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Modernity signatures represent a novel way of assessing the modernity of
a codebase. By quantifying the usage of language specific features, these
signatures provide a measure of the degree to which the latest capabilities
of a programming language are utilized. Normalization plays a crucial role
in shaping the interpretation of these modernity signatures, highlighting
various aspects of code evolution. However, the choice of normalization
techniques and their implications have been somewhat overlooked in prior
research. To bridge this gap, we present a study that scrutinizes the influ-
ence of various normalization methods, including Max, Max-Min, Vector,
Z-score, and Log normalization on modernity signatures in Python. Through
a thorough analysis, we reveal how each technique uniquely modifies the
modernity signature, offering diverse insights into codebase evolution. These
insights encompass aspects such as dominant language versions, feature
distribution, and their shifts overtime. Our findings aim to assist developers
in critically assessing their code’s modernity and understanding the nuanced
evolution of their codebase over time.
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1 INTRODUCTION
The concept of "modernity" has long been a subject of extensive
discussion across a multitude of disciplines, including philosophy,
sociology, and technology. In the context of software engineering,
modernity represents the extent to which a software system’s source
code leverages the contemporary features and capabilities inherent
in the respective programming language. Analyzing the degree of
modernity in source code is critical for evaluating and comparing
various aspects, such as quality, maintainability, and adherence to
best practices across different programming languages [9].
Recent research conducted by Chris Admiraal and Wouter van

den Brink, two students from the University of Twente, has signifi-
cantly contributed to this domain by devising methods to calculate
modernity signatures for the PHP and Python programming lan-
guages [1, 20]. In the context of their work, modernity signatures
represent vectors of values, where each value corresponds to a lan-
guage version and represents the number of features originating
from that specific version.
Both van den Brink and Admiraal employ the use of normaliza-

tion in transforming these raw modernity signature values into a
format that facilitates effective comparison [18]. However, it is in-
triguing to note that the two different prior works employ different
normalization techniques. Despite the significance of normalization
in the context of computing the modernity signatures, the impact of
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the chosen normalization techniques on the results is not specifically
investigated.

In light of this, the focus of our research is to assess how different
normalization techniques affect these modernity signatures. Our
findings could be pivotal, as by broadening the scope of normal-
ization techniques, we might uncover new perspectives and fresh
insights on the evolution of code. Using these insights, we can aid de-
velopers in project managements tasks, such as checking whether a
codebase adheres to certain development standards or best practices.
This could allow them to make informed decisions regarding project
development, and in the long run, lead to an improved technical
quality of their code [13].

2 PAPER OUTLINE
In order to aid the reader in studying our research, we present the
following outline: Section 3 discusses the previous studies dealing
withmodernity signatures and normalizationmethods. Our research
and sub-research questions are laid out in Section 4. The experi-
ment’s method is explained in Section 5, which aims to answer
these questions. Section 6 delves into the experiment setup, shares
the results, and discusses their implications. Section 7 talks about
possible issues that might affect our findings’ validity. Finally, Sec-
tion 8 presents the study’s conclusion and outlines future research
directions.

3 RELATED WORK
As mentioned in Chapter 1, this paper seeks to build upon the pre-
viously laid work of Van den Brink and Admiraal [1, 20]. Van den
Brink, in his study, leveraged grammar usage statistics to generate
the modernity signatures. He defined the grammar for attributed
statements in PHP and analyzed its usage throughout a codebase.
By examining the frequency of each type of attributed statement
(function, class, trait, interface, enumeration), he attached anno-
tations to indicate their relative usage. It’s worth noting that van
den Brink’s work, co-authored by Gerhold and Zaytsev extended
beyond the scope of University of Twente, reaching the 2022 SCAM
conference [21].
Admiraal on the other hand, developed a tool, Pyternity, which

utilizes another tool called Vermin [11] to identify and count the
features from each Python version used. Both van den Brink and
Admiraal’s implementations allow for the data to be arranged in
three-dimensional plots. This intuitive representation of feature
distribution across time and language versions allow us to visually
inspect different modernity signatures based on their plots, therefore
facilitating the assessment of the varied effects of normalization on
the signatures.

The field of software evolution has also been previously explored.
For instance, Mens et al. have previously identified various chal-
lenges in software evolution [15]. These include the need for scalable
tools to handle aging code and the requirement for a wide range of
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data to support claims about a code’s evolution. Some research has
even tied external factors like bug reports, version repositories, and
documentation to the evolution of a codebase. An example of this
is Girba et al.’s work, where they detail how developers themselves
influence the evolution of their projects [8].

When addressing the topic of normalization, it is noteworthy that
existing research has compared various techniques across a range
of domains. For instance, Chakraborty et al. evaluated the effect of
normalization in the context of Multi-Attribute Decision Making
(MADM) problems [5]. In another study, Dubois et al. highlighted
the significance of normalization in scaling protein data for medical
research [6]. These studies underscore the pervasive importance of
normalization techniques in different research contexts. However, to
the best of our knowledge, a research gap exists when it comes to the
application of normalization specifically to modernity signatures.

4 RESEARCH QUESTIONS
This study aims to assess the influence of different normalization
techniques on modernity signatures, and determine if they might
reveal new perspectives on a project’s level of modernity. Our ex-
ploration will be guided by the subsequent research questions:

RQ1 How do different normalization techniques impact modernity
signatures?

To further elaborate on RQ1, the following sub-question is pre-
sented:

RSQ1What normalization techniques are applicable for modernity
signatures?

By answering RQ1 and RSQ1, we can hopefully comprehend
the effect of each normalization technique on modernity signatures.
However, it is also essential to understand the value of each normal-
ization technique in assessing the evolution of a project’s codebase.
This leads us to the second research question:

RQ2 What insights can different normalization techniques provide
into a project’s code evolution?

5 METHODOLOGY
In this chapter, we outline the research methodology employed to
address the research questions presented in Chapter 4. The method-
ology was designed to systematically investigate the effects of dif-
ferent normalization techniques on the interpretation of modernity
signatures.

5.1 Implementation of the Algorithms
Following the review of prior research, it was essential to validate
the reproducibility and robustness of the algorithms used by Van
den Brink and Admiraal [3]. This was done by running the algo-
rithms locally, thereby generating a new set of modernity plots,
and comparing them with the plots of the primary study. Both van
den Brink’s and Admiraal’s code can be found on GitHub [2, 19]
alongside with the respective documentation.

5.2 Identification of Applicable Normalization Techniques
Section 1 underscored that the foundational studies implemented
two distinct normalization techniques on the modernity signatures.

Van den Brink, in his work, employed a method in which the signa-
ture was scaled by its maximum element, known as Max normal-
ization. In contrast, Admiraal chose to normalize by dividing the
signatures by the sum of their elements, a method known as Sum
normalization. Both of these normalization techniques belong to
the linear category, as delineated in the study by Camarinha-Matos
et al [4].

While the prior studies adhered to linear methods, our investiga-
tion aims to expand the scope of analysis to the semi and non-linear
methods, referenced in the work of Camarinha-Matos et al., as well
as those identified through a comprehensive review of the existing
literature in the field.
The selection of appropriate techniques also accounted for the

inherent statistical properties of the data. Given that modernity
signatures comprise counts of features from various language ver-
sions, these signatures are non-negative, ordered, and discrete. This
understanding guided our exploration of suitable normalization
techniques.

Our goal in this research is to ensure a multifaceted perspective
to mitigate potential bias, thereby enhancing the applicability and
robustness of our findings [17].

5.3 Implementation of Different Normalization Techniques
The next phase was to incorporate these identified normalization
techniques into the existing codebases of van den Brink and Admi-
raal [2, 19]. This implies adjusting their current implementation for
computing modernity signatures to include the additional normal-
ization methods. Conveniently, both projects already contain plot
generation code for visualizing modernity signatures over time in
their respective GitHub repositories. This readily available code was
adapted to incorporate the varying normalization methods under
review.

5.4 Analysis of Different Normalization Techniques
Having the necessary code, the critical stage of this investigation
involved scrutinizing and contrasting the plots generated as a result
of each normalization technique. For the purpose of this study, a
sample set of ten projects were handpicked, ensuring a diverse range
of initial modernity signatures. For example, if two projects shared
a strikingly similar modernity signature, only one was included in
the sample. This was done in order to increase the likelihood that
the findings would generalize to new data [10].
For each normalization method under examination, new plots

were created for all projects in the dataset. These newly generated
plots were then juxtaposed against plots generated by the unmodi-
fied algorithms.

It is important to note that the analysis will be conducted through
visual examination, which will involve a thorough assessment of
the presence, magnitude and proportions of the peaks in each plot.
Peak presence involves identifying any novel peaks that have

emerged in the normalized plot in comparison to the original or
discerning any significant peaks that have vanished.
Next, peak magnitude will be examined. This process involves

comparing the peaks’ sizes. The objective here is to identify any
instances where the peaks have grown larger or become smaller,
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Fig. 1. botocore plot newly generated. Fig. 2. botocore plot generated by Admiraal

marking significant differences in the plotted data’s feature usage
or distribution.

Finally, the examination of peak proportions involves comparing
how the peaks in the normalized plots stand relative to each other,
versus their placement in the original plots. The goal is to see if the
layout of the peaks remains similar or shows significant changes.
This part of the analysis looks at the evenness and spread of features
from different language versions within the project.
The color gradient of the plots was also considered for the com-

parison process. To illustrate, a plot with higher values would have
a darker blue color and one with lower values would have predomi-
nantly lighter blue shades. However, the color of the graphs depends
on the magnitude of the peaks, which was already addressed above.
Therefore, we will not explicitly include the color gradient of the
graphs in our methodology.

In short, analyzing the peak presence, magnitude, and proportions
should give us a well-rounded view of the data distribution within
the modernity signatures.

6 EXPERIMENT
The following section describes the steps followed in the experi-
mental part of our research. Section 6.1 describes the setup of the
experiment, including the selected dataset and normalization tech-
niques to be compared. Section 6.2 follows, showing the outcomes
of our comparisons. In Section 6.3, we talk about how different nor-
malization techniques affect the results. Finally, in Section 6.4, we
discuss what our findings mean for the field of software evolution.

6.1 Setup
As referenced in Section 5.1, the source code for both the PHP and
Python projects is publicly available on GitHub [2, 19]. The reposito-
ries were cloned on a local computational setup, running Windows
11 (22H2), equipped with an Intel Core i7-10750H processor, op-
erating at a base frequency of 2.6 GHz. In conjunction with the
respective research papers [1, 20], the source code is generally intel-
ligible. However, difficulties were encountered in executing the PHP
project due to the incomplete source code files from the GitHub
repository. Consequently, the reproducibility of van Den Brink’s

results was found to be compromised. This unfortunate develop-
ment prompted a shift in the research focus, concentrating solely
on Admiraal’s work for the remainder of this study. As such, ten
PyPI projects from Admiraal’s initial dataset were integrated into
the research data. Specifically, the dataset for this study comprises
the following PyPI projects: attrs, boto3, botocore, charset-normalizer,
fsspec, google-api-core, Jinja2, requests, urllib3, and wheel.

We re-calculated the signatures of the ten projects in our dataset
using Admiraal’s original code and documentation. All newly gen-
erated plots look mostly the same as their original counterparts.
The main difference is that the newly generated plots display more
recent modernity signatures. This is due to the fact that the original
study was performed three months prior to the current study. In
that interval, new versions of the projects were released, which the
algorithm subsequently picked up and included. An example of this
can be seen in the plot for the botocore project. The newly generated
plot is shown in Figure 1. As a reference, Figure 2 shows the plot
for the same project, generated at the time of Admiraal’s research.
The work of Admiraal includes a feature that allows the setting

of a maximum release date. By choosing a date closer to the time of
Admiraal’s study, it was possible to generate plots that match the
original ones. This outcome strongly affirms the reproducibility of
Admiraal’s code and lays a solid groundwork for the subsequent
stages of our investigation.
Setting up the experiment also consisted in identifying the nor-

malization techniques which might be applicable in our research.
To tackle that, we’ve strategically selected normalization methods
from three distinct categories as identified by Camarinha-Matos et
al [4]. These categories include linear, semi-linear and non-linear
methods.
From the linear category, we included the Max and Max-Min

methods. These techniques offer simple, direct scaling of the data,
each focusing on different aspects such as relative peak values and
data range [16].
We also employed the Vector normalization method from the

semi-linear category, which accounts for the direction and magni-
tude of data vectors, offering a different perspective on the data [4].
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Table 1. Normalization Formulas

Technique Category Formula

Max Linear 𝑥
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Our investigation also incorporates the Logarithmic method from
the non-linear category. This method is adept at handling vast dif-
ferences in data values, providing a detailed view of subtle data
variations [22].

Finally, we incorporated the Z-score semi-linear normalization
method, as highlighted in the research of Singh et al [16]. This
method provides a statistical lens to view the data by representing
it in terms of standard deviations from the mean.
Thus, we have two linear, two semi-linear and one non-linear

normalization method in our repertoire. It’s important to acknowl-
edge that within each category, Camarinha-Matos et al. describe
additional normalization techniques which could potentially ap-
ply in our study. However, for the purpose of this research, they
were excluded in order to minimize the computational time and
potential complexity in implementation and interpretation. In a
similar vein, Singh et al. have elucidated on the existence of other
categories of normalization methods, such as decimal, sigmoidal,
and tanh-based methods. However, the decimal methods closely
resemble linear methods such as the Max and Max-Min, while the
sigmoidal methods align more with non-linear methods, such as the
Log technique. Finally, tanh-based methods make use of parameters
which if not chosen carefully can lead to an improper scaling of the
data [16]. Therefore, the decimal, sigmoidal and tanh-based methods
are excluded.
Given that all the required formulas for the selected normaliza-

tion methods are known and listed in Table 1, it was straightforward
to implement them in code. In Admiraal’s GitHub repository [2] a
main.py file can be found, which contains the code directly respon-
sible for normalizing the modernity signatures.

The implementation of the Max and Max-Min normalization tech-
niques leverages Python’s built-in max() and min() functions, re-
spectively, to identify the maximum and minimum elements within
the signature. For the Z-score technique, the numpy library is uti-
lized. Specifically, the np.mean() and np.std() functions are employed
to calculate the mean and standard deviation. For the Log normal-
ization technique, the math library’smath.log1p() function was used
to calculate the logarithms.

6.2 Results
6.2.1 Max normalization. Upon applying Max normalization, a
distinct increase in peak magnitude was observed across all ten
projects within the Max normalized plots. Despite this, only eight

projects demonstrated alterations in peak proportions. Interestingly,
the emergence or vanishing of peaks was not evident in any of the
normalized project plots.

6.2.2 Max-Min normalization. The application of Max-Min normal-
ization produced comparable outcomes to those of Max normaliza-
tion. The peak magnitudes and proportions experienced identical
changes.

6.2.3 Vector normalization. Post Vector normalization, eight out of
ten projects exhibited an escalation in the magnitude of most peaks.
The alteration of peak proportions was only detected in two projects.
No new peaks emerged or disappeared in the Vector normalized
project plots.

6.2.4 Z-score normalization. The results derived from the Z-score
normalization paralleled those from Vector normalization. The peak
magnitudes and proportions in the Z-score normalized plots mir-
rored the changes observed in the Vector normalized plots.

6.2.5 Log normalization. Log normalization noticeably changed
all ten project plots in our dataset. This method caused all peak
heights to rise and altered their proportions. A unique result of Log
normalization was that new peaks appeared in every plot.

An overview of the normalization methods and the number of
projects in which the peak increase, altered proportions, and emer-
gence of new peaks were observed, is presented in Table 2.

Table 2. Normalization effects on the plots

Method Peak Inc. Prop. Alt. New Peaks
Max/Max-Min 10/10 8/10 0/10
Vector/Z-score 8/10 2/10 0/10

Log 10/10 10/10 10/10

6.3 Discussion
6.3.1 Max normalization. The effect of Max normalization can be
explained by the nature of the technique itself, which scales each
value of the signature by its maximum element, resulting in a nor-
malized signature with values ranging between zero and one [16].
One example of this can be seen in the Max-normalized plot for
the botocore project, as illustrated in Figure 3. Comparing this with
the original plot in Figure 1, it becomes evident that the values for
the normalized plot at Python version 2.5 remain consistently at
the maximum across all release dates. In contrast, the original plot
displays a steady increase in values throughout the various release
dates. A similar effect is visible in the Max-normalized plot for the
wheel project, as shown in Figure 5. Interestingly, around the year
2020, the peak corresponding to the Python version with the highest
values transitions from version 2.1 to 2.5. Upon investigating the
reason for this transition, it was observed that in the original plot
in Figure 6, the values for Python version 2.1 begin at a peak and
then gradually decrease. Conversely, in the Max-normalized plot,
the initial peak for Python version 2.1 remains at a maximum, only
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Fig. 3. botocore Max plot Fig. 4. botocore Vector plot

Fig. 5. wheel Max plot Fig. 6. wheel Original plot

decreasing when the feature count of Python 2.5 matches it, thereby
leading to a noticeable shift in the peak values.
On closer examination, it was observed that plots with lower

original values underwent a more drastic transformation. This is
primarily due to the character of Max normalization, which scales
up the maximum value in any given modernity signature to a peak
value, leading to more conspicuous changes in plots with lower
initial values.
Ultimately, these findings suggest that Max normalization effec-

tively accentuates the Python version with the most features at a
specific release date. By scaling the values so that the maximum
becomes one, the highest possible in the normalized scale, it allows a
clearer and more immediate identification of which Python version
is predominant at each point in time.

6.3.2 Max-Min normalization. Max-Min normalization, akin to
Max normalization, produced similar transformations on the plots
within our dataset. Both these techniques are underpinned by the
same principle: linear rescaling of data to fit a designated range [16].
A key point to note here is that the modernity signatures for all
the projects in the dataset contain a value of zero for at least one

Python version. Consequently, after applying Max-Min normaliza-
tion, the minimum value in the data range becomes zero, essentially
aligning the results with those obtained through Max normalization.
Therefore, despite the slightly different methodology, the visual
outcomes produced by Max and Max-Min normalizations ended up
being virtually indistinguishable.

6.3.3 Vector normalization. The influence of Vector normalization
on the projects within our dataset demonstrated varied outcomes.
In total, eight out of the ten projects exhibited an amplified peak
magnitude to some extent. However, among these, only two projects
exhibited alterations in the proportions of the peaks.
The two projects which experienced changes in peak propor-

tions post Vector normalization were wheel and requests. The wheel
project plot (see Figure 6), which had earlier exhibited significant
changes under Max normalization, also showed a considerable dif-
ference in its Vector normalized plot (see Figure 9). Although the
peak values corresponding to Python versions 2.1 and 2.5 signif-
icantly increased in the Vector normalized plot compared to the
original, they did not stay at a constant maximum as was the case
in the Max normalized plot. Instead, the peaks displayed a more
gradual increase and decrease.
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Fig. 7. requests Original plot Fig. 8. requests Vector plot

Fig. 9. wheel Vector plot

Upon looking for reasons why only wheel and requests were the
only projects considerably affected by Vector normalization, it was
discovered that both of these projects displayed similar characteris-
tics in their original plots, as shown in Figure 6 and 7. As previously
mentioned in the Section 6.3.2, for the wheel project, the original
values for Python version 2.1 steadily decrease over time, whereas
those for version 2.5 gradually increase. While it is slightly less
apparent, the requests project also shows an initial peak followed
by a decline for the values at Python version 2.0, simultaneously
with a slow increase for Python version 2.5. This results in a shift in
the proportions of features from each Python version over time. To
put it simply, the share of features from earlier Python versions is
decreasing, while that from the newer versions is increasing. This
trend reflects a natural evolution as a project’s codebase matures
over time [12]. The effect of Vector normalization, however, was not
uniformly witnessed across all projects within our dataset. A prime
example of this is the botocore project, where the Vector normalized
plot (refer to Figure 4) is strikingly similar to its original plot (refer
to Figure 1). This could potentially be attributed to the fact that
the contributions from Python version 2.4 already dominate the

codebase, with the presence of features from other Python versions
being relatively minimal. As a result, in the Vector normalized plot,
the influence of Python version 2.4 features escalates steadily, mir-
roring the pattern observed in the original plot. This could mean
that Vector normalization accentuates shifts in feature contributions
from older to newer Python versions over time.
These observations imply that Vector normalization serves to

emphasize transitions in feature contributions from older to more
recent Python versions as a project evolves. However, the degree of
this effect can be contingent upon the project’s original distribution
of feature contributions across Python versions. In projects where a
single Python version predominantly contributes to the codebase,
as in the case of botocore, the impact of Vector normalization may
be less discernible. In contrast, for projects that display a shifting
balance of feature contributions from different Python versions over
time, Vector normalization can significantly amplify these changes.

6.3.4 Z-score normalization. Z-score normalization produced out-
comes identical to those induced by Vector normalization. Both
these techniques, despite having different mathematical formulas,
effectively rescale the original feature vectors to have standard-
ized properties. Z-score normalization transforms the data to have a
mean of zero and a standard deviation of one [16]. On the other hand,
Vector normalization scales the vectors to have a unit length [5].
Essentially, both methodologies recalibrate the influence of each
Python version’s feature contribution to a project to a uniform
scale. This results in identical visual patterns in the plots across
all projects, reflecting that these normalization methods provide
an exactly similar view of the feature distribution across different
Python versions.

6.3.5 Log normalization. The application of Log normalization to
the project plots in our dataset resulted in an uniform effect on all
project plots.

This effect is evident in the urllib3 project, which was taken as an
example. In the original plot of this project (see Figure 10), values
after Python version 2.7 are barely noticeable, with minor peaks
present at versions 3.1, 3.7, and 3.10. However, the plot’s landscape
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Fig. 10. urllib3 Original plot Fig. 11. urllib3 Log plot

Fig. 12. google-api-core Original plot Fig. 13. google-api-core Log plot

changes significantly when subjected to Log normalization (see
Figure 11).
The slight peaks corresponding to Python versions 3.1, 3.7, and

3.10 become considerably more pronounced in the Log normalized
plot, reflecting substantially higher values. In addition, Log normal-
ization unveils the features associated with other Python versions
that were initially indistinguishable in the original plot, contributing
additional complexity and detail to the plot.

The same trend is notable in the google-api-core project as well. In
the original plot (refer to Figure 12), the visualization prominently
features three peaks linked to Python versions 2.1, 2.3, and 3.5.
However, upon the application of Log normalization (as depicted in
Figure 13), the sharpness of these peaks is significantly toned down.
Simultaneously, the visibility of feature values for Python versions
located between these peaks is enhanced, giving a more detailed
and comprehensive view of the plot’s structure.
Overall, Log normalization provides a more comprehensive per-

spective of a project’s feature distribution across different Python
versions. It uniquely excels at highlighting features associated with
Python versions that might have previously remained undetectable,
thus offering a nuanced view of the feature landscape.

6.4 Implications
Our findings address a key challenge of software evolution, as out-
lined by Mens et al, namely, the identification and comprehension of
various evolution types within codebases [15]. Section 6.3 discusses
how different normalization methods give unique insights into how
language use in projects changes over time. The techniques from the
linear, semi-linear and non-linear categories allow us to understand
the code’s evolution in different ways. For instance, with the Max
and Max-Min methods, we can see the dominant language versions
used in a project. The Vector and Z-score methods show us how
language use shifts over time, while the Log method lets us see the
entire distribution of different features used over time.
To put this in a real scenario, if a development team is using an

older version of a language, the Max and Max-Min methods would
highlight this by showing a high dominance of features unique
to that version. If the team progressively adopts a newer version
over time, the Vector and Z-score methods would capture this shift,
displaying a gradual transition from the older version’s features
to the newer one’s. Furthermore, the Log method can illustrate
how consistently certain features are used across all versions. If a
particular feature from an old version continues to be heavily used
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despite the introduction and adoption of newer versions, this could
indicate a significant dependency on that feature in the project’s
codebase.
This goes to show that there is not a single best normalization

technique. Since they all highlight individual aspects of code evo-
lution, we recommend to combine the insights from each method
to provide a comprehensive understanding of the code’s modernity
and its evolution. It’s worth stating that the process of normalizing
the signatures using different techniques to gain new insights isn’t
exclusive to Python. In theory, as long as there is a method of ob-
taining a modernity signature for a given programming language,
the normalization process is applicable with any of the techniques
discussed in this paper. After all, modernity signatures are just sets
of numbers, regardless of the programming language. This will be
addressed further in Section 8.

The data produced through our method can also be transformed
into meaningful metrics, thereby offering deeper insights into the
trajectory of code evolution [14]. For instance, using the Max and
Max-Min methods the stability of a codebase can be inferred. That
is, how much the dominant language version of a codebase changes
over time. For the Vector and Z-score techniques, a transition metric
could be deduced which measures the rate at which a codebase
transitions from one language version to another. Lastly, for the Log
method, a feature persistence metric could measure the consistent
use of certain language features across all major and minor lan-
guage versions. Further integration of these metrics with existing
infrastructure, such as version control systems, could enhance the
capability to assess code modernity [15].

7 THREATS TO VALIDITY

7.1 Internal validity
The method of visually comparing the plots for obtaining results
represents a potential threat to the internal validity of our research.
While this approach seems to offer intuitive insights into the pat-
terns and effects of the different normalization techniques, it is also
subjective and might introduce bias, as it heavily relies on human
interpretation. Consequently, this could potentially affect the overall
consistency and reliability of our findings. To address this threat,
a more robust and quantitative approach could be integrated that
does not rely on human vision. Instead, statistical measures like
the mean, standard deviation, skewness and kurtosis could be mea-
sured by a computer to allow researchers to better understand the
plot transformations each normalization method brings. Machine
learning could also be employed to automatically identify patterns
in the normalized data. Due to lack of remaining time to spend on
this research, the mentioned ideas were not implemented, however,
they present an interesting take on the internal validity threat.

7.2 External validity
The selection of the projects to be studied is another possible threat
to the external validity of our work. Section 5.4 explains that the
projects were selected such that none of them resemble each other,
in order to reduce selection bias. However, this doesn’t mean that
our selection of projects adequately represent all the types and
shapes of modernity signature plots. This means that our findings

may not hold true for all kinds of projects in the wild. Including
more diverse projects in our research could help determine if our
findings apply more broadly. However, given that we are making
visual comparisons, adding more projects to our analysis would
notably increase the time complexity of our research.

8 CONCLUSION AND FUTURE WORK
In this section, we answer the research and sub-research questions
introduced in Chapter 4.
In response to RQ1, our investigation reveals that different nor-

malization techniques distinctly alter the modernity signatures. Max
and Max-Min methods predominantly emphasize the prevailing
Python version in each period, while the Vector and Z-score tech-
niques underscore dynamic transitions in feature usage over time.
Log normalization highlights minor variations in feature usage,
accentuating even the less prominent versions.

RSQ1 was addressed in Section 6.1. We determined that five spe-
cific normalization techniques - Max, Max-Min, Vector, Z-score,
and Log normalization - are applicable to modernity signatures.
These techniques span the linear, semi-linear and non-linear cate-
gories. While other methods like decimal, sigmoidal and tanh-based
methods exist, they closely mirror our chosen techniques or require
complex parameter setup.

RQ2 was addressed in Section 6.4. This study reveals that differ-
ent normalization methods can uncover various forms of software
evolution within a codebase. Moreover, the insights derived from
these methods can be translated into metrics. These metrics can then
be seamlessly integrated with other systems, such as version control
tools, further enriching our understanding of software modernity
and the evolutionary trajectory of programming languages.
For future research, we propose extending our study to include

a wider array of programming languages, which would enable a
better understanding of the consistency of normalization technique
impacts across different languages. Java for example, presents an
interesting case, as Dyer et al. specify in their work that most of
it’s features see limited use in the current industry [7]. Therefore, it
would be interesting to study the changes over time in Java projects
using the different normalization methods from this study. This
could also help determine if these new findings match up with the
results of our current research.
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