
Investigating the influence of code generating technologies on
learning process of novice programmers in higher education

computer science course
Albina Shynkar

a.shynkar@student.utwente.nl
University of Twente

Enschede, The Netherlands

ABSTRACT
The advent of code generation technologies has been widely influ-
encing the education in general and computer science education
in particular. In recent years many studies have investigated how
code generation technologies fit in educational progress, discussed
potential applications and implications of its use, proposed new
platforms as the solution to common problems and argued about
their efficacy. However, recent studies are lacking the knowledge
about effects of code generating tools usage on novice program-
mer’s motivation and engagement in the learning process as well as
on further development of programming proficiency of individuals.
To address this gap, this work investigates the related literature
to examine the impact of code generation technologies on novice
programmer’s learning experience as well as reinforces the find-
ings by exploring the opinions, experiences of novice students. The
results of the research shed the light on the acceptance of such tech-
nologies within educational realm, effects of code generating tools
on novice programming student’s learning experience, namely in-
creased engagement towards learning process, and provide the area
for the discussions about further application of code generation
tools in computer science education.

KEYWORDS
AI, Code Generation Tools, ChatGPT, OpenAI Codex, GitHub Copi-
lot, Novice Programmers, Computer Science Education, Learning
Experience

1 INTRODUCTION
Powered by recent advancements of Deep Learning, Large Lan-
guage Models, like GPT-3 and its recent successor GPT-4 [25],
started developing quite rapidly [5], which made it possible to
automate code generation for real world programming tasks [33].
This has paved the way for releasing many AI-driven agents over
the past years, that have been trained on millions of lines of code
that is available on internet. It resulted in the release of such al-
ready well-known models like ChatGPT [24], OpenAI Codex [23],
GitHub Copilot [10], DeepMind AlphaCode [12], Google PaLM [11],
Microsoft CodeBERT [8], etc. [15]

Code generation tools are such models that can automatically
generate source code or actual pieces of code based on input speci-
fications, templates, or models [13]. Some examples may include
plugins in integrated development environments (IDEs), free-access

TScIT 39, July 7,2023, Enschede, The Netherlands
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

websites that provide interaction with such generators, etc. With
their dramatic improvement over the past years, it is believed they
have the potential to revolutionize the coding process and make
programming more productive and accessible [18].

Recent studies show that in computer science education there
are a lot of potential areas of code generation tools usage. [6] Such
tools have many ways of application to help both educators and
novice programmer students in computer science education pro-
cess. Teachers, in particular, could provide a more effective way
to teach programming, vastly save their time and consequently
allow to focus on more advanced topics. They can also support
differentiated instruction by allowing students to work at their
own pace and complexity. However, teachers might need to invest
more time and resources into learning and bringing these tools in
their teaching practices. Regarding students, especially novice pro-
grammers, code generation tools may help making programming
less intimidating and more accessible [18]. Students may use these
technologies as assistant to generate boilerplate code or guide their
coding experience. Novice programmers generally perceive code
generating technologies positively as they can help reduce the time
and effort required to write code, therefore reduce the cognitive
load and complexity of tasks, which can increase student’s interest
in programming and reduce frustration [18].

The studies, related to the topic of this research, include investi-
gation of code generation influence on different aspects of our lives
and societal factors [17, 20], some focus on software development
and programmers [2, 4, 7, 28, 33], others bring insight on impact on
education [3, 16, 22, 26, 29, 31], educators [3, 15, 22, 27, 31, 32, 34],
on student’s learning and performance in general [16, 22, 26], on
the effects of specific tools on student’s learning and performance
in particular [9, 21, 27, 29–31, 34]. However, they are either too
general in relation to the specifications of this research, or they
address only partial elements of what this research is aiming to
investigate. We want to pull together the larger picture of code gen-
eration tools’ impact on learning experience and tie it up from the
novice programmers perspective. Furthermore, there is still limited
information about the impact of code generating tools on learning
experience of novice programmers, especially on such factors as
student motivation and engagement in educational process that in
particular is the specification of our research. That is due to the fact
that learning experience is broad concept and all of its factors can
not be studied within this research. The study may bring insights
to other aspects of code generation tool’s influence on students
and their study process, such as programming skills or confidence
development.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

TScIT 39, July 7,2023, Enschede, The Netherlands Albina Shynkar

Therefore, the objective of research is to investigate the impact
of different code generation technologies on novice programmers
and education as a whole, and on experiences of novice computer
science students in particular. Examining literature in this area will
help to unite the knowledge about recent findings and influences
of code generation tools that have been reported in studies.

In order to understand the topic more in depth, we provide
the literature overview of the usage of code generation tools in
higher education by analysing collected studies that have been held
in the field. Moreover, we address the objective by analysing the
level of interest of novice programmers towards and feedback on
using these tools, as well as by investigating learning outcomes of
students who use these tools.

RESEARCH QUESTIONS
The above-mentioned objective leads us to the following research
question that can be answered by investigating the following sub-
questions:

Main RQ: What are possible influences of code generation tools
usage in higher computer science education on novice program-
mer’s learning experience factors?

(1) What does literature say about the use and influence of code
generation tools in higher computer science education?

(2) What is the first hand learning experience of novice pro-
grammers with the use of code generation tools in higher
computer science education?

(3) What do novice programmers say about the influence of
code generation tools on their engagement and motivation
in programming learning process?

With novice programmers we imply students in the beginning of
their programming journey in computer science education courses.
With learning experience we mean a multifaceted concept which
includes the following factors: understanding of programming con-
cepts and syntax, ability to solve programming problems, to work
with complex code bases, motivation, engagement and self confi-
dence with programming, awareness of best practices and coding
standards, coding efficiency, effectiveness, debugging skills. In this
paper we focus on the facet of the student’s motivation and engage-
ment in the process of learning programming.

Structure of the research
The structure of this study is as follows. The 2𝑛𝑑 section describes
the methodology that is used under this research to answer the
research questions. An extensive overview and analysis of the re-
lated works in the field of code generation tools usage of computer
science courses at higher education insitutions that is given in the
section 3. Section 4 discusses the process of interviews and surveys
that were handled in order to investigate the experience of novice
programmers with code generation tools during their studies. Next,
section 5 addresses further discussions on the topic of the study.
Finally, in section 6 we provide conclusions of this research.

2 METHODS OF RESEARCH
There are several steps for conducting this research. First of all, the
literature overview and analysis will be performed to address cur-
rent researches in the field of code generation in computer science

education. Their findings about the usage of code generation tools
and their effects on student’s learning process allow to understand
the basics about the field and draw a few conclusions based on pre-
vious researches in this area. In its turn, this will lead to answering
first research question defined in the section 2 of this research. To
gather relevant literature, we have used search engines such as
Scopus, Google Scholar and IEEE. With such terms as “code gen-
eration tools / technologies”, “novice programming” and “higher
education” and all the ways of combining those we have found
several researches that have done investigations in this area.

Secondly, in order to answer last two research questions that
with literature overviewwill help to answer main research question,
survey and interviews were conducted with first year computer
science student’s participation. Interviews and surveys were chosen
as the method of investigation with the aim of gathering first-
hand experience of novice programmers with code generation tools
during their studies. The lists of the questions were prepared at
the earliest stage of the study. These lists can be seen in Appendix
A section, where Survey questions and Interviews questions sub
sections contain survey and interviews questions accordingly.

Following university procedures for user studies, we prepared
informed consents for both survey and interviews. After the agree-
ment of ethical committee, the next stage of the study, that is the
recruitment of the participants, has started. The students of the first
year computer science course are the target population defined for
this study. There were several techniques used in order to engage
these potential participants, namely promotion of the survey in so-
cial medias and through announcements on educational platforms
in the current course the students are following.

Thirdly, we reviewed the quantitative data from the survey using
descriptive analysis of statistics to summarise collected data. The
qualitative data from the interviews is analysed using thematic
analysis to identify common themes and patterns in the data. Last
but not least, we compare gathered information to answer the main
research question. This includes a comparison of research findings
from literature overview and outcomes of the conducted study
involving surveys and interviews.

3 CODE GENERATION TOOLS IN EDUCATION
The topic investigated within this research is code generation tools
usage by novice programmers and its effect on their learning ex-
perience, engagement and motivation in particular. It lays on the
intersection of different areas that have been previously explored.
The main goal of this literature overview is to illuminate findings
of the studies done in such areas as: possible applications and im-
plications of AI and code generation in education; their usage in
introductory programming; their influence on both educators and
students; overview of works on particular code generation tools and
findings towards the influence on novice programmers and their
learning experience. Several studies that we found show interest
in the intersection of the topics we define here. We also present a
brief overview of articles collected for this literature overview in
literature summary table in Appendix A section.

2

Influence of code generation technologies on the learning process of novice programmers TScIT 39, July 7,2023, Enschede, The Netherlands

3.1 AI Applications in education
The concept of computer programs capable of generating other com-
puter applications dates back several decades, but has only recently
gained much attention [19]. Nowadays, generation technologies
made impact on different spheres of life, including education and
programming education in particular. To understand this influence
we take a closer look at already existing ways to apply generation
tools in education system as well as at possible ideas of further ap-
plications. It sheds the light how these tools fit in student’s learning
and can help to investigate its further impact on it.

Looking at recent works in the area we see generation tech-
nologies having vast variety of applications along with resulting
implications in educational realm. We further review the works
that suggest ways of applications of both AI and code generation
tools in different aspects of education and discuss their conclusions.

3.1.1 Artificial intelligence. The systematic review of empirical
research on literature from 2011 to 2020 of Ouyang et al. (2022)
focuses on AI in online higher education in particular. They distin-
guish four main functions of applications of AI among the reviewed
articles. The majority of them (66%) address predictions of stu-
dent performance in online higher education context. They suggest
applications as prediction of dropout risks, student academic per-
formance, student satisfaction about online courses. Several articles
(22%) fall to factor of resource recommendation and report improve-
ment of learning quality of students, their satisfaction levels and
programming capabilities in e-learning context.

Couple of articles (6%) concentrate on automatic assessment with
the help of generation technologies, examples include formative
assessment of programming performances and problem-solving ca-
pacities, automated essay evaluation. Their results indicate enhance-
ment of learning interest, positive attitudes, degree of technology
acceptance and problem solving amid students. As for automated
essay evaluation, the study reports improved writing performance
of students. Other two articles (6%) address the last function, that
is improvement of learning experience of students. One example of
such work presents interactive learning with VR tools that made
learning process more engaging and motivating compared to tradi-
tional methods to learn. AI-based virtual assistants, chatbots, such
as ChatGPT [24] can provide instant support and guidance to stu-
dents. They can answer frequently asked questions, provide study
materials and information on a variety of educational topics.

Recent work of Holmes et al. (2023) discusses such fields of ap-
plications in education as learning in collaborative environments,
continuous examination assessment, moreover, states that AI can
play a role of learning companion and teacher assistant. Regarding
collaborative environments, AI-powered collaboration tools can fa-
cilitate collaboration between students by manipulating the content
of the code actively, providing real-time feedback and encouraging
knowledge sharing. This stimulates collaborative problem solv-
ing and enhances the overall learning experience. In addition,the
work discusses the use of AI in continuous test analysis, where
AI-powered tools can help automate coding exercises and evalu-
ate student submissions, enabling timely and objective assessment.
This approach allows teachers to provide feedback immediately
and monitor student progress closely, which promotes dynamic
and flexible assessment process. The study confirms that AI can

be a valuable learning partner and teacher’s assistant. AI capabili-
ties can provide personalized instruction, flexible learning styles,
and content tailored to individual students. Such support system
may help students to navigate complex design concepts, refine, and
improve their skills at their own pace.

Ouyang et al.(2022) present some thoughts based on their review
results regarding the ability of AI-powered systems to guide stu-
dents in their learning practices. They suggest that to achieve a high
quality of prediction, assessment or recommendation, AI-enabled
systems or models should first take into consideration students’
diverse characteristics from both learning processes and summative
performances, and secondly use advanced AI algorithms to achieve
precision of the outcome in order to improve students’ learning
motivation, engagement and performance.

3.1.2 Code generation tools. The study of Mosterman (2006) ex-
plores new teaching opportunities with introduction of automatic
code generation in engineering education, specifically in the do-
main of embedded control systems. Researcher highlights that the
advent of automatic code generation technologies shifts in the
required skill set for software engineers. Traditionally, software
engineers were responsible for manually writing code to imple-
ment algorithms in embedded control systems. However, the role
of engineers changes from being code producers to code reviewers.
Mosterman’s work warns software engineers increasingly rely on
automatic code generators to produce the necessary algorithms. As
a result, the emphasis in engineering education shifts from teaching
students writing write code from scratch to teaching them how
to effectively review and validate automatically generated code.
This change in focus acknowledges growing importance of under-
standing and assessing code generated by these tools, ensuring its
correctness, efficiency, and adherence to design requirements. By
studying the implications of automatic code generation in engineer-
ing education, Mosterman’s work highlights the need for educators
to adapt their curriculum to reflect this shift. It becomes crucial to
provide students with the skills and knowledge to critically evaluate
automatically generated code, identify potential issues or improve-
ments, and ensure the overall quality of the generated software.

The work of Becker et al. (2023) provides the overview of three
tools for code generation, namely Codex, AlphaCode and Amazon
CodeWhisperer [1] and discusses their potential and challenges
within computing education community. The opportunities they
identify are: production of new learning resources, generation of
programming exercises, code explanations, illustrative examples,
code solutions for learning purposes, code reviews of solutions.

3.2 Code generation tools in introductory
programming

Introductory and novice programming have been the focus of lots of
works in computer education area [3]. Most recent comprehensive
analysis of literature overview over introductory programming
studies by Luxton-Reilly et al. (2018) reported decent number of
papers corresponding to category of either measuring or improving
student’s engagement. However, none of them related to the topic
of code generating tools. In this section we bring together the topics
of introductory programming and code generating technologies
and give a brief overview on the works made in this area.

3

TScIT 39, July 7,2023, Enschede, The Netherlands Albina Shynkar

Li et al. (2022) note that automatic code generation could make
programming more accessible and help educate new programmers.
By automating certain aspects of code creation, these tools can
lower barriers to entry and enable individuals with limited pro-
gramming experience to engage more effectively in learning.

Studies of Kazemitabaar (2023), Finnie-Ansley (2022) and Becker
et al. (2023) highlight valuable role of OpenAI Codex as a supportive
assistant for students, that fosters their learning journey as they
navigate programming practices. These studies demonstrate po-
tential benefits of AI-powered code generation tools integration in
introductory programming education, promoting greater compre-
hension, productivity, and overall learning outcomes improvement.

3.3 Impact on teachers and students
When talking about applications of code generation tools in pro-
gramming education we also have to take into account its influence
on educators and novice programmers in particular, as that is the
important factor of the acceptance of technology and, what is more
interesting for us, its impact on learning experience of students.
Some works divide possible applications of artificial intelligence in
education in three categories: teacher supporting, student support-
ing and student teaching(system supporting) [14, 31]. Within our
research we pay more attention to student- and system-facing side
of the question. Therefore, we take a closer look at the situation
from the perspective of view of both teachers and programmer
students and try to identify all possible advantages and pitfalls of
its use as reported by related studies that we found.

3.3.1 Educators. Several studies have emphasized the potential of
AI-generated code technologies to support teachers in automating
exercise generation and providing textual explanations of the code.
Sarsa et al. (2022) and Marwan et al. (2019) have specifically high-
lighted the benefits of these tools in assisting educators in creating
a wide range of programming exercises and offering detailed expla-
nations, thereby enhancing student learning experiences [21, 29].
Becker et al. (2023) states code generation tools open doors for
new pedagogical approaches. As an example, these tools not only
facilitate generation of exercises but can make clear explanations
to them, surpassing what teachers themselves could produce. By
utilizing these technologies, teachers can save time, effort and be
able to provide valuable resources to their students. Such capabil-
ities of code generation tools offer educators access to a diverse
set of resources that can greatly enrich student learning experi-
ences, providing them with comprehensive support and guidance
throughout their programming journey. The advent of these tools
has raised concerns about readiness of teachers to handle the sig-
nificant influence on educational practices [3]. The researchers
therefore emphasize the need for urgent review and modification
of instructional approaches and traditional practices in response to
the advancements in code generation technology.

3.3.2 Students. Regarding novice programmers, code generating
tools can help them with solving programming tasks [34], resolving
programming bugs [30], assist with software engineering projects
[16], generating exercises with explanations and illustrative ex-
amples of programming constructs and algorithmic patterns or
mapping problem to solution [3], preparing for examinations.

Becker et al. (2023) address code generation tools ability to cap-
ture relevant relationships between variables in problem statement
as the helping hand for students to learn to communicate algo-
rithmic problems clearly. This may encourage student to focus on
understanding topic more in depth. The input for tools needs to be
precisely formulated as suggestions provided by code generation
tools are sensitive to changes in problem statement itself.

Some studies identify the benefits of using code generating
technologies for students as improved performance and learning
[21, 26], reduced cognitive load [3]. Works of Marwan et al. (2019)
and Ouyang et al. (2022) report students increased productivity,
consistency in the code quality and reduced errors when using
those tools. Recent review of empirical studies reports an improve-
ment of academic performance of students, online engagement and
participation when introducing AI applications in educational pro-
cess [26]. Additionally, these tools can assist students in generating
exemplar solutions for programming exercises and code reviews of
solutions. Researchers point out on the variety of solutions these
tools can propose, so that educators could introduce students to
the diversity of ways that a problem can be solved.

However, identified drawbacks of code generation tools usage
include a possibility of students to have lack of understanding of
the fundamental programming concepts. Several studies discuss the
issue of bias, bad habits and over-reliance [3, 6]. Becker et al. (2023)
raises concerns about its suitability for novices, given that public
code is often contributed by professionals, thus may not reflect the
expected quality for beginners and desires of educators.

Talking about bias, which exists in the data used for training
of AI models that power code generation tools, educational com-
munity has to consider error prompt of generated code. To give
an example, the analysis of the solutions generated by AlphaCode
revealed that 11% of Python solutions were syntactically incorrect
and 35% of C++ solutions failed to compile [18]. Codex also may
suggest solutions that appear to be correct at the first glance, but
may not actually accomplish the task intended by the user[6] . Re-
searchers warn novices about issues with potential over-reliance
on the tool rather than developing independent coding skills [3].
These potential pitfalls highlight the importance of caution and
critical thinking when using such tools, especially for novice pro-
grammers. Balancing the use of these tools with developing basic
programming and problem-solving skills is important to ensure
student’s learning progress and understanding of theoretical part.

3.4 Particular code generation tools
There is a variety of studies on the use of a particular code gen-
erating tool in introductory programming. We further continue
the discussion of the impact of code generation tools on student
learning experience by taking a look at these works.

3.4.1 ChatGPT. Recently Tajik and Tajik (2023) published a com-
prehensive examination of potential applications of ChatGPT in
higher education. The researchers state that students can definitely
benefit from ChatGPT, however, they need guidance on how to
work with GPT to fully understand a specific topic by thinking
logically and assessing GPT’s output. As of educators, the study
states the integration of GPT in teaching practices can significantly
reduce workload of teachers and allow them to better focus on

4

Influence of code generation technologies on the learning process of novice programmers TScIT 39, July 7,2023, Enschede, The Netherlands

all individual students’ needs. Researchers name vast amount of
limitations of GPT, such as: inability to reason physical and social
world and to understand emotions and idioms; lack of reasoning
and self-awareness and knowledge of ethics/morality, transparency,
reliability; presence of bias, errors and discrimination in data; issues
with robustness and security; and plagiarism question being raised.
Tajik and Tajik conclude that the potential of GPT and other LLM
tools for positive impact on education cannot be ignored, however
it is important to acknowledge and address their limitations.

Surameery et al. (2023) investigate ChatGPT performance in
solving programming bugs The researchers state ChatGPT can as-
sist in solving programming bugs through debugging assistance,
bug prediction and explanation. Its code analysis, knowledge rep-
resentation, and natural language generation capabilities make it
well-suited for these tasks. However, important to note that Chat-
GPT is not a perfect solution, as the quality of outputs depends
on training data and system design. To ensure optimal results, it
should be used alongside other debugging tools and techniques for
validation and bug-free code. Researchers conclude by combining
the strengths of ChatGPT with other tools, developers can enhance
their understanding, identify and fix bugs more effectively.

3.4.2 OpenAI Codex. The study of Finnie-Ansley (2022) discuss
that the way of teaching introductory programming has the possi-
bility to be change dramatically in the next years. The researchers
find the evidence that Codex performs better when given input that
is precisely defined and succinctly written, and in those tasks which
do not require adaptation of already existing code. The study con-
firms the capability of Codex to solve tasks beyond CS1 problems.
The impact of question complexity on its performance in program-
ming education is uncertain. The researchers advice educators to
work on the ways to adapt their classroom practices and use this
freely available technology to enhance student learning effectively.

Broad investigation of Chen et al. (2021) on Codex brings up that
the tool helps users familiarize themselves with new code bases,
allows them to have draft implementations, supports in education
and exploration, allows non-programmers to write specifications
and reduces context switching for experienced programmers. How-
ever, they also identify risks: over reliance on the tool, misalignment
of generated code and user’s intentions, argue about bias, security
implications, influence on economic and labor market impacts.

The work of Sarsa et al. (2022) examines the use of Codex for
code explanations and their assessment, generation of program-
ming exercises. Their findings confirm that large language models,
like OpenAI Codex, are performing well in tasks even with limited
or no task-specific examples as input. It suggests such models offer
significant potential for programming course designers, although
the challenges should be acknowledged as well. The analysis of
this study demonstrated impressive results in generating sensible
programming exercises with sample solutions and automated tests,
despite minor accuracy and quality issues that can be easily ad-
dressed. Generated code explanations were also promising. Sarsa
et al. concludes with high expectations for continuous evolution of
models like Codex and foresees only their improvement over time.

3.4.3 GitHub Copilot. Bird et al. (2022) bring insights on usage of
AI-powered pair programming with Copilot. They state that AI-
powered developer tools like Copilot represent a significant shift

in the software development landscape, with the potential to assist
developers in various tasks beyond just writing code. These tools
can enhance code review, suggest fixes for defects and build fail-
ures, automatically generate tests, refactor complex code bases, and
even generate code comments and documentation. However, the
challenge lies in creating a user experience that effectively assists
developers without hindering their workflow. Researchers say trust
in AI-powered tools is crucial, as developers need confidence that
the tools are making right decisions and not introducing vulnerabil-
ities or performance issues. Understanding the dynamics between
developers and AI tools, tracking AI-generated code throughout
the software development life cycle, and developing provenance
tools to track the origin of generated code are important areas of
further research. These considerations are essential for leveraging
AI-powered tools effectively and making informed decisions in
software development organizations.

Recent work of Wermelinger (2023) on GitHub Copilot com-
pares it with "most performant Codex model, that can solve typical
CS1 problems" and argues if the tool can solve simple program-
ming problems of introductory programming courses. The results
of the study show that the Copilot clearly fails to be correct with
responses. While sometimes a deeper understanding of the problem
is demonstrated, it often leads to incorrect or unnecessary sugges-
tions that resemble variations on the same topic. Communication
with Copilot can also be difficult to achieve appropriate answers,
and require specific instructions. Although Copilot is a code similar
to human-written code, it requires students to have a strong grasp
of linguistic syntax and semantics in order to process that proposal.
Copilot’s explanations provide a low level of understanding of of
the law but may have omitted important parts. Students must learn
to write clear documents, understand them without running code,
and handle errors independently. The study defines strength of
Copilot as saving time for students by completing and evaluating
code scripts with fewer syntactic errors and allowing teachers to
focus on higher-order thinking. The researchers suggest that teach-
ers should consider using more challenging problems to promote
algorithmic thinking and debugging skills of students, and grading
methods may need to be adjusted to accommodate partial solutions.
The study concludes Copilot is a useful tool for solving introductory
programming problems, but it does not replace the necessary skills
and understanding needed in programming education.

3.4.4 DeepMind AlphaCode. Extensive study on AlphaCode by
Li et al. (2022) describes code generation tools as the ones having
potential for a positive, transformative influence on society, and
wide range of applications including computer science education.
The researchers state AlphaCode is capable of innovative solutions
to previously unseen programming problems and performs at levels
comparable to weaker competitors. The study of Becker et al. (2023)
also found that simplifying the problem description significantly in-
crease the success rate of AlphaCode. Detailed analysis of the work
of Li et al. shows that AlphaCode does not simply copy previous
solutions or exploit problem weaknesses, but highlights its ability
to solve complex problems that require deeper understanding.

5

TScIT 39, July 7,2023, Enschede, The Netherlands Albina Shynkar

4 SURVEY AND INTERVIEWS
4.1 Survey
4.1.1 General familiarity. We gathered 39 survey responses and
those show interesting insights and evoke some discussion. All
of the respondents have shown familiarity with ChatGPT(GPT-4),
which is not surprising, as the platform has been extremely popular
lately. ChatGPT has been also marked as mostly used, as 77% of
people mentioned they have tried this tool on practice.

Talking about the toolsmade for code generation, the vast amount
of respondents know about GitHub Copilot (69,2%) with 25,6% of
people who tried it on practice, OpenAI Codex (30,8%) and Tabnine
(15,4%), with 25,6% and 12,8% used on practice respectively. The
least known tools appear to be DeepMind AlphaCode (7,7%), Mi-
crosoft CodeBERT and Google PaLM with 5,1% each. These three
tools have never been used on practice by survey respondents.

Only 6 people(15,4%) tried code generation tools before they
started university computer science course. Among those people
two were quite familiar with code generation tools, only one have
always used them in coding practices. Half of students who had
previous experience with such tools marked ChatGPT as most
useful one. Tabnine and Copilot as well as "none of the tools"
response all share a second place in the question about usefulness.

4.1.2 First year computer science course. Out of all 39 responses,
21 (53,8%) have used code generation tools during their first year of
computer science course. Among tools ChatGPT (GPT-4) still takes
absolute lead with all of respondents using it during first academic
year. GitHub Copilot is second in the list being used by 7 people
(33,3%), which is followed by Tabnine (23,8%) and Copilot (14,3%).

Regarding code generation tools that have been used specifi-
cally within student’s coursework, ChatGPT is still in lead with
66,6% of students using it for study-related tasks. Second most pop-
ular answer is using none of the tools (28,6%). Copilot takes third
place with (23,8%), while Codex and Tabnine received only 1 vote
each (4,8%). Among respondents 9,5% of people have used code
generation tools frequently, 61,9% used them few times at least.

Next survey question showed inwhich programming tasks specif-
ically students used these tools. Most votes went for project work
and exam preparation (57,1% each), assignments (47,6%), labs (33,3%)
and group work (23,8%). There were 3 people who have not used
any tool for any type of coursework, that is 14,2% of all respondents.
Some rare answers included usage for example code (4,8%).

We can say that majority of students (76,2%) who completed the
survey feel that code generation tools use in their practices make
programming fundamentals and concepts learning less difficult.
Vast amount of people (47,6%) feel such tools also increase their
ability and skills of problem solving in programming tasks intro-
duced by their computer science program. The same percentage of
people feel code generation tools make it more fun to learn. 42,9%
report increased interest in topic learned when using tools, and only
38,1% feel the same about engagement in learning programming.

The survey also have an open question that relates to code gen-
eration tool’s impact on ability to learn programming fundamentals
and concepts. Most respondents reported positive effect, tools have
helped them to understand better some concepts that are harder
to grasp, as they explain terms, pieces of code, methods, classes or

libraries, functionality behind them, and detected small mistakes
in code. Some students outline code generation tools ability to give
lots of related information, inspiration and "personal learning expe-
rience due to their flexibility". Overall, respondents reveal increased
understanding and algorithmic thinking, enhanced learning and
saved time "to read unclear, far too technical documentation or
explanation using concepts that I do not know" and to debug.

4.1.3 Motivation, engagement, confidence. Regarding code genera-
tion tool’s increase of motivation, the answers are bit ambiguous:
one third (33,3%) of respondents agree that usage of code generation
tools increase motivation towards learning, other third (33,3%) stays
neutral, last third completely (9,5%) or disagree (23,8%). Results of
question about the increase of student’s engagement were slightly
different: most of respondents (38,1%) would indicate agreement
with the statement, 4,8% would strongly agree, 33,3% would again
stay neutral, other 28,6% would completely or disagree.

With further open questions about factors of influence on stu-
dent’s motivation and engagement we could distinguish five main
sources. First one (not by amount of answers) is the end-goal, pro-
fession, job, money. Second is other people as the source: teamwork,
friends in course, teachers. Third, how interesting the project, as-
signment, practical, course is. Fourth is self-development: gaining
more knowledge and skills, getting better at programming, learn-
ing new things that of their interest. Finally, fifth - desire to build,
coding process itself, "applying theory and creating something
that has a purpose", "feeling of my implementations being used",
"challenging myself with difficult problems and finding solutions".

The survey questions about abilities to write the code have
shown in general that respondents feel less confident when us-
ing code generation tools. Important to mention that for students
who are initially pretty confident in their programming abilities it
does not make big difference when involving code generation tools
to their practices. However, for people who generally have lack
of confidence in programming, it only gets worse when involving
code generation. Thus, we see 4,8% of people disagreeing in the
first case, increasing to 19% in the second case when involving code
generation. In the end only 26,8% of respondents feel that code
generation tools positively affect their confidence in programming
abilities.

4.1.4 Conclusions. Overall, 57,1% of respondents who had experi-
ence with code generation tools in first year of computer science
course would positively rate this experience. 14,3% would strongly
agree to the statement, 19% would stay neutral and only two people
(9,6%) would strongly or disagree about its positive impact.

We also asked participants to compare writing code manually
with using code generation tools in terms of learning outcomes and
practical applications. The majority considers writing code manu-
ally feels better as there are still a lot of issues associated with code
generation tools. As they report, automatic code generation often
results in "code that is hard to understand, which makes debug-
ging extremely difficult and ultimately does not teach you how to
solve certain problems", or such code that "doesn’t have its intended
purpose". Respondents also warn about possible over-reliance on
tools, which shows their awareness that such scenario could hap-
pen. However, students say code generation tools suit great when
being used for inspiration, solving trivial tasks or when applied

6

Influence of code generation technologies on the learning process of novice programmers TScIT 39, July 7,2023, Enschede, The Netherlands

once they know fundamentals already. They suggest starting using
them when you already have a great knowledge basis of fundamen-
tals and concepts so that they can assist you further in learning
deeper. Thus, when using code generation tools as extra source
of help, respondents emphasize saved time for debugging, "when
needing to write short, simple, repetitive methods for a project,
like making "getters" and "setters" ... , or writing code to test a part
of the system", they also point out on "reduced stress/boredom of
writing repetitive code, fixing small syntax mistakes, searching the
right function and more small tasks". Overall, students still prefer
to solve complex problems manually, "both to learn and to have
some challenge", but see code generation tools as a great assistant
in further knowledge development.

The question regarding further introduction of code generation
tools in computer science course showed most students (52,4%)
would like more interaction with them. Among those who support
the idea, 14,3% strongly agree, 38,1% would agree, others would
stay neutral (14,3%), disagree(23,8%) and strongly disagree(9,5%).

This can be explained by latter questions of the survey. We have
asked respondents about the main benefits and pitfalls of using
code generation tools that they can distinguish from their personal
learning experience. Common benefits include help when stuck on
problem, have doubts, in need to check answers, debug, explain or
improve the code, enhance the knowledge. Respondents report code
generation tools are "excellent learning aid" and can effectively save
time, increase their productivity and efficiency, give inspiration and
are flexible and personalisable for learning experience. Regarding
disadvantages, lots of respondents again warn about over-reliance
on the tool, saying it "can become addictive or overused", "make
people lazy" to write code manually, "can prevent from understand-
ing new concepts". Moreover, they say generated code is often hard
to understand or does not have clear goal which makes its further
usage harder. Some report reduced interest in becoming proficient
in fundamentals, "make [students] feel more confident in things
[they] know little about". Students suggest to use code generation
wisely, either for time saving on "doing boring stuff you already
know" or for personal code and knowledge improvement.

4.2 Interviews
We have conducted interviews with five first year computer science
students. The answers have showed us that all students know about
code generation tools and use them frequently for different learning
purposes. We have explored their initial expectation and impres-
sion of the use of such technologies and found out in most cases
the expectations were not high, but results were quite impressive.
Students did not expect code generation tools to be that smart and
did not believe they would help them as much.

Regarding the experience with code generation tools in first year
of computer science course, respondents state these tools have been
a great learning assistant and been used extensively for coding as-
signments, projects, exam preparation, understanding theoretical
part of the course, personal coding practices. Students report these
tools are of great help when in need of making easy methods, quick
functionality or logic, building components or finding little bugs.
We have also asked students about any benefits or pitfalls regarding
their learning process when using code generation tools. Among

advantages they mention reduced time spent on problem or bug, as
code generation tools can detect issue in code, on learning overall,
as they explain how certain things in code work very effectively.
Another positive thing is making easier to understand some topics,
parts of code, methods or classes. Students report such tools pro-
vide fresh perspective towards the problem approach. In general,
students consider code generation tools being great supplement for
learning. As of disadvantages, the main one that students mention
is possibility of over-reliance on the tool, they say it "could be bad
for lazy people" or "can make people lazy". This, of course, depends
on person and their intentions of such tool’s usage.

Amid challenges of code generation tools usage respondents
often mention their "output is only as good as input", meaning that
users have to really make effort in order to explain the task in single
prompt. Therefore, students need to learn how to communicate the
problem properly so that the algorithm understands what is needed.
However, it could be seen as a positive outcome as well. In addition,
respondents often mention tools being of limited knowledge, so
that they can sometimes not help as much as user wants or give
solution that does not match user’s intentions.

Regarding code generation tool’s impact on understanding of pro-
gramming concepts and syntax, all students report positive effects,
they are trying to use tools in a smart way taking as much benefits
as possible. Respondents say they often asked for explanation of
some hard concepts that were hard to understand. Moreover, stu-
dents report saved time with use of code generation tools, compared
to traditional learning methods. Overall tools made student’s learn-
ing much faster, increased effectiveness and productivity, helped to
explore many possible approaches to the problem. Respondents do
not report much impact on confidence in their programming abili-
ties. Only one student said that the confidence actually increased
due to the fact that "you still have to have knowledge to understand
[generated code] and the functionality behind it".

As this research explores the impact on such elements of learning
as motivation and engagement, we have asked students how code
generation tools influence these factors. We found out that the use
of code generation does not influence students motivation much,
as many say, due to completely different sources of motivation
towards programming learning. However, we can clearly identify
some positive influence on student’s engagement in learning pro-
cess. Respondents say code generation helps them not to waste
time on basic functionality that they have mastered already or on
"tiring time consuming tasks". Because code generation tools give
many examples and explanations, they tend to positively impact
problem-solving skills of respondents, decrease time on googling
encountered problems, "it is almost like having mentor by my side"
they say. Code generation tools speed up programming process
much, helping students create things much faster. All these factors
have very positive impact on student’s curiosity, joy towards and
engagement in learning process as they report.

Interviews show students feel more accomplishment when writ-
ing code or solving programming tasks on their own, they also
prefer learning new things with manual writing and use code gen-
eration tools on later stages for saving time and broadening knowl-
edge. Due to the fact that code generation tools are not perfect yet,
they can often give wrong or bad answers and students prefer to
switch to traditional problem approaches in such situations.

7

TScIT 39, July 7,2023, Enschede, The Netherlands Albina Shynkar

Talking about impact on student’s ability to develop program-
ming proficiency, all respondents state code generation tools are
much helpful, for basic tasks especially. As students say, tools in-
creased efficiency, decreased time for debugging, solving tasks and
understanding concepts. Some respondents mention code genera-
tion "saves" brain from thinking and if being overused can lead to
slowed development of problem-solving and topic understanding.

We asked respondents whether they would recommend code
generation tools use to other novice programmers. The common
conclusion is that such technologies are of most help when already
having sufficient knowledge basis on the topic and at least some
experience. Respondents advice that students should understand
how and when to use tools to achieve best learning outcomes for
themselves. This also includes comprehension of consequences of
over-reliance on technologies and cheating with their help.

Regarding further integration of code generation tools in educa-
tional realm, we can conclude from students responses that such
technologies should be introduced and not only the way how they
work, but also how they can be used most effectively should be
studied. "It would be stupid to ban [code generation tools], for lots
it is a helping tool, not an answer tool", as one respondent says.
Overall, they can bring lots of advantages, including improvement
of student’s engagement towards learning process. This can happen
"if all students will understand real goal of [code generation tools]
and use it in smart way, not for cheating".

5 FURTHER DISCUSSION
From the literature overview we found that code generation tools
have wide range of applications and opportunities in introductory
programming course. Those include wider range of learning re-
sources, solutions, illustrative examples, and better assistance for
both students and teachers in their educational and learning prac-
tices. The benefits of their use and effects on novice programmers
include increased engagement, productivity, comprehension, as
well as saved time and better overall learning outcomes. Still, it
is arguable if code generation tools could be involved in novice
programmer’s educational process without any associated risks.

From survey we discovered that code generation tools have more
effect on student’s engagement rather than motivation towards pro-
gramming learning. This might be because the source of motivation
is broad and different for individuals. Overall, majority of respon-
dents report positive experience with code generation tools during
first year computer science course and use it as helping hand in
their practices. Most of students would like code generation tools
to be better introduced and involved in education.

Interviews showed us students prefer using code generation
tools when they are confident in their basic knowledge on topics,
so that they help them to broaden their understanding and prob-
lem approaches. Students say code generation tools can be great
assistant and speed up programming and learning process. When
being aware of risks of the use of such technologies, students can
benefit from them much and teachers, therefore, might use these
benefits to improve the quality of the course.

However, research findings rise questions about ethics of the
use of code generation technologies in computer science higher
education. As these tools become more accessible and commonly

used, concerns regarding their potential impact on plagiarism cases
involving novice programmers can arise. There is a risk of student’s
over-reliance on tools, thus, plagiarism cases or the submission of
unoriginal work can increase. As discussed by Becker et al. (2023),
code generation tools enable negative academic practices, allowing
students to transfer their teaching to technologies without usual
risks associated with traditional practice. This can hinder the detec-
tion of fraud and lead to short-term grades being prioritized over
true learning. Furthermore, AI-generated code detection is difficult,
especially when it closely resembles code suggestions provided by
standard IDEs [4]. This blurs the distinction between human and
machine contributions and calls into question the notion of plagia-
rism. Such code reuse can cause licensing problems, as AI models
can inadvertently use code that requires proper attribution and
compliance [3]. To eliminate the risks, educators and institutions
must carefully consider how to address these issues, ensure students
understanding of ethical implications code generation tools usage,
and promote academic integrity within their programming assign-
ments or projects. Proper guidelines and policies may need to be
implemented to prevent and address cases of plagiarism associated
with the use of these technologies.

5.1 Limitations
First of all, due to the multifaceted nature of the learning experience,
which could not be fully studied within the scope of this research,
we had to focus on such factors as student’s engagement and mo-
tivation. Therefore, the work can provide relevant insights only
regarding those factors. Furthermore, the possibility of bias arises
as we rely on collected data from surveys and interviews, where
participants could give socially desirable or possibly biased answers.
Furthermore, analyzed data is of limited sample size, specific time
frame and geographical focus, which may limit the generalization
of our findings. It is important to acknowledge these limitations
when interpreting results of this study and future research should
aim to address these barriers to knowledge expansion.

6 CONCLUSION
Code generation technologies are developing rapidly and it is hard
to ignore their prevalence among aids for learning within computer
science courses. They have a great potential to bring benefits in
educational realm if being approached and used in a smart way.
The work of Becker et al. (2023) presents such position: AI-powered
code generation has the potential to bring both opportunities and
challenges to introductory programming and related courses, as
well as to educators and students. We agree with this statement
and can conclude from gathered information that code generation
tools have all the potential to positively influence on student’s
engagement towards learning process. However, further researches
should carefully consider associated risks that have been found
with the help of literature overview, survey and interviews, as
well as take into account warnings of researchers in order to find
the best way and moment to integrate code generation tools into
educational practices of computer science courses.

APPENDIX A
Literature summary table

8

Influence of code generation technologies on the learning process of novice programmers TScIT 39, July 7,2023, Enschede, The Netherlands
N
o

A
ut
ho

r
A
rt
ic
le
na
m
e

Im
po

rt
an
tfi

nd
in
gs

1
Be

ck
er

et
al
.(
20
19
)

50
Ye
ar
so

fC
S1

at
SI
G
CS

E:
A
Re

vi
ew

of
th
eE

vo
-

lu
tio

n
of

In
tr
od

uc
to
ry

Pr
og

ra
m
m
in
g
Ed

uc
at
io
n

Re
se
ar
ch

"A
I-g

en
er
at
ed

co
de

is
on

th
e
w
ay

to
be
in
g
fir
m
ly

pa
rt
of

th
e
pr
og

ra
m
-

m
in
g
ed
uc
at
io
n
la
nd

sc
ap
e,
bu

tw
e
do

no
ty

et
kn

ow
ho

w
to

ad
ap
to

ur
pr
ac
tic

es
to

ov
er
co
m
e
th
e
ch
al
le
ng

es
an
d
le
ve
ra
ge

th
e
be
ne
fit
s."

2
Bi
rd

et
al
.(
20
22
)

Ta
ki
ng

Fl
ig
ht

w
ith

Co
pi
lo
t

A
I-p

ow
er
ed

to
ol
sl
ik
e
Co

pi
lo
th

av
e
po

te
nt
ia
lt
o
as
sis

td
ev
el
op

er
si
n
va
r-

io
us

ta
sk
s.
Th

e
ch
al
le
ng

e
lie
si
n
cr
ea
tin

g
us
er

ex
pe
rie

nc
e
th
at

en
ha
nc
es

pr
od

uc
tiv

ity
,e
st
ab
lis
he
st
ru
st
an
d
un

de
rs
ta
nd

in
g
of

A
I-g

en
er
at
ed

co
de
’

im
pa
ct
on

so
ftw

ar
e
de
ve
lo
pm

en
tl
ife

cy
cl
e.

3
Ch

en
et

al
.(
20
19
)

Ev
al
ua
tin

g
La
rg
e
La
ng

ua
ge

M
od

el
sT

ra
in
ed

on
Co

de
"B
y
fin

e-
tu
ni
ng

G
PT

on
co
de

fr
om

G
itH

ub
,w

e
fo
un

d
th
at

ou
rm

od
el
s

di
sp
la
ye
d
st
ro
ng

pe
rf
or
m
an
ce

on
a
da
ta
se
to

fh
um

an
-w

rit
te
n
pr
ob
le
m
s

w
ith

di
ffi
cu
lty

le
ve
lc
om

pa
ra
bl
e
to

ea
sy

in
te
rv
ie
w
pr
ob
le
m
s."

4
Fi
nn

e-
A
ns
le
y
et

al
.(
20
22
)

M
y
A
IW

an
ts
to

Kn
ow

if
Th

is
W
ill

Be
on

th
e

Ex
am

:T
es
tin

g
O
pe
nA

I’s
Co

de
xo

n
CS

2P
ro
gr
am

-
m
in
g
Ex

er
ci
se
s

"C
od

ex
is
ab
le
to

so
lv
e
m
os
tC

S2
qu

es
tio

ns
,p
er
fo
rm

in
g
sim

ila
rly

to
st
u-

de
nt
si
n
th
e
to
p
qu

ar
til
e
of

th
e
cl
as
st
ha
ta

ns
w
er
ed

th
e
sa
m
e
qu

es
tio

ns
"

5
H
ol
m
es

et
al
.(
20
23
)

A
rt
ifi
ci
al
in
te
lli
ge
nc
e
in

ed
uc
at
io
n

"A
Ii
si
nc
re
as
in
gl
y
be
in
g
us
ed

in
ed
uc
at
io
n
an
d
le
ar
ni
ng

co
nt
ex
ts
.W

e
ca
n
ei
th
er

le
av
e
it
to

ot
he
rs

...
or

en
ga
ge

in
pr
od

uc
tiv

e
di
al
og

ue
."

6
Ka

ze
m
ita

ba
ar

et
al
.(
20
23
)

St
ud

yi
ng

th
e
eff

ec
to

fA
IC

od
e
G
en
er
at
or
s
on

Su
pp

or
tin

g
N
ov
ic
e
Le
ar
ne
rs

in
In
tr
od

uc
to
ry

Pr
og

ra
m
m
in
g

"A
Ic
od

e
ge
ne
ra
to
rs
ca
n
sig

ni
fic
an
tly

in
cr
ea
se

ta
sk

co
m
pl
et
io
n,
im

pr
ov
e

co
rr
ec
tn
es
ss
co
re
,r
ed
uc
ee

nc
ou

nt
er
ed

er
ro
rs
,a
nd

ta
sk

co
m
pl
et
io
n
tim

e."

7
Kh

m
el
ev
sk
y
et

al
.(
20
23
)

St
ud

yi
ng

th
e
eff

ec
to

fA
IC

od
e
G
en
er
at
or
s
on

Su
pp

or
tin

g
N
ov
ic
e
Le
ar
ne
rs

in
In
tr
od

uc
to
ry

Pr
og

ra
m
m
in
g

"A
ut
om

at
ic

so
ftw

ar
e
ge
ne
ra
tio

n
to
ol
s
is
a
ke
y
co
m
po

ne
nt

of
hi
gh

er
ed
uc
at
io
n
in

So
ftw

ar
e
En

gi
ne
er
in
g."

8
M
ar
w
an

et
al
.(
20
19
)

A
n
Ev

al
ua
tio

n
of

th
e
Im

pa
ct
of

Au
to
m
at
ed

Pr
o-

gr
am

m
in
g
H
in
ts
on

Pe
rf
or
m
an
ce

an
d
Le
ar
ni
ng

"L
ea
rn
er
sw

ho
re
ce
iv
ed

te
xt
ua
le
xp

la
na
tio

ns
in

ad
di
tio

n
to

co
de

hi
nt
s

pe
rc
ei
ve
d
iS
na
p’
ss

up
po

rt
as

si
gn

ifi
ca
nt
ly

m
or
e
us
ef
ul
"

9
M
os
te
rm

an
et

al
.(
20
22
)

A
ut
om

at
ic
C
od

e
G
en
er
at
io
n:

Fa
ci
lit
at
in
g
N
ew

Te
ac
hi
ng

O
pp

or
tu
ni
tie

si
n
En

gi
ne
er
in
g
Ed

uc
a-

tio
n

"T
o
pr
ov
id
e
en
gi
ne
er
in
g
st
ud

en
ts
w
ith

ne
ce
ss
ar
y
sk
ill

se
tt
o
be

su
cc
es
s-

fu
li
n
th
efi

el
d
of
em

be
dd

ed
co
nt
ro
ls
ys
te
m
s,
it
is
im

po
rt
an
tt
o
fa
m
ili
ar
iz
e

an
d
ed
uc
at
e
th
em

on
th
e
te
ch
no

lo
gy

of
au
to
m
at
ic
co
de

ge
ne
ra
tio

n."
10

O
uy

an
g
et

al
.(
20
22
)

A
rt
ifi
ci
al

in
te
lli
ge
nc
e
in

on
lin

e
hi
gh

er
ed
uc
a-

tio
n:

A
sy
st
em

at
ic
re
vi
ew

of
em

pi
ric

al
re
se
ar
ch

fr
om

20
11

to
20
20

"A
Ii
sp

ro
ve
d
to

be
po

sit
iv
e
to

en
ha
nc
e
on

lin
e
in
st
ru
ct
io
n
an
d
le
ar
ni
ng

qu
al
ity

by
off

er
in
g
ac
cu
ra
te

pr
ed
ic
tio

n,
as
se
ss
m
en
ta

nd
en
ga
gi
ng

st
u-

de
nt
sw

ith
on

lin
e
m
at
er
ia
ls
an
d
en
vi
ro
nm

en
ts
."

11
Sa
rs
a
et

al
.(
20
22
)

A
ut
om

at
ic

G
en
er
at
io
n
of

Pr
og

ra
m
m
in
g
Ex

er
-

ci
se
sa

nd
Co

de
Ex

pl
an
at
io
ns

U
si
ng

La
rg
e
La
n-

gu
ag
e
M
od

el
s

O
pe
nA

I
C
od

ex
is

ca
pa
bl
e
of

ge
ne
ra
tin

g
se
ns
ib
le
,n

ov
el

an
d
re
ad
ily

ap
pl
ic
ab
le
ex
er
ci
se
s.

12
Su

ra
m
ee
ry

an
d
Sh

ak
or

(2
02
3)

U
se

Ch
at

G
PT

to
So
lv
e
Pr
og

ra
m
m
in
g
Bu

gs
"B
y
co
m
bi
ni
ng

th
e
st
re
ng

th
so

fC
ha
tG

PT
w
ith

th
e
st
re
ng

th
so

fo
th
er

de
bu

gg
in
g
to
ol
s,
de
ve
lo
pe
rs

ca
n
ga
in

a
m
or
e
co
m
pl
et
e
un

de
rs
ta
nd

in
g

of
th
ei
rc

od
e,
an
d
id
en
tif
y
an
d
fix

bu
gs

m
or
e
eff

ec
tiv

el
y."

13
Ta

jik
,E

.a
nd

Ta
jik

,F
.(
20
23
)

A
co
m
pr
eh
en
si
ve

Ex
am

in
at
io
n
of

th
e
po

te
nt
ia
l

ap
pl
ic
at
io
n
of

C
ha
tG

PT
in

H
ig
he
r
Ed

uc
at
io
n

In
st
itu

tio
ns

A
pp

lic
at
io
n
of

Ch
at
G
PT

br
in
gs

lo
ts
of

be
ne
fit
si
n
ed
uc
at
io
n
as

st
ud

en
t-,

te
ac
he
r-
an
d
sy
st
em

-fa
ci
ng

to
ol
.

14
W
er
m
el
in
ge
r,
M
.(
20
23
)

Us
in
g
G
itH

ub
Co

pi
lo
tt
o
So
lv
e
Si
m
pl
e
Pr
og

ra
m
-

m
in
g
Pr
ob
le
m
s

"C
op

ilo
ti
sa

us
ef
ul

sp
rin

gb
oa
rd

to
pr
od

uc
tiv

el
y
so
lv
e
CS

1
pr
ob
le
m
s."

9

TScIT 39, July 7,2023, Enschede, The Netherlands Albina Shynkar

Survey questions
Down below you can see list of questions for the conducted survey
for this study. The questions were grouped to make it easier for
the respondents to navigate. The types of the questions were also
indicated in this list to give a general idea of the types of answers.

General familiarity with code generation tools
(1) Which code generation tools do you know about? Multiple

choice
(2) Which code generation tools have you tried on practice?

Multiple choice
(3) Have you used any code generation tools before you started

computer science course? program Yes/no
(a) How familiar were you with code generation tools before

computer science course? Scale 1-4
(b) Overall, how often did you use code generation tools com-

pared to writing code manually? Scale 1-4
(c) Which code generation tools did you find most useful?

Multiple choice
Code generation tools usage in computer science course

(4) Have you used any code generation tools during your first
year of computer science course? Yes/no

(a) Which code generating tools have you had experience
with during your first year of computer science course?
Multiple choice

(b) Which code generating tools have you had experience
with within coursework? Multiple choice

(c) In what specific programming tasks or projects did you
use code generation tools? Multiple choice

(d) How frequently do you use code generation tools when
writing code for your coursework? Scale 1-5

Code generation tools impact on student Questions from this
section are formulated in such way so that students can mark
how the statement relates to them on scale from 1 to 5.

(5) In general, I am confident in my ability to write code.
(6) I am confident in my ability to write code with the use of

code generation tools.
(7) I feel a sense of accomplishment when successfully generat-

ing code using code generation tools.
(8) I feel that code generation tools usage has positively affected

my confidence in my programming abilities.
(9) I feel that code generation tools usage enhanced(made less

difficult) my learning of programming fundamentals and
concepts.

(10) I feel that code generation tools usage increases my ability
and skills of problem solving in programming tasks intro-
duced in my computer science course.

(11) I feel that the use of code generation tools increased my
interest in topics that have been learned in my computer
science course.

(12) I feel that the use of code generation tools increases my en-
gagement in programming learning in my computer science
course.

(13) I feel that the use of code generation tools increases my
motivation in programming learning inmy computer science
course.

(14) I feel that the use of code generation tools made it more fun
to learn programming topics introduced in my computer
science course.

(15) Overall, I would positively rate my experience with code
generation tools in my first year of computer science course.

(16) I wish there was more interaction with code generation tools
introduced in my computer science program.

(17) Overall, I would recommend the use of code generation tools
to other novice programmers for learning purposes.
Going deeper in impact All the questions in this section are
open questions.

(18) What are the main factors that influence your motivation
and engagement in programming learning process in your
computer science course?

(19) How do you think code generation tools compare to writing
code manually in terms of learning outcomes and practical
application?

(20) How do you think using code generation tools has impacted
your ability to learn programming fundamentals and con-
cepts?

(21) What are the main benefits and pitfalls of using code genera-
tion tools for programming learning that you can distinguish
from your personal learning experience?

Interviews questions
The list of questions for the interviews conducted within this re-
search are provided below. The questions were grouped to make it
easier for the respondents to navigate.

General familiarity with code generation tools
(1) What do you know about code generation tools in general?
(2) When was the last time you have used code generating tools?
(3) What was your initial impression or expectation of code

generation tools before using them?
Code generation tools usage in computer science course

(4) Can you describe your experience using code generation
tools during your first year of computer science education?

(5) In what specific programming tasks or projects did you use
code generation tools?

(6) What were the advantages or pitfalls you observed when
using code generation tools?

(7) Did you face any challenges or difficulties while using code
generation tools? If yes, can you elaborate on those?

(8) How would you describe your overall experience with code
generation tools during your first year of computer science
course?

(9) What are the main factors that influence your motivation in
the process of programming learning?

(10) What are the main factors that influence your engagement
in the process of programming learning?
Code generation tools impact on student

(11) How do you think code generation tools influenced your
understanding of programming concepts and syntax?

(12) How did the use of code generation tools influence your
engagement in the programming learning process? Why?

(13) How did code generation tools impact your efficiency and
productivity in completing programming tasks?

10

Influence of code generation technologies on the learning process of novice programmers TScIT 39, July 7,2023, Enschede, The Netherlands

(14) In what ways did code generation tools influence your moti-
vation to learn programming? Please provide examples.

(15) Did using code generation tools make programming more
or less enjoyable for you? Why?

(16) Did you feel a sense of accomplishment when successfully
using code generation tools to generate code? Why or why
not?

(17) How did code generation tools affect your problem-solving
skills in programming tasks?

(18) Did the use of code generation tools impact your confidence
in your programming abilities? If yes, how?
Going deeper in impact

(19) How do you think code generation tools compare to writing
code manually in terms of learning outcomes?

(20) Were there any coursework tasks performing which you felt
the need to switch from code generation tools to writing
code manually? Why?

(21) Do you think using a code generation tool has influenced
your ability to develop your programming proficiency?Why?

(22) Would you recommend the use of code generation tools to
other novice programmers? Why or why not?

(23) Based on your experience, do you think code generation tools
should be used extensively in computer science education?
Why or why not?

REFERENCES
[1] Amazon (2023). CodeWhisperer.
[2] Barke, S., James, M. B., and Polikarpova, N. (2023). Grounded Copilot: How
Programmers Interact with Code-Generating Models. Proceedings of the ACM on
Programming Languages, 7(OOPSLA1):85–111.

[3] Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., and Santos,
E. A. (2023). Programming Is Hard - Or at Least It Used to Be: Educational Opportuni-
ties and Challenges of AI Code Generation. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, pages 500–506, Toronto ON Canada.
ACM.

[4] Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk,
T., and Gazit, I. (2022). Taking Flight with Copilot.

[5] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. (2020). Language Models are Few-Shot
Learners. arXiv:2005.14165 [cs].

[6] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H.,
Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser,
L., Bavarian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D., Plappert, M., Chantzis,
F., Barnes, E., Herbert-Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J.,
Babuschkin, I., Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer,
K., Welinder, P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. (2021). Evaluating Large Language Models Trained on Code. arXiv:2107.03374
[cs].

[7] Cheng, R., Wang, R., Zimmermann, T., and Ford, D. (2023). "It would work for me
too": How Online Communities Shape Software Developers’ Trust in AI-Powered
Code Generation Tools. arXiv:2212.03491 [cs].

[8] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong (YIMING), M., Shou (), L.,
Qin, B., Liu, T., Jiang (), D., and Zhou, M. (2020). CodeBERT: A Pre-Trained Model
for Programming and Natural Languages.

[9] Finnie-Ansley, J., Denny, P., Luxton-Reilly, A., Santos, E. A., Prather, J., and Becker,
B. A. (2023). My AI Wants to Know if This Will Be on the Exam: Testing Ope-
nAI’s Codex on CS2 Programming Exercises. In Australasian Computing Education
Conference, pages 97–104, Melbourne VIC Australia. ACM.

[10] GitHub (2022). Copilot:Your AI pair programmer.
[11] Google (2022). Pathways Language Model (PaLM): Scaling to 540 Billion Parame-
ters for Breakthrough Performance.

[12] GoogleDeepMind (2022). Competitive programming with AlphaCode:Solving
novel problems and setting a new milestone in competitive programming.

[13] Herrington, J. (2003). Code Generation in Action. Manning Publications Co., USA.
[14] Holmes, W., Bialik, M., and Fadel, C. (2023). Artificial intelligence in education.
In Duggal, P., editor, Data ethics : building trust : how digital technologies can serve
humanity, pages 621–653. Globethics Publications.

[15] Kazemitabaar, M., Chow, J., Ma, C. K. T., Ericson, B. J., Weintrop, D., and Grossman,
T. (2023). Studying the effect of AI Code Generators on Supporting Novice Learners
in Introductory Programming. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pages 1–23. arXiv:2302.07427 [cs].

[16] Khmelevsky, Y., Hains, G., and Li, C. (2012). Automatic code generation within
student’s software engineering projects. In Proceedings of the Seventeenth West-
ern Canadian Conference on Computing Education, pages 29–33, Vancouver British
Columbia Canada. ACM.

[17] Kolides, A., Nawaz, A., Rathor, A., Beeman, D., Hashmi, M., Fatima, S., Berdik,
D., Al-Ayyoub, M., and Jararweh, Y. (2023). Artificial intelligence foundation and
pre-trained models: Fundamentals, applications, opportunities, and social impacts.
Simulation Modelling Practice and Theory, 126:102754.

[18] Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles,
T., Keeling, J., Gimeno, F., Lago, A. D., Hubert, T., Choy, P., d’Autume, C. d. M.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal, S., Cherepanov, A., Molloy,
J., Mankowitz, D. J., Robson, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K., and
Vinyals, O. (2022). Competition-Level Code Generation with AlphaCode. Science,
378(6624):1092–1097. arXiv:2203.07814 [cs].

[19] Manna, Z. and Waldinger, R. J. (1971). Toward automatic program synthesis.
Communications of the ACM, 14(3):151–165.

[20] Manning, S., Mishkin, P., Hadfield, G., and Eisner, E. (2022). A Research Agenda
for Assessing the Economic Impacts of Code Generation Models.

[21] Marwan, S., Jay Williams, J., and Price, T. (2019). An Evaluation of the Impact of
Automated Programming Hints on Performance and Learning. In Proceedings of the
2019 ACM Conference on International Computing Education Research, pages 61–70,
Toronto ON Canada. ACM.

[22] Mosterman, P. (2006). Automatic Code Generation: Facilitating New Teaching
Opportunities in Engineering Education. In Proceedings. Frontiers in Education. 36th
Annual Conference, pages 1–6, San Diego, CA, USA. IEEE.

[23] OpenAI (2022a). Codex.
[24] OpenAI (2022b). Introducing ChatGPT.
[25] OpenAI (2023). GPT-4 is OpenAI’s most advanced system, producing safer and
more useful responses.

[26] Ouyang, F., Zheng, L., and Jiao, P. (2022). Artificial intelligence in online higher
education: A systematic review of empirical research from 2011 to 2020. Education
and Information Technologies, 27(6):7893–7925.

[27] Prather, J., Reeves, B. N., Denny, P., Becker, B. A., Leinonen, J., Luxton-Reilly,
A., Powell, G., Finnie-Ansley, J., and Santos, E. A. (2023). "It’s Weird That it Knows
What I Want": Usability and Interactions with Copilot for Novice Programmers.
arXiv:2304.02491 [cs].

[28] Ross, S. I., Martinez, F., Houde, S., Muller, M., and Weisz, J. D. (2023). The
Programmer’s Assistant: Conversational Interaction with a Large Language Model
for Software Development. In Proceedings of the 28th International Conference on
Intelligent User Interfaces, pages 491–514, Sydney NSW Australia. ACM.

[29] Sarsa, S., Denny, P., Hellas, A., and Leinonen, J. (2022). Automatic Generation
of Programming Exercises and Code Explanations Using Large Language Models.
In Proceedings of the 2022 ACM Conference on International Computing Education
Research V.1, pages 27–43, Lugano and Virtual Event Switzerland. ACM.

[30] Surameery, N. M. S. and Shakor, M. Y. (2023). Use Chat GPT to Solve Programming
Bugs. International Journal of Information technology and Computer Engineering,
(31):17–22.

[31] Tajik, E. and Tajik, F. (2023). A comprehensive Examination of the potential
application of Chat GPT in Higher Education Institutions. preprint.

[32] Thompson, E., Whalley, J., Lister, R., and Simon, B. (2023). Code Classification as
a Learning and Assessment Exercise for Novice Programmers.

[33] Vaithilingam, P., Zhang, T., and Glassman, E. L. (2022). Expectation vs. Experience:
Evaluating the Usability of Code Generation Tools Powered by Large Language
Models. InCHI Conference on Human Factors in Computing Systems Extended Abstracts,
pages 1–7, New Orleans LA USA. ACM.

[34] Wermelinger, M. (2023). Using GitHub Copilot to Solve Simple Programming
Problems. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1, pages 172–178, Toronto ON Canada. ACM.

11

	Copyright
	Abstract
	1 Introduction
	2 Methods of research
	3 Code generation tools in education
	3.1 AI Applications in education
	3.2 Code generation tools in introductory programming
	3.3 Impact on teachers and students
	3.4 Particular code generation tools

	4 Survey and interviews
	4.1 Survey
	4.2 Interviews

	5 Further discussion
	5.1 Limitations

	6 Conclusion
	References

