule-statement-type-rate-based.html
https://github.com/blechschmidt/freebind
https://caddyserver.com/docs/modules/http.handlers.rate_limit
https://caddyserver.com/docs/modules/http.handlers.rate_limit
https://www.zdnet.com/article/google-says-it-mitigated-a-2-54-tbps-ddos-attack-in-2017-largest-known-to-date/
https://www.zdnet.com/article/google-says-it-mitigated-a-2-54-tbps-ddos-attack-in-2017-largest-known-to-date/
https://cloud.google.com/armor/docs/rate-limiting-overview
https://cloud.google.com/armor/docs/rate-limiting-overview
https://www.tunnelbroker.net/
https://www.tunnelbroker.net/
https://doi.org/10.17487/RFC3053
https://doi.org/10.1145/3278532.3278564
https://github.com/topics/web-server
https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption
https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption
https://doi.org/10.17487/RFC4193
https://www.haproxy.org/they-use-it.html
https://doi.org/10.17487/RFC7020
https://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xhtml
https://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xhtml
https://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xhtml
https://cloud.ibm.com/docs/cis?topic=cis-cis-rate-limiting
https://cloud.ibm.com/docs/cis?topic=cis-cis-rate-limiting
https://developers.cloudflare.com/support/firewall/tools/configuring-cloudflare-rate-limiting/
https://developers.cloudflare.com/support/firewall/tools/configuring-cloudflare-rate-limiting/
https://kinsta.com/cloudflare-market-share/
https://www.lacnic.net/684/2/lacnic/4-ipv6-address-allocation-and-assignment-policies
https://www.lacnic.net/684/2/lacnic/4-ipv6-address-allocation-and-assignment-policies
https://www.lacnic.net/5450/2/lacnic/isp-ipv6-fees
https://serverfault.com/a/1102191
https://serverfault.com/a/1102191

TScIT 39, July 7, 2023, Enschede, The Netherlands Pieter van Heijningen

[30] Frank Li and David Freeman. 2020. Towards A User-Level Understanding of IPv6
Behavior. In Proceedings of the ACM Internet Measurement Conference (Virtual
Event, USA) (IMC ’20). Association for Computing Machinery, New York, NY,
USA, 428–442. https://doi.org/10.1145/3419394.3423618

[31] Cloudflare Marek Majkowski. 2018. The real cause of large DDoS - IP Spoofing.
https://blog.cloudflare.com/the-root-cause-of-large-ddos-ip-spoofing/

[32] Theodor Schnitzler Maximilian Golla and Markus Dürmuth. 2018. “Will Any
Password Do?” Exploring Rate-Limiting on the Web. https://wayworkshop.org/
2018/papers/way2018-golla.pdf

[33] Microsoft. 2022. Deny by Request Rate <denyByRequestRate>.
https://learn.microsoft.com/en-us/iis/configuration/system.webserver/security/
dynamicipsecurity/denybyrequestrate

[34] Microsoft. 2023. Configure a Web Application Firewall rate limit
rule. https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/waf-
front-door-rate-limit-configure?pivots=portal

[35] Dr. Thomas Narten, Tatsuya Jinmei, and Dr. Susan Thomson. 2007. IPv6 Stateless
Address Autoconfiguration. RFC 4862. https://doi.org/10.17487/RFC4862

[36] RIPE NCC. 2020. IPv6 Address Allocation and Assignment Policy. https://www.
ripe.net/publications/docs/ripe-738#assignment

[37] RIPE NCC. 2021. How to Request an IPv6 Allocation. https://www.ripe.net/
manage-ips-and-asns/ipv6/request-ipv6/how-to-request-an-ipv6-allocation

[38] RIPE NCC. 2021. How to Request an IPv6 PI Assignment. https:
//www.ripe.net/manage-ips-and-asns/ipv6/request-ipv6/how-to-request-
an-ipv6-pi-assignment

[39] RIPE NCC. 2023. Autonomous System Numbers. https://www.ripe.net/manage-
ips-and-asns/as-numbers/request-an-as-number

[40] RIPE NCC. 2023. Billing, Payment and Fees. https://www.ripe.net/participate/
member-support/payment

[41] nginx. 2023. Module ngx_http_limit_req_module. https://nginx.org/en/docs/
http/ngx_http_limit_req_module.html#limit_req_zone

[42] Adam Pritchard. 2022. The scary state of IPv6 rate-limiting. https://adam-
p.ca/blog/2022/02/ipv6-rate-limiting/

[43] Nick Ramirez. 2019. HAProxy Rate Limiting: Four Examples. https://www.
haproxy.com/blog/four-examples-of-haproxy-rate-limiting

[44] Rosalea Roberts, Geoff Huston, and Dr. Thomas Narten. 2011. IPv6 Address
Assignment to End Sites. RFC 6177. https://doi.org/10.17487/RFC6177

[45] sysstat. 2023. sysstat - System performance tools for the Linux operating system.
https://github.com/sysstat/sysstat.

[46] Traefik. 2023. Success stories. https://traefik.io/success-stories/
[47] Traefiklabs. 2023. RateLimit. https://doc.traefik.io/traefik/middlewares/http/

ratelimit/
[48] J. Turner. 1986. New directions in communications (or which way to the in-

formation age?). IEEE Communications Magazine 24, 10 (1986), 8–15. https:
//doi.org/10.1109/MCOM.1986.1092946

[49] Pieter van Heijningen. 2023. Script to generate useful data from IPv6 hitlists.
https://gitlab.utwente.nl/s2614359/ipv6-ratelimiting

[50] W3techs. 2023. Usage statistics of web servers. https://w3techs.com/technologies/
overview/web_server

[51] Johannes Zirngibl, Lion Steger, Patrick Sattler, Oliver Gasser, and Georg Carle.
2022. Rusty Clusters? Dusting an IPv6 Research Foundation. In Proceedings of the
2022 Internet Measurement Conference (Nice, France). ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3517745.3561440

8

https://doi.org/10.1145/3419394.3423618
https://blog.cloudflare.com/the-root-cause-of-large-ddos-ip-spoofing/
https://wayworkshop.org/2018/papers/way2018-golla.pdf
https://wayworkshop.org/2018/papers/way2018-golla.pdf
https://learn.microsoft.com/en-us/iis/configuration/system.webserver/security/dynamicipsecurity/denybyrequestrate
https://learn.microsoft.com/en-us/iis/configuration/system.webserver/security/dynamicipsecurity/denybyrequestrate
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/waf-front-door-rate-limit-configure?pivots=portal
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/waf-front-door-rate-limit-configure?pivots=portal
https://doi.org/10.17487/RFC4862
https://www.ripe.net/publications/docs/ripe-738#assignment
https://www.ripe.net/publications/docs/ripe-738#assignment
https://www.ripe.net/manage-ips-and-asns/ipv6/request-ipv6/how-to-request-an-ipv6-allocation
https://www.ripe.net/manage-ips-and-asns/ipv6/request-ipv6/how-to-request-an-ipv6-allocation
https://www.ripe.net/manage-ips-and-asns/ipv6/request-ipv6/how-to-request-an-ipv6-pi-assignment
https://www.ripe.net/manage-ips-and-asns/ipv6/request-ipv6/how-to-request-an-ipv6-pi-assignment
https://www.ripe.net/manage-ips-and-asns/ipv6/request-ipv6/how-to-request-an-ipv6-pi-assignment
https://www.ripe.net/manage-ips-and-asns/as-numbers/request-an-as-number
https://www.ripe.net/manage-ips-and-asns/as-numbers/request-an-as-number
https://www.ripe.net/participate/member-support/payment
https://www.ripe.net/participate/member-support/payment
https://nginx.org/en/docs/http/ngx_http_limit_req_module.html#limit_req_zone
https://nginx.org/en/docs/http/ngx_http_limit_req_module.html#limit_req_zone
https://adam-p.ca/blog/2022/02/ipv6-rate-limiting/
https://adam-p.ca/blog/2022/02/ipv6-rate-limiting/
https://www.haproxy.com/blog/four-examples-of-haproxy-rate-limiting
https://www.haproxy.com/blog/four-examples-of-haproxy-rate-limiting
https://doi.org/10.17487/RFC6177
https://github.com/sysstat/sysstat
https://traefik.io/success-stories/
https://doc.traefik.io/traefik/middlewares/http/ratelimit/
https://doc.traefik.io/traefik/middlewares/http/ratelimit/
https://doi.org/10.1109/MCOM.1986.1092946
https://doi.org/10.1109/MCOM.1986.1092946
https://gitlab.utwente.nl/s2614359/ipv6-ratelimiting
https://w3techs.com/technologies/overview/web_server
https://w3techs.com/technologies/overview/web_server
https://doi.org/10.1145/3517745.3561440

Exploring The State of Rate Limiting in IPv6 TScIT 39, July 7, 2023, Enschede, The Netherlands

APPENDIX A

Table 4. ISP IPv6 prefix size assignments to end users

ISP Country Prefix size Source

RIPE NCC

KPN NL /48 https://id.nl/huis-en-entertainment/computer-en-gaming/netwerk/ip-adressen-raken-op-alles-over-ipv6
Ziggo NL /56 https://id.nl/huis-en-entertainment/computer-en-gaming/netwerk/ip-adressen-raken-op-alles-over-ipv6
Freedom Internet NL /48 https://helpdesk.freedom.nl/algemene-instellingen-eigen-modem
T-Mobile Netherlands NL no support https://community.t-mobile.nl/bekabeld-internet-492/een-provider-zonder-ipv6-hoe-is-dat-350182
Sky UK /56 https://www.ispreview.co.uk/index.php/2016/09/uk-isp-sky-broadband-officially-finish-roll-ipv6.html
BT Broadband UK /56 https://www.ispreview.co.uk/index.php/2016/11/bt-broadband-lines-now-support-ipv6-internet-addresses.html
Virgin Media UK no support https://www.ispreview.co.uk/index.php/2021/11/update-on-ipv6-plans-for-virgin-media-talktalk-plusnet-and-vodafone.html
Vodafone UK UK no support https://www.ispreview.co.uk/index.php/2021/11/update-on-ipv6-plans-for-virgin-media-talktalk-plusnet-and-vodafone.html
Plusnet UK no support https://www.ispreview.co.uk/index.php/2021/11/update-on-ipv6-plans-for-virgin-media-talktalk-plusnet-and-vodafone.html
TalkTalk UK no support https://www.ispreview.co.uk/index.php/2021/11/update-on-ipv6-plans-for-virgin-media-talktalk-plusnet-and-vodafone.html

ARIN

Comcast Xfinity US /64 https://forums.xfinity.com/conversations/your-home-network/ipv6-prefix-delegation-size/602daf7cc5375f08cd0d948c
Verizon US /56 https://www.reddit.com/r/Fios/comments/xoq9s6/hi_sorry_to_bother_but_what_prefix_delegation/
Google Fiber US /64 https://support.google.com/fiber/thread/808240/google-fiber-is-now-handing-out-a-64-for-ipv6-instead-of-an-56-ipv6-prefix-delegation-like-earlier

APNIC

Internode AUS /56 https://www.internode.on.net/support/guides/internet_access/ipv6/faq/
Aussie Broadband AUS /48 https://www.aussiebroadband.com.au/help-centre/internet/does-aussie-broadband-support-ipv6/

9

	Abstract
	1 Introduction
	2 Background
	2.1 CIDR notation
	2.2 Tunnel brokers
	2.3 Address assignment
	2.4 DoS attacks
	2.5 Web servers, WAFs and reverse proxies

	3 Previous work
	4 Problem statements
	5 Methodology
	5.1 Answering RQ1
	5.2 Answering RQ2
	5.3 Answering RQ3
	5.4 Answering RQ4

	6 Results
	6.1 RQ1
	6.2 RQ2
	6.3 RQ3
	6.4 RQ4

	7 Conclusion
	References

