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The continuous development of video streaming technologies has created
a great demand for accurate assessment of video quality to increase users’
quality of experience (QoE). There are many different categories of videos
for user preference such as documentaries, animations, games, and virtual
reality (VR) videos. Regardless of the category, every video must go through
a video quality assessment to reach the preferred quality by the human visual
system (HVS). Thus, the relationship between Video Quality Assessment
(VQA) scores and subjective judgments on the quality of videos is open for
evaluation in order to improve the overall QoE for users. In this study, we
explore the performance of the content-oriented VQA methods on computer
graphics (CG) animation videos, since recent VQA studies mainly focus
on in-the-wild user-generated-content (UGC) videos. Firstly, we use mean
opinion scores (MOS) from human subject opinions on the quality of videos
as the baseline to understand the subjective human judgments on the quality
of CG animation videos. Secondly, we use videos from the CG Animation
Subjective Dataset which are animation and gaming videos exclusively.
Thirdly, we compare the state-of-the-art VQA scores on CG videos to mean
opinion scores on CG videos to obtain the VQA methods’ performance on
CG videos by calculating Spearman’s Rank Correlation Coefficient (SRCC)
of the methods’ scores. The results of this study indicate the performance of
recent VQA methods on CG animation videos compared to mean opinion
scores and propose potential future research directions, such as exploring
different VQA methodologies.

Additional Key Words and Phrases: Video Quality Assessment, User Gener-
ated Content, Computer Graphics Animations, Quality of Experience

1 INTRODUCTION
Videos are increasingly getting integrated into the daily lives of peo-
ple as the visual aspect of videos appeals to our senses. Combining
moving images, colors, and visual effects can create an attention-
grabbing and engaging visual experience that piques viewers’ in-
terest. Specifically, the interest in computer graphics (CG) anima-
tion visuals has increased majorly with the developments of digital
videos, online games, and virtual reality (VR). However, CG anima-
tion videos have multiple processing phases before they end up on
the end user’s screen. From a technical perspective, most process-
ing phases of CG videos are compression phases that degrade the
quality of the video. Due to this, evaluation of video quality in order
to reach and maintain a satisfying level of Quality of Experience
(QoE) for the human eye is necessary for video processing systems
on CG animation videos.
Traditionally, video quality assessment (VQA) methods [12, 16,

20, 29, 36] are dependent on the technical aspects of videos such as
distortions, blurs and their correlation to the quality of video in order
to improve optical and visual technologies such as cameras [2]. On
the contrary, the influence of non-technical aspects such as content
and composition in videos is suggested in recent studies [4, 13,
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14, 33]. Regarded as the aesthetic perspective of quality assessment
[7, 22], the quality of experience for humans is suggested to improve
as the content and composition factors are in focus to create a more
meaningful video. However, the significance of aesthetics in videos
is questionable [4, 43] and requires further research.
The question of measuring the quality of experience on CG ani-

mation videos is still to be explored. Asking human participants for
their feedback is the only valid way to gauge the video quality as
seen by a human observer; this process is known as subjective VQA
[26, 42]. Given that people are involved in the process, subjective
VQA is not ideal for the majority of applications [26]. However,
the results of subjective VQA studies offer useful information to
evaluate how well automatic or objective VQA methods perform
[26]. Subjective studies enable advancements in the performance
of VQA algorithms in addition to giving the means to assess the
effectiveness of cutting-edge VQA technologies as they work in the
direction of achieving the ultimate objective of replicating human
vision [26].

In this paper, we explore the performance of recent VQAmethods
on CG animation videos and the relationship between VQAmethods
and subjective ratings on the quality of CG videos by using the mean
opinion scores. Our study uses the CG animation dataset which in-
cludes 262 diverse CG animation videos of 20 seconds [39]. The
diverse set of videos possesses aspects of technical quality factors
as well as aesthetic quality factors. For each video, the mean opin-
ion score (MOS) will be used to acquire the closest data to human
perception of video quality. Also, recent VQA methods will be used
to assess video quality and the results of each VQA method will be
compared to the mean opinion scores by calculating the Spearman’s
Rank Correlation Coefficient (SRCC) [35] of the methods’ scores.
To clarify, the following research question will be our main focus:

• RQ1: How is the performance of VQA methods on CG ani-
mation videos compared to the MOS?

We contribute to the user-generated content (UGC) VQA prob-
lem [29] by analyzing the data received from the MOS in contrast
to the VQA scores on CG animation videos. The results of each
VQA method’s performance will be presented. Thus, answering the
research question. Refer to the Methodologies section for the details.
To give notice, the related work on VQA methods, QoE studies,

and datasets will follow in the next section. After introducing the
existing knowledge on the topic, methodologies and experimental
setup used to answer the research question will be explained. After
presenting the results, the paper will finalize with a discussion and
conclusion.
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b) Videos with Worst Technical Scores 
a) Videos with Best Technical Scores c) Videos with Best Overall Scores 

d) Videos with Worst Overall Scores 
e) Videos with Best Aesthetic Scores 

f) Videos with Worst Aesthetic Scores 

Strong distortions (blurs, artifacts)

High sharpness & no distortion

Unclear semantics

Excellent quality from both perspectives

Unbearable quality from both perspectives 

Enjoyable semantics and professional composition

Fig. 1. Videos having the highest and lowest DOVER scores from an aesthetic, technical, and overall quality perception standpoint. While the technical
perspective is more concerned with low-level textures and distortions, the aesthetic perspective is more focused on the semantics or composition of movies.

2 RELATED WORK

2.1 VQA Databases
Traditionally, VQA databases [24, 26, 30] contain many high-quality
reference videos with synthetic distortions applied to them. How-
ever, user-generated content (UGC) videos are different from these
settings. Databases for UGC video quality assessment [8, 32, 43]
contain professional and non-professional videos with different con-
tents and compositions. Thus, assessing UGC videos requires more
effort compared to high-quality reference videos.

2.2 VQA Methods
Deep VQA methods consider the technical metrics of videos such
as structural [34], gradient [19], motion [25], saliency [44] infor-
mation and work with reference videos [40]. However, videos of
various genres frequently have defining traits. As a result, certain
VQA techniques and databases have been suggested for particular
videos. Different content and complex distortions existing on the
videos of UCG-VQA databases have pushed the idea of designing
blind video quality assessment (BVQA) methods. TLQVM [12] an-
alyzes two levels of complexity features: low complexity features
for every frame and high complexity features for representative
frames [40]. VIDEVAL [29] considers multiple blind VQA metrics by
feature selection. In handcrafted models, a knowledge-based process
called feature selection is improved by understanding contents and
distortions [40]. Using Deep Neural Networks, V-MEON [18] for
compression artifacts is developed. Another objective deep neural
network VSFA [13], developed by Li et al., focuses on content and
temporal-memory effect in in-the-wild videos. VSFA is influenced
by the semantic-pretrained ResNet-50 [5, 37].
DOVER. A recent study conducted by Wu et al in March 2023

proposes the new UGC-VQA method DOVER [37]. The proposed
Disentagled Objective Video Quality Evaluator considers both tech-
nical and aesthetic aspects of videos. The development of themethod
started with creating a unique database for both the technical and
aesthetic aspects of videos. To acquire the correct human opinion,
Wu et al. conducted an in-lab subjective study of 450,000 human
opinions on 3,590 UGC videos. The videos are sourced from the so-
cial media database YFCC-100M [28] and video recognition database

Kinetics-400 [10]. In the subjective study, they asked the subjects to
watch the video fully and answer considering only aesthetic, only
technical, and overall features on a scale of Bad, Fair, and Good
[37]. After the observation of perceptual quality opinions being
affected by both aesthetic and technical opinions, they developed
the UGC-VQA model DOVER.

In the developed method, the two different perspectives are han-
dled with a technical branch and an aesthetic branch. Distinct per-
ceptual characteristics of videos were used to develop the two sepa-
rate branches. Particularly, as characterized in Fig.1(a-b), technical
opinions are influenced by visible distortions such as blurs and
noises [19, 21, 36, 37, 43]. In contrast, the aesthetic quality is primar-
ily linked to content and the composition of objects [37, 45] (Fig.
1(e-f)). Using the two independent viewpoints - aesthetic view (𝑉𝐴)
and technical view (𝑉𝑇 ) - two distinct branches - aesthetic (𝐵𝐴) and
technical (𝐵𝑇 ) - assess different viewpoints independently using the
deconstructed views as inputs:

𝑄pred,𝑇 = 𝐵𝑇 (𝑉𝑇 ); 𝑄pred,𝐴 = 𝐵𝐴 (𝑉𝐴) (1)
There are a small number of perceptual elements that are interre-

lated, despite the fact that most perception-related characteristics of
the two viewpoints may be distinguished from one another. Light-
ing is an example as it affects brightness and exposure which are
technical expressions for lighting [3, 41]. Additionally, motion blurs
are considered to be low technical-quality artifacts [17], whereas,
from an aesthetical perspective, blurs are pleasant. As a result, the
overlaps are included in each branch instead of being split. Further-
more, inductive biases are used in each branch to clarify different
points of view [37].
Technical Branch. Fragments are cut [36] to retain technical

aberrations in the Technical View (𝑉𝑇 ) [37] (as illustrated in Fig.
2(c)). These pieces are created by sewing together randomly snipped
patches [37]. Also, deleting much of the information and changing
the compositional connections of the surviving bits significantly
harms video aesthetics [37]. Thus, continuous frame sampling for
𝑉𝑇 to maintain temporal distortions is used [37]. Regardless of se-
mantics and content being removed in 𝑉𝑇 , weak global semantics is
utilized as background data to distinguish between distortions (like
noises) and textures (like sands) [37].
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Fig. 2. The Disentangled Objective Video Quality Evaluator (DOVER) via (a) View Decomposition, with the (b) Aesthetic Branch and the (c) Technical Branch.

Aesthetic Branch. Context and composition have a significant
role in determining a video’s aesthetics [9, 37]. Spatial downsam-
pling [11] and temporal sparse frame sampling [31] are combined
to create the Aesthetic View [37] (see Fig. 2(b)). In addition, the two
approaches considerably lessen the sensitivity to technical flaws
such as blurring, sounds, glitches, shaking, and flicker (through
temporal sparse sampling) in order to concentrate on aesthetics
[37].
Cross-scale Regularization. By downsampling the aesthetic view

using an 11.3x downscaling ratio, the technical effects are reduced.
The downsampled aesthetic view (𝑆𝐴↓ ) protects aesthetic aspects of
𝑆𝐴 , while lessening the technical distortions (see Fig. 2(b)) [37]. Thus,
Cross-scale Restraint (𝐿𝐶𝑅 ) is used to decrease the technical aspects
in the aesthetic prediction by boosting the feature resemblance
between 𝑆𝐴↓ and 𝑆𝐴 :

𝐿𝐶𝑅 = 1 −
𝐹𝐴 · 𝐹𝐴↓

∥𝐹𝐴∥ · ∥𝐹𝐴↓ ∥
(2)

where 𝐹𝐴 and 𝐹𝐴↓ are output features from 𝑆𝐴 and 𝑆𝐴↓ [37].
VMAF. Video Multi-method Assessment Fusion (VMAF), which

Netflix created, is a valuable tool for evaluating video quality [47]. In
order to forecast how people would judge video quality, it uses a per-
ceptual evaluation methodology that fuses machine learning models
with a fusion method [47]. It offers a comprehensive evaluation of
video quality by assessing numerous visual aspects including spatial,
temporal, and motion information [47]. Its extensive industry usage
is evidence of its reliability as a tool for assessing video quality,
and it has helped enhance streaming, compression, and distribution
technologies [47]. Although multiple video quality metrics such
as Peak-to-Signal-Ratio (PSNR) [6], or Structural Similarity Index
Measure (SSIM) [23] are traditionally used to compare the technical
quality of reference videos of high technical quality and distorted
videos resulting from compressions of different codecs, VMAF can
better capture scaling artifacts and more significant codec changes
that are connected with perceived quality since it combines multiple
quality metrics [46, 47]. By fusing the strengths and weaknesses
of different metrics using a machine learning algorithm called Sup-
port Vector Machine (SVM) that gives weights per metric, a more
accurate final quality score is obtained [1, 46]. Regression using
a Support Vector Machine (SVM) fuses the following metrics: Vi-
sual Information Fidelity (VIF) [27]. VIF image-quality metric is a
measure of information fidelity loss [27]. The term "fidelity" is the
accuracy with which the visual information of a compressed video

is preserved compared to the original, uncompressed version [27].
VMAF uses VIF by measuring the loss of fidelity in each frame [46].
Detail Loss Metric (DLM) [15]. By assessing the amount of detail
lost that diverts viewers’ attention, the DLM image-quality measure
evaluates the visibility of the content [15]. VIF and DLM are spatial
image quality metrics. On the other hand, by calculating the average
absolute pixel difference for the luminance component, VMAF uses
motion as its temporal quality measure [46].
CGVQA. CGVQA is a no-reference VQA tool specifically made

for assessing CG videos [39]. The CG animation dataset was used to
train and test the model. The method focuses on animation-specific
features such as higher definitions, higher frame rates, strong blacks,
rich colors, regions of interest (ROI), and temporal domain informa-
tion entropy (TDIE) [39]. Initially, CGVQA was part of the methods
we decided to work with in this study. However, even though the
open-source code was published, no starting instructions were given
to the users as guidance. Additionally, we couldn’t contact the de-
velopers of the method and hence were not able to work with it.

Given the advancements in video quality assessment methods and
ultimate developments in computer graphics technologies, there is a
need for an analysis of VQAmethods’ performance on CG animation
videos. As traditional methods struggle with the recognition of
content and composition in videos, it’s binding to explore and try
new methods. Recognizing these needs, we propose to tackle an
exploration of:

• the performance of content-aware VQA methods compared
to the mean opinion scores on CG animation videos,

• the effect of various content and composition features on
VQA methods’ scores.

By doing so, we aim to enhance our understanding of how the
quality of computer graphics is perceived by viewers, provide com-
parisons betweenVQAmethods’ scores on computer graphics videos
and show the importance of content and composition assessment
in video quality assessment methods. The possible benefits of this
study include learning the currently available methods for evaluat-
ing computer graphics video quality and gaining an understanding
of how the human visual system (HVS) perceives the quality of
animation videos by comprehending the importance of content and
composition analysis in VQA methods.

3 METHODOLOGIES
In the following section, methodologies, and approaches to answer-
ing the defined research questions will be explained.
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3.1 Architecture
The process of using VQA methods to obtain quality scores for ani-
mation videos and evaluate a full dataset is as follows. The foremost
action is to find available VQA methods that are consistent with the
experimental setup. After a broad literature review of existing VQA
methods’ papers for deciding on functional VQA methods, the code
hosting platform GitHub can assist to obtain the methods’ open-
source codes. To confirm that the decided methods work correctly,
they are individually built and tested with available videos. If the
method is not working as expected in the testing procedure, it’s
noted to indicate that the method can not be used in the experiment.
The reasons for the methods not working as expected are that the
method is not compatible with the experimental setup and cannot
produce quality scores of videos, or the code is not up-to-date since
the publisher is not checking the issues of the code. If the method
was working as expected in the testing procedure, it’s noted to
indicate that the method can be used in the experiment. The rea-
sons for the methods to work as expected are that the method is
able to output a quality score on videos and is compatible with the
experimental setup.

3.2 Data Preprocessing
Following the data collection phase, we carried out preprocessing
processes to get the data ready for analysis. To assure compatibil-
ity and consistency across many variables, the preparation stages
focused on data cleansing and transformation. The first step was
to examine the data to identify and handle any missing scores and
inconsistencies. The videos that are incompatible with the exper-
imental setup were removed from the experiment dataset. After
the completion of the experiments, we applied data transformation
techniques to normalize the scales of MOS and predicted quality
scores. Specifically, we adjusted the scale of MOS and predicted
quality scores using min-max scaling as the scores of VQA methods
and MOS were scaled differently (e.g. [1-5], [0-1], [0-100]). By doing
this, variables that previously had ranges of 1 to 5 were converted
to a common scale of 0 to 100, making it simpler to compare and
analyze the data.

3.3 Evaluation Techniques
The traditional analysis technique used in VQA experiments is Spear-
man’s Rank Correlation Coefficient (SRCC) which computes the
correlation between predicted values and the MOS. Additionally,
scatter plot graphs, line charts, and tables can be created to visually
compare the results.
SRCC Analysis. To gain an understanding of the correlation

between two unrelated sets of data, rankings of the unique data pairs
can be checked for parity. Spearman’s rank correlation coefficient
(SRCC) can be used to compute the correlation. [35]. SRCC is a
measure of monotonic correlation strength between two sets of
unrelated data. To perform the technique, the data variables need to
be ranked. The smallest value gets ranked 1, and the next smallest
gets ranked 2, and so on. In the case of multiple variables of the same
value, the average rank is assigned to them. For each value of items,
the difference between the two values is calculated. From the ranking
perspective, the degree of agreement or disagreement is understood

by the difference. The next step is to square the differences in order
to highlight the great differences. Then, sum the squared differences
to apply Formula 3:

SRCC = 1 − 6 ·∑ (squared differences)
𝑛 · (𝑛2 − 1)

(3)

In Formula 3, n is the number of items in the dataset. For SRCC,
a value of -1 denotes a perfect negative monotonic connection, a
value of 0 denotes the absence of any monotonic relationship, and
a value of 1 denotes a perfect positive monotonic relationship. A
better correlation is suggested by a higher SRCC score, which shows
that the method can correctly predict subjective scores.

Scatter Plot Analysis. One of the methods for visual comparison
is scatter plot analysis. The scatter plot can have the MOS on the
x-axis and the predicted quality scores on the y-axis. Every data
point on the graph corresponds to a stimulus. An upward trend of
the data points suggests a positive correlation, while a downward
trend suggests a negative correlation. Also, a random distribution
of points suggests no correlation. The scatter plot graph will help
to learn the trends in the data and provide a visual representation
of the alignment between prediction scores and the MOS.
Line Chart Analysis. In addition to scatter plot graphs, line

charts can be used to visualize the correlation results. The number
of videos will be on the x-axis and the quality scores will be on the
y-axis. The main usage of the line chart analysis is to specifically
analyze the consistency of the trend. By using a line chart, patterns
that are not easily seen in the scatter plot graphs can be visually
analyzed easier.

Comparison Table Analysis. Tables can be used to present the
results of the SRCC analysis. The comparison table will include the
SRCC results of each method on different categories. Tables make it
easier to directly compare the SRCC results. They can be organized
based on different categories of stimulus. With the inclusion of
different categories in the table, analysis of visual features’ effect
on the quality score presented by different VQA methods can be
further analyzed to understand the categories of content each VQA
method performs well or badly.

The performance of the VQAmethods can be absolutely compared
by combining the SRCC analysis, scatter plot graphs, line charts,
and comparison tables. The scatter plot graphs, line charts, and
comparison tables give visual and tabular representations for simple
understanding and comparison of the data, while the SRCC analysis
offers a quantitative measure of correlation.

4 EXPERIMENTAL SETUP
In the following section, the datasets, the methods, and implemen-
tation details of the experiments will be presented.

4.1 Datasets
Due to the inclusion of diverse categories of CG videos, such as
animations, gaming videos, and VR videoswith different content and
compositions, the Youtube UGC Dataset [32] and the CG Animation
Video Dataset [38] are used for acquiring labeled CG animation
videos with different resolutions, content and composition aspects.
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Character and Face (CF) Items in front of Simple Background
(ISB)

Gorgeous Special Effects  (GSE) Scenery and Architecture (SA)Multiplayer Online Battle Arena
(MOBA)

Fig. 3. Categories of videos in CG Animation Dataset

4.1.1 CG Animation Dataset. During the experiments, we used
the CG animation video quality dataset [39]. It consists of 27 high-
quality reference videos in YUV format and 397 distorted videos. Five
compression-based distortion types and one transmission-based dis-
tortion type make up the distortion types. Videos feature a variety of
situations, including those from online games and animated movies.
In our experiments, we used 262 distorted videos of 3 compression-
based distortion types. The reason for this was that the videos with
AVI containers were not compatible with the experiment system
since some AVI containers use codecs that are not available for
macOS.
The videos in the CG Animation dataset are defined in 5 com-

mon categories: character and face (CF), items in front of a simple
background (ISB), gorgeous special effects (GSE), multiplayer online
battle arena (MOBA), and scenery and architecture (SA) (see Fig.3).
In videos related to CF, facial expressions and characters’ move-
ment cause distortions. ISB videos have a simple background and
increased sharpness to highlight the objects. GSE scenes are rich
and active resulting in a powerful effect. MOBA games have a higher
frame rate of 60fps and sharp visuals including text and health in-
dicators for players. In SA scenes, the composition of objects with
texture is in focus.
Another reason why we chose to work with the CG animation

dataset is that a mean opinion score (MOS) acquired from 25 subjects
in a subjective evaluation experiment was provided for each video.
In our study, the MOS data provided was used to compare the scores
of VQA methods by calculating the SRCC.

4.1.2 YouTube User Generated Content Dataset. The Youtube User
Generated Content (UGC) dataset [32] was used for testing pur-
poses. It consists of 1500 videos with various resolutions, frame
rates, and content. The videos are sampled from videos uploaded

to YouTube and are not always professional. There are many cate-
gories of videos: Animation, Cover Song, Gaming, HDR, How-To,
Lecture, Live Music, Lyric Video, Music Video, News Clip, Sports,
Television Clip, Vertical Video, Vlog, and VR. However, only the
related animation and gaming-labeled videos were used for testing.
Also, there is a mean opinion score on a scale of 1-5 for each video,
acquired from 100+ subjects using crowdsourcing.

4.2 Validation Metrics
The validation of the analysis results will be done using mean opin-
ion scores (MOS) obtained from human subjects in an experiment
conducted by the publishers of the CG animation dataset [39]. In the
experiment, 25 paid participants were tested. None of the subjects
had expertise in image and video processing areas and they were
single-stimulus tested to give a quality score for each video on the
five-grade scale: 1-Bad, 2-Poor, 3-Fair, 4-Good, and 5-Excellent [39].
In our study, these scores serve as a standard of quality and choice.

5 RESULTS
The results of the experiments will be explained by scatter plot
analysis, line chart analysis, and comparison table analysis.

5.1 Scatter Plot Analysis
Scatter plots between the MOS and predicted quality scores are
presented in Fig.4. The black trend line represents the best fitness
between the axes. A successful VQA method is indicated by the
points being very near to the regression line since this suggests a
greater correlation. It is clear from Fig. 4 that the MOS and projected
quality scores have a strong correlation. To elaborate, the SRCC on
the whole set and different categories are close to and greater than
0.8, which suggests a very high performance. The ultimate accuracy
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Fig. 4. Scatter plot graphs between the MOS [39] and the quality score predicted by DOVER [37]. Observations of upwards trend lines suggesting high
correlation are present in every category.

Table 1. SRCC comparison between traditional VQA Metrics and DOVER on the CG animation dataset including different categories: Character and face (CF),
gorgeous special effects (GSE), scenery and architecture (SA), items in front of a simple background (ISB), multiplayer online battle arena (MOBA). The final
column represents the SRCC of methods on the full dataset containing all categories.

Method CF GSE SA ISB MOBA Overall
PSNR [6] 0.83021 0.5599 -0.14103 0.6087 0.4414 0.31273
SSIM [23] 0.75001 0.49208 -0.01444 0.47698 0.66604 0.31056
VMAF [47] 0.87226 0.79211 0.4292 0.80942 0.73926 0.57745
DOVER [37] 0.7842 0.7946 0.9317 0.8095 0.9161 0.8239

of the method depends on the content perception and extracted
spatiotemporal features.

5.2 Comparison Table Analysis
We compared the no-reference (NR) DOVER VQA metric with 3 tra-
ditional full-reference (FR) VQA metrics, which are widely applied
and comprehensible, to further analyze the usefulness of content-
aware CNN and the extracted features: peak signal-to-noise ratio
(PSNR), structural similarity (SSIM), video multi-method assessment
fusion (VMAF). Table 1 presents the comparison results. The cat-
egories in the first row are the five categories of videos from the
dataset: character and face (CF), items in front of a simple back-
ground (ISB), gorgeous special effects (GSE), multiplayer online bat-
tle arena (MOBA), and scenery and architecture (SA). Additionally,
an "overall" column is added to compare each method’s performance
on the whole dataset. Thus, the last column represents the SRCC
of the VQA methods on 262 videos. Each category’s top metric is
highlighted in bold.

From Table 1, the most substantial correlation score in the entire
set belongs to DOVER. The three FR techniques only worked with
specific contents of CG videos. This demonstrates that different
contents of animations have various visual properties, and that
video content is a crucial attribute. VMAF was the second best
out of the four methods. Also, VMAF and PSNR were better than
DOVER in CF. The reason for that is that characters and faces
frequently have more recognizable and repeatable patterns. Since
CF usually has well-defined features and structures, VMAF and
PSNR successfully analyzed the videos. However, PSNR and SSIM
had no correlation with human perception in SA. These metrics
evaluate pixel-wise differences and do not consider the structural
or semantic information present in the frames. Both of them are
not good at capturing details and textures in a scene. On the other
hand, VMAF and DOVER take into account various visual factors,
including structural and textural details.

6
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Fig. 5. Line chart comparison between the MOS [39] and predicted quality
score by DOVER [37]

5.3 Line Chart Analysis
In addition to scatter plots, a line chart is used to visually present
the results in Fig.5. In parallel with Fig.4, both lines are on a positive
trend. However, the scores of high-quality-score videos differ largely
between the MOS and predicted quality scores. This misalignment
can be because of subjective perception bias caused by individuals,
and model limitations of DOVER. The completion of the line chart
analysis led to the birth of a discussion point diving into the reasons
for perception bias and model limitations.

6 DISCUSSION
Future research can analyze these results and extend the research
by comparing alternative VQA methods, and understanding how
perceptional bias affects the MOS to improve the current accuracy
of content-aware VQA methods. By examining how other VQA
methods work and perform, developments can be done. On the other
hand, a slightly different, interesting point of research would be to
study the effect of perceptual bias on quality perception. A theory
we realized during the studywas that humans tend to deeply analyze
faulty products more than they analyze perfect products. Learning
themain reason behind themisalignment of perfect subjective scores
and the lower predicted quality scores can lead to an improvement
in the accuracy of the model.

7 CONCLUSION
In conclusion, the experimental results demonstrate the effective-
ness of the suggested content-aware VQAmetric on computer graph-
ics animation videos. The scatter plot analysis reveals a strong
correlation between the MOS and predicted quality scores, indicat-
ing high performance. The comparison table analysis shows that
DOVER outperforms traditional FR metrics across the entire set of
animation videos, emphasizing the importance of content-aware

CNN and extracted features. The line chart analysis highlights the
alignment between the MOS and predicted quality scores, although
differences exist for high-quality-scored videos. These findings offer
points for discussion regarding subjective perception biases and
model limitations of VQA methods. Overall, the results suggest that
DOVER is a promising VQA method for assessing the video quality
of animation videos, considering various visual factors and content
perception.
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8 APPENDIX

Table 2. Technical Information on Videos and Distortions. QP stands for
quantization parameter. UHD stands for ultra-high definition. DCI stands
for digital cinema initiatives.

Sources Animations, Games

Distortion Types AVC/H.264 compression with four QPs
HEVC/H.265 compression with four QPs
MPEG-2 compression with two QPs

Resolution 1280x720 (720p)
1920x1080 (1080p)
3840x2160 (UHD 4K)
4096x2160 (DCI 4K)

Frame Rate 24fps
30fps
60fps
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