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Algebraic data types (ADTs) allow easy modelling of complex data structures.
When paired with static type checking, they can empower the programmer
to write more robust and reliable code. However, ADTs are not as popular in
the context of imperative programming languages, compared to functional
ones. This research paper investigates the current use of algebraic data types
and proposes a new programming language that aims to make ADTs more
accessible to beginner programmers with an imperative background. We
explore existing implementations of ADTs in popular languages and combine
their best features into the design of a new programming language called
“Typeling”, then we construct a prototype compiler for it using the LLVM
compiler infrastructure.
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1 INTRODUCTION
Algebraic data types (ADTs) are a kind of composite types char-
acterized by combining other types through the use of "algebraic"
operations. The two most common classes of ADTs are product
types and sum types. Product types represent a collection of values
that are all needed together. Examples of product types include
tuples and records. On the other hand, sum types (i.e., tagged or
disjoint unions or variant types) represent a value that can be one
out of a set of multiple choices. ADTs have several benefits in pro-
gramming. One of their greatest strengths is that they allow for the
intuitive modelling of complex data structures, which improves code
readability. Furthermore, by modelling the application’s business
logic with ADTs and ensuring that illegal states are not represented,
one can make their code more robust.

Algebraic data types have a strong connection with the functional
programming paradigm. One of the first languages to introduce
them is HOPE [11], a functional programming language whose
goal was to "encourage the construction of clear and manipulable
programs." However, ADTs are less commonly used in imperative
programming languages. Therefore, we established the following
objectives for the research project:

• To design a beginner-friendly imperative programming lan-
guage which has algebraic data types as the main feature.

• To use the LLVM Compiler Infrastructure to implement a
prototype compiler for the resulting language specification.

As a result, the research questions listed below have been posed:
RQ1 How are ADTs currently used in practice by modern pro-

gramming languages?
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RQ2 How can our new programming language implement ADTs
using the LLVM IR?

RQ3 Which features could be added to the programming language
to improve the usability of our ADTs implementation?

In this paper, we first defined the requirements that our new
language designmust adhere to, as seen in Section 2. Then, in Section
3 we answered the first research question (RQ1) by investigating
how some of the most popular programming languages currently
use ADTs in practice. Next, in Section 4, we presented the design and
example code of our new programming language, Typeling, which
follows the requirements formerly specified in Section 2. In addition,
we built a prototype JIT compiler for our design using the Rust
programming language and the LLVM compiler infrastructure and
use its implementation to answer RQ2. Following that, we applied
our findings from Section 3 to reflect on Typeling’s strengths and
weaknesses, and to propose expansions to our design that would
solve some of the current weaknesses. We finalize the paper by
discussing potential further work on the Typeling compiler.

2 DESIRABLE LANGUAGE REQUIREMENTS
Before reviewing the currently existing solutions, we first defined
the desired requirements for our language. This section goes into
the selected requirements and motivates their choice.

2.1 Simple syntax
The syntax should be concise and unambiguous to ensure it is easy
to read and write. Reserved keywords should be as short as possible,
no longer than six letters. Furthermore, reserved symbols should
only be chosen if their meaning can be extracted from their context.

2.2 Static typing
Statically typed languages with a proper type checker allow pro-
grammers to avoid having to deal with the "inscrutable bugs" which
come with dynamic typing [18]. Therefore, we consider static typing
an essential requirement for the language. However, they should be
implemented unobtrusively, so the user could avoid writing them
as much as possible.

2.3 User-defined types
The main feature of the language should be its type system. Accord-
ing to Burstall et al. [11]., the availability of a simple and powerful
type-definition facility dramatically simplifies the programmer’s
tasks. Therefore, the language should have an ADT-based type sys-
tem to encourage the users to implement their own types as much
as possible. One primitive type, a 64-bit integer, should be provided
as a base for building more complex types. Lastly, some form of
pattern matching should be implemented as well to allow the user
to access the ADTs’ inner data.
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2.4 Imperative control flow
According to a public survey [20], the majority of people who are
learning to code choose an imperative programming language as
their first one. As such, it makes sense for the language to feature
sequential composition, and to have the following control flow
structures:

2.4.1 Functions. The language should implement functions to allow
for further modularity of the code. Moreover, it should also be
possible to write recursive functions to permit the traversal of nested
ADTs.

2.4.2 While loops. Loops are an essential feature of imperative
programming languages. They empower the user to perform repeti-
tive tasks, as well as iterate over data structures. Even though the
same effect could be achieved with recursive functions, the language
should also have while loops to promote the imperative style.

2.4.3 If statements. Conditional branching in the form of if state-
ments is an essential control flow structure of imperative program-
ming languages, therefore it should be supported by the language.

3 EXISTING SOLUTIONS
Functional programming languages were the first to introduce ADTs,
being implemented by the HOPE programming language [11]. It
makes sense, then, that functional programming languages are the
ones that most commonly use ADTs. Among the most well-known
ones is Haskell [17] and the ML [18] family of languages, which
include Standard ML [19] and OCaml [4, 16].

However, our focus is on implementing an imperative language,
therefore we have reviewed some of the most popular imperative
programming languages according to [20], namely JavaScript [3],
Python [5], Java [1], C++ [14], and Rust [6, 7].

3.0.1 JavaScript. A multi-paradigm language that supports both
functional and imperative programming styles. JavaScript [3] is
dynamically typed, therefore it does not adhere to our requirements.
It also has a reputation for being an unintuitive language because
of some of its constructs, such as the difference between the "=="
and "===" operators. Nevertheless, in 2012, Microsoft released a
superset of JavaScript, namely TypeScript [8]. This release adds
optional static typing to JavaScript, making it easier to write and
maintain large-scale applications. TypeScript allows the construc-
tion of ADTs as well, through its union ("|") and intersection ("&")
operators. However, it does not support pattern matching.

3.0.2 Python. Anothermulti-paradigm language that supports both
functional and imperative programming styles. Like JavaScript,
Python is dynamically typed, so it does not fit our criteria. Python
became a popular language due to its simplicity, readability, and
many libraries and frameworks. Python only started supporting
structural pattern matching and the expression of algebraic data
types in version 3.10 [10], released in 2021.

3.0.3 Java. An imperative language that is statically typed. Java is
a popular language for enterprise development due to its scalability,
security, and cross-platform compatibility. It has a large and active
community, which has led to a vast ecosystem of libraries and

frameworks. As of Java 16 [1], pattern matching has become a
standard feature, which allows the implementation of ADTs through
a combination of inheritance and instanceof expressions. However,
this method can get quite verbose. Nevertheless, there have been
attempts at implementingmore succinct ADTs and patternmatching
by libraries such as Spotify’s DataEnum [2].

3.0.4 C++. An imperative language that is statically typed. C++
[14] is a popular language for systems programming, game develop-
ment, and high-performance computing due to its speed, efficiency,
and low-level control. While C++ does not have built-in language
support for ADTs, similar functionality can be achieved by com-
bining classes, inheritance, and variants. However, C++ does not
provide native pattern-matching syntax.

3.0.5 Rust. A multi-paradigm language that supports both func-
tional and imperative programming styles. Rust [6, 7] is a statically
typed language, first released in 2010 by Mozilla Research. Rust
features ADTs and pattern matching as first-class language features.
However, it can be difficult to learn due to its strict compiler, and
the safety guarantees provided by the borrow checker can some-
times be limiting. Rust served as one of the main inspirations for
the Typeling language.

4 THE TYPELING PROGRAMMING LANGUAGE
We designed the Typeling programming language according to the
requirements specified in Section 2. As formerly stated, our goal
was to create a simple programming language that would enable
beginners with an imperative programming language background
to become acquainted with algebraic data types.
In its current state, Typeling is still a prototype language. It is

not intended to be a revolutionary technological breakthrough, but
rather an experiment in language design. Therefore, it has some
limitations, such as a lack of input facilities and reliance on the
printf C library function for output.

4.1 Comments
Typeling features C-style comments. Single-line comments must
be prefixed by the "//" symbol and multi-line comments must be
surrounded by the "/*" and "*/" symbols.

// single-line comment
/* mult-line
comment */

4.2 Type system
As stated in Section 2, the Typeling language only has one primi-
tive type, namely a 64-bit signed integer. In Typeling, the reserved
keyword for the 64-bit integer is "i64".

Similarly to the HOPE [11] and Haskell [17] languages, data types
in Typeling are represented as data constructors which are applied
to several terms, which in turn represent another data item.
A new type can be declared using the type keyword, followed

by the name of the type and a list of data constructors. For example,
to define a Num type that acts as a wrapper over an i64, one would
write:

type Num = Num i64
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which defines a new data type calledNumwith one data constructor,
called Num, that takes an i64 as an argument.

Note that types and their constructors are allowed to have differ-
ent names, for example:

type Num = I i64

which as well creates a data type calledNum, but whose constructor
is I instead.
There are three kinds of data constructors, classified according

to their parameter count and types:

4.2.1 Unit constructor. A unit constructor has no parameters. Figure
1 outlines two methods of declaring the same Unit type.

// standard notation
type Unit = Unit

// shorthand notation
type Unit

Fig. 1. Declarations of a new type with no fields (Unit constructor)

Unit data structures can then be created by calling the unit con-
structor with no arguments:

x := Unit;

4.2.2 Tuple constructor. A tuple constructor can have multiple pa-
rameters. Tuple types can be declared in three ways, as seen in
Figure 2.

// standard notation
type Tuple = Tuple i64 i64

// alternative notation
type Tuple = Tuple (i64, i64)

// shorthand notation
type Tuple(i64,i64)

Fig. 2. Declarations of a product type with anonymous fields (Tuple con-
structor)

Once defined, tuple constructors can be called with the appropriate
number of arguments to construct its data structure:

x := Tuple(10,20);

4.2.3 Struct constructor. Just like tuple constructors, a struct construc-
tor can have multiple parameters as well. However, the parameters
of a struct constructor can be named, as shown in Figure 3.

// standard notation
type Struct = Struct x:i64 y:i64

// alternative notation
type Struct = Struct {x: i64, y: i64}

// shorthand notation
type Struct {x: i64, y: 64}

Fig. 3. Declarations of a product type with named fields (Struct constructor)

Again, like tuple constructors, struct constructors can be called with
the appropriate number of arguments to create their data structure.
However, they also allow the arguments to be provided in any order,
by prefixing them with their field name1:

x := Struct(10,20);
y := Struct(y=20,x=10);

4.2.4 Sum types. Additionally, sum types (or enums) can be ob-
tained by combining data constructors with the "|" symbol. An
example is shown in Figure 4. Here, any of the calls to the A, B, C or
D constructors will result in an Enum data type.

// standard notations
type Enum = A

| B i64
| C i64 i64
| D x:i64 y:i64 z:i64

// alternative notations
type Enum = A

| B (i64)
| C (i64, i64)
| D {x:i64, y:i64, z:i64}

Fig. 4. Declarations of a sum type

In addition, new type declarations can contain other types, by
referencing the name of the target type as a subterm in the data
constructor. For example, Figure 5 shows the declaration of a linked
list of 64-bit integers.

type List = Cons i64 List | Nil

Fig. 5. Declaration of a List type

4.3 Functions
Typeling programs consist of multiple (global) type and function
declarations. Functions are declared using the "fn" keyword and
1due to a bug, this feature is not currently supported by the prototype and will result
in a type checking error
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require a name, a list of parameters and a return type. The parame-
ters of a function must be explicitly typed. For example, a function
which computes the sum of two integers would have the following
signature:

fn sum(x: i64, y:i64) -> i64 { /* statements */ }

If a function does not return a value, its "-> type" part can be
omitted. Such functions return the "()" unit type. The "main" func-
tion is one such example. It serves as the entry point of a Typeling
program. Therefore, programs missing the "main" function will fail
to compile. Its signature is as follows:

fn main() { /* statements */ }

The order of function declarations does not matter. In the follow-
ing example:

fn fun1() {}
fn fun2() {}

the "fun1" function will be able to call "fun2", even though it has
been declared before the latter. It then follows that recursive calls
are also possible.

4.4 Statements
As is the case with imperative languages, function bodies are created
by the sequential composition of statements. In Typeling, a statement
is an instruction that does not produce a value.
The Typeling language features three main control flow state-

ments: conditional branching with if statements, while loops, and
function return statements.

4.4.1 Function returns. The return statement can be used to ter-
minate the execution of a function, returning the control flow to its
caller. In addition, the return statement can be used to mark the
value produced by the function. Therefore, functions which have a
return type other than () must have a return statement, as such:

fn three() -> i64 {
return 3;

}

For functions that do not produce a value, the return statement
can be omitted, as it will be implicitly added as the last statement of
the block. For example, this:

fn nothing() {}

is equivalent to:
fn nothing() { return; }

4.4.2 Variable declarations and assignments. Typeling features mu-
table, statically-typed variables. Variable declarations in Typeling
require a name and a type or an initial value. Variable names must
match the following regular expression:

[_a-z][_a-zA-Z0-9]*

As a result, identifiers which start with a capital letter cannot be used
as variable names, they are instead reserved for type declarations.
A complete variable declaration will look like this:
x : i64 = 10;

However, if an initial value is provided, the type signature can be
left out, as the compiler will infer it:

x := 10; // x is i64

Otherwise, the type of an uninitialized variable must be specified,
as such:

x : i64;

Once defined, variables can be reassigned to new values with the
"=" operator:

x := 10; // x = 10
x = x + 1; // x = 11

4.4.3 Blocks. In Typeling, blocks can be used anywhere inside a
function’s body to define a new scope. This allows variable shadow-
ing, for example:

fn one() -> i64 {
x := 1; // x = 1
{

x := 2; // x = 2
}
return x; // x = 1

}

here, x is first declared with value 1. Then, a new scope is created
using the block statement, which allows x to be shadowedwith value
2. After the block statement ends, the top-most scope is removed
and the value of x is 1 again.

4.4.4 Conditional branching. Conditional branching is achieved in
Typeling through the use of if statements, which have the following
structure:

if condition { /*then block*/ }
else { /*else block*/ }

The conditionmust be an i64 value. If the condition is 0, the control
flow will go to the else block, otherwise it will go into the then
block. Then, execution will continue with the next statement after
the if. The else block is optional, therefore the following is a
valid if statement:

if condition { /* then block */ }

in which case the control flow will only go into the then block if
the condition is not 0. Then it will continue with the next statement.

4.4.5 Loops. The while statement is Typeling’s way of expressing
loops. Just like condition and a block. When the program encounters
a while statement, it first checks whether the condition is any value
other than 0. If that is the case, the control flow is moved inside
the while block, otherwise, it continues onward. This process is
repeated every time the program reaches the end of the while block.
For example, an infinite loop can be defined as follows:

while 1 { /* while block */ }

4.4.6 free statement. In its current state, the Typeling prototype
has to rely on manual memory management. Therefore, it makes
sense for it to have a free statement, which acts like a function call.
The free statement can be called on a user-defined data structure
to deallocate its memory, as such:

type Num(i64)
fn main() {

x := Num(10);
free(x);

}
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4.5 Expressions
Unlike statements, Typeling expressions are instructions which
must produce some value. Currently, the following expressions are
supported.

4.5.1 Integer operations. Typeling has support for addition (+), sub-
traction (-), multiplication (*), integer division (/) and the remainder
(%) operators, which can be used on the i64 type.

a := 1 + 2; // a = 3
b := 1 - 2; // b = -1
c := 1 * 2; // c = 2
d := 1 / 2; // d = 0
e := 1 % 2; // e = 1

4.5.2 Boolean operations. There are no boolean primitive types in
Typeling. Instead, i64 values are used, where 0 evaluates to false,
and anything else to true. As a result, Typeling supports the boolean
operators "and", "or", and "not":

a := -1 and 0; // a = 0
b := 3 or 0; // b = -1
c := not 0; // c = -1
d := not (-1); // d = 0
e := not 2; // e = 0

4.5.3 Function calls. Naturally, functions with a return type are
also expressions, since calling them would produce a value. Other
expressions can be passed as arguments to the function call, by
writing them inside the parenthesis, separated by commas.

x := one();
three := sum(1,2);

Functions can also be used as statements, which will discard
their result. Procedures, or functions which return the () unit type
can only be called as statements, otherwise, they would produce a
compilation error. For example, the printf C library function can
be called like this:

printf("Hello world!\n");

4.5.4 Constructing data structures. Similarly to functions, data con-
structors can also be called to produce a new instance of their data
type. For example, a List which contains the elements 1 and 2 can
be constructed as such:

list := Cons(1, Cons(2, Nil));

4.5.5 Pattern matching. To extract the values from user-defined
data structures, one would have to use pattern matching. In Typel-
ing, pattern matching is achieved using the case expression. This
expression consists of a series of pattern branches and their respec-
tive return values. Each branch in a case expression is evaluated
top-to-bottom, and the value of the first match is returned. The
following base patterns are supported: data constructors (e.g., Tu-
ple(/*...*/)), integer values (e.g., 5), named wildcards (e.g., x), and
the anonymous wildcard (_). The base patterns can be nested to form
more complex ones. For example, the tail of a List can be extracted
using the following case expression:

tail := case list {
Cons(_, xs) => xs,
_ => Nil,

};

Pattern-matching expressions can also be applied to integers,
through comparison against their values. For example, the case
expression can be used as a ternary conditional operator, such as
the following example, which evaluates the condition, and returns
100 if it is false (0) or -20 otherwise:

x := case condition {
0 => 100,
_ => -20,

};

4.6 Implementation notes
The Typeling system consists of a just-in-time compiler, written
in Rust [7] using LLVM API as its back-end. We preferred a dy-
namic compilation approach because it could potentially greatly
improve the performance of the programs [12]. The source code of
the compiler has been published on GitHub [13].
We chose to implement ADTs using a tagged union approach.

As a result, the LLVM types for each of the data structure’s con-
structors are generated first. Then, for the data type itself, we create
an LLVM structure with two fields: an i64 field for the tag of the
constructor and a union of its constructor types as the data field.
Figure 6 illustrates the resulting LLVM intermediate representation
for the List data structure defined in Figure 5:

%List = type { i64, %constructor_Cons }
%constructor_Cons = type { i64, %List* }
%constructor_Nil = type {}

Fig. 6. Generated LLVM IR for the List type

5 EXAMPLES
Figures 7, 8, 9 and give a complete example of a Typeling program. It
illustrates how the Typeling language can be used to create new data
structures, as well as functions that operate on them. Specifically,
the program presents the declaration and functions of a binary tree
(Figure 7) and a linked list (Figure 8). Lastly, in Figure 9, the tree
sort algorithm is implemented and the entry point of the program
is defined, which uses this algorithm to sort an unordered list.

5.1 Ordered binary trees
Figure 7 contains the implementation of an ordered binary tree, the
BinTree type. A binary tree is defined to be either a Leaf, which
is empty, or a Branch containing an i64 value and two BinTree
children. To operate on binary trees, the following functions have
been defined:

• insert - adds a new number to the binary tree, ensuring it
remains ordered.

• to_list - does an inorder tree traversal and returns a linked
list with its elements.

• free_tree - recursively deallocates the memory of a tree.
Note that the append function, which is called by to_list is defined
in Figure 8.
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type BinTree = Branch i64 BinTree BinTree | Leaf

fn insert(x: i64, root: BinTree) -> BinTree {
return case root {

Branch (y, left, right) => case x < y {
0 => Branch (y, left, insert(x, right)),
_ => Branch (y, insert(x, left), right),

},
_ => Branch (x, Leaf, Leaf),

};
}

fn to_list(root: BinTree) -> List {
return case root {

Branch (x, left, right) =>
append(

to_list(left),
Node (x, to_list(right))

),
_ => Empty,

};
}

// recursively frees a tree
fn free_tree(root: BinTree) -> i64 { /* ... */ }

Fig. 7. Example Typeling program: Binary Trees

5.2 Linked list
The implementation of a linked list is illustrated in Figure 8. It is
defined as either being an Empty list, or a Node containing an integer
and another child List. Likewise, the following functions have been
defined:

• append - appends the contents of a list (ys) to the end of
another (xs).

• to_tree - creates a new ordered binary tree, containing all
elements from a list.

• free_list - iteratively frees a list.
Unlike all the previously defined functions, free_list is written
in an imperative style. Instead of recursion, it uses a while loop
to iterate through each element in a list. The first case expression
uses pattern matching to check whether the list local variable is
not Empty. Then, it destructures the tail of the current element
through the use of another case expression. Lastly, it deallocates
the current list node and sets the list variable to its tail.

5.3 Tree sort
The definition of the treesort function can be seen in Figure 9.
Its implementation converts an unordered list to an ordered binary
tree with to_tree, then flattens the resulting tree with the to_list
function, returning a sorted list. Figure 9 illustrates an example
entry point to a Typeling program. The main function creates an
unordered list and sorts it using the tree sort algorithm two times:

type List = Node i64 List | Empty

fn append(xs: List, ys: List) -> List {
return case xs {

Node (x, xs) => Node (x, append(xs, ys)),
_ => ys,

};
}

fn to_tree(list: List) -> BinTree {
return case list {

Node (x, xs) => insert(x, to_tree(xs)),
_ => Leaf,

};
}

fn free_list(list: List) {
while case list { Empty => 0, _ => 1} {

tail := case list {
Node(_, xs) => xs,
_ => Empty,

};
free(list);
list = tail;

}
free(list);

}

Fig. 8. Example Typeling program: Linked List

first by manually calling the to_tree and to_list function, then
by calling the treesort function.

6 DISCUSSION
The Typeling language closely adheres to the requirements provided
in Section 2, given that we have designed it according to them. It
successfully manages to demonstrate several strengths of ADTs in
an imperative programming paradigm. It features HOPE-style data
constructors, which facilitate the easy creation of user-defined data
types. The case expression serves both as a control flow construct
and a way of accessing the data of ADTs via pattern-matching.

The Typeling compiler implements ADTs as tagged unions, whose
tag field represents the constructor used to initialize the data struc-
ture and the data field is a union of the type’s constructors. We
chose to implement a just-in-time compiler for Typeling, with the
goal of improving its performance. However, Typeling programs
will benefit from dynamic compilers only if the time to compile at
run-time is lesser than the execution time savings of the optimiza-
tions [9]. Therefore, a static approach to the compilation process
should also be considered.
As an imperative language, Typeling allows for precise control

over the execution of a program. For example, it allows using while
statements to implement loops and iterate over a data structure,
instead of relying on recursive functions. Because of sequential
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fn treesort(list: List) -> List {
return to_list(to_tree(list));

}

fn main() {
list := Node(10, Node(4, Node(8, Node(3, Node(6, Node(5, Node(7, Node(9, Node(1, Node(2, Empty))))))))));
tree := to_tree(list);
print_list(list);
print_list(to_list(tree));
print_list(treesort(list));
free_tree(tree);
free_list(list);

}

Fig. 9. Example Typeling program: main function

composition, its syntax is easier to learn as well, given that it reads
as a sequence of instructions. However, it is much harder to construct
proofs to verify Typeling programs, compared to declarative ones,
because of its use of mutable state, imperatives and jumps [15].
With that being said, Typeling supports a more functional ap-

proach to the development of its programs as well. This is because
the language facilitates the creation of pure functions, due to them
being implemented as call-by-value. In fact, in its current state,
without the use of recursive function calls, some problems are chal-
lenging to solve or perhaps impossible. This is a result of the data
structures being immutable. While it is possible to read the data
of an ADT through pattern-matching using the case expression,
there is no way of writing to it. Instead, Typeling programs rely on
creating new instances of the data structure for every modification.
As a result, current Typeling programs are prone to leaking memory,
since its management is left up to the user. Hence, the following
features are deemed necessary to improve the expressiveness and
memory safety of the language.

6.1 Member access
To allow for the mutability of data structures, member access would
have to be implemented. For example, in the case of a Tuple or
Point2D type, whose definitions are illustrated below:

type Tuple (i64, i64)
type Point2D { x: i64, y: i64 }

mutating their data requires a new instance to be created, and the
previous one to be deallocated:

t := Tuple(1, 2);
temp := t;
t = case t {

Tuple(_, y) => Tuple(10, y + 10),
_ => Tuple(0,0),

}; // t = Tuple(10, 12)
free(temp);

On the other hand, if the language supported accessing the mem-
bers of the Tuple directly, both the case expression and the free
statement could be omitted:

t := Tuple(1, 2); // t = Tuple(1, 2)
t.0 = 10; // t = Tuple(10, 2)
t.1 = t.1 + t.0; // t = Tuple(10, 12)

In addition, meaningful names could then be assigned to data
constructors’ fields, which would increase the clarity of the program,
as is the case with the Point2D data structure:

p := Point2D(0, 0); // Point2D(0, 0)
p.x = 3; // Point2D(3, 0)
p.y = 2; // Point2D(3, 2)

6.2 Destructuring assignments
Destructuring assignments would allow the language to support
pattern matching more imperatively and succinctly. For example,
consider the previously defined Tuple type. To extract the first
parameter, one must use a case expression, which can get quite
verbose:

x := case Tuple (10, 20) {
Tuple (y, _) = y;
_ => 0;

};
// x = 10

This results from having towrite the entire case expression, which
always requires a default case. However, data structures with a single
constructor will always have a single possible case, so the default
branch is unreachable. Therefore, the Typeling language could be
improved by implementing pattern-matching assignments for types
with a single data constructor :

Tuple (x, _) := Tuple (10, 20);
// x = 10

6.3 Garbage collection
We consider garbage collection to be a required feature of Typeling.
Because our prototype relies on manual memory management, the
compiler cannot guarantee the program’s memory safety. A novice
programmer may struggle with this method of memory manage-
ment, and their programs might be at risk of having memory leaks.
Other memory management models, such as Rust’s borrow checker,
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can guarantee memory safety without sacrificing performance, but
they have a steep learning curve as well. Implementing garbage
collection in Typeling would benefit beginners the most, allowing
them to write code without worrying about memory management.

7 FURTHER WORK
The Typeling programming language is still in its early stages, thus
there is still a lot of room for improvement left. We consider the
following features to be appropriate next steps in any further design
of the language:

7.1 Polymorphic types
Polymorphism entails defining procedures that can be applied to
a wide range of objects [18]. Polymorphic data types, specifically
parametric polymorphism, would greatly benefit the Typeling lan-
guage, allowing users to model even more complex data structures
and allow code reuse. Some examples of languages which support
parametric polymorphism are Haskell [17] and Rust [7].

7.2 Generalized algebraic data types
Generalized Algebraic Data Types (GADTs) are a generalization of
algebraic data types (ADTs), that allow more precise type represen-
tations and pattern matching [21]. GADTs can define custom data
types with refined type constraints, enabling stricter type checking
and improved type safety. Furthermore, GADTs can enhance code
readability by providing a more precise representation of the data
in the type system. For example, GADTs would make it possible
to write a safe evaluator for simply-typed object languages, which
does not require values to carry run-time tags [21].

7.3 Optimizing memory usage
Memory usage optimization is crucial for improving the perfor-
mance of a programming language. Currently, the Typeling com-
piler allocates memory on the heap for every new data constructed,
even for unit types, which are data constructors that do not have
any parameters. Unit data structures, on the other hand, are im-
mutable because their only data is the constructor’s constant tag.
As a result, one potential improvement would be to allocate this
type of data structure once and then share references to the same
memory address among all instances.

7.4 Better type inference
Type inference is an important feature that allows the compiler to
automatically deduce the types of variables and expressions in a
program. Implementing more advanced type inference in Typeling
would allow us to simplify the syntax even further. For example, the
compiler could infer the type declarations in function signatures,
allowing users to omit them.
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