
µScope: A Reusable Interface For Debugging STM32 Microcontrollers

TOM SMEETS, University of Twente, The Netherlands

Fig. 1. Screenshot of µScope in action

Microcontrollers play a critical role in a wide range of industrial applications.
Developing software for these devices is a challenging task that requires
a powerful debugging environment. Existing solutions are insufficient for
navigating the stream of messages emitted by the embedded software. In this
paper we research and develop a tool to manage the stream of messages by
working iteratively and gathering feedback from stakeholders. We conclude
with a Visual Studio Code extension called “µScope” that can view and
navigate these messages. Demcon applies µScope in a number of projects
improving the developers experience. By publishing and open sourcing
µScope we increase its reach and usability to the wider community.

Additional Key Words and Phrases: embedded systems, microcontroller,
debug, STM32, RTT, SWO, Visual Studio Code, J-Link, ST-Link

INTRODUCTION
Embedded programs produce a wide range of informational debug
messages. Visualising these messages is difficult, as every developer
wants to have a different view of the output. Existing solutions for
visualising these messages are limited. In this paper we will develop
a solution tot this on behalf of the engineering company Demcon1
by answering the following research question:

“How can the stream of messages emitted by embedded
software in microcontrollers be effectively managed and
navigated to enhance the debugging process?”

This paper is structured in the following chapters. In “Existing Tech-
nology” we explore the current state of the art technology and
explain concepts that are needed to understand this paper. In the
“Problem Statement” chapter we will describe the research problem
in detail, and propose a solution. We look and compare previous
solutions in “Previous Work” and describe their features and their
1https://demcon.com

TScIT39, July 07, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

shortcomings. We explore related literature in “Literature Review”
and describe the importance of our research. In the “Formal Require-
ments” chapter we provide a formal description of the requirements
using the MoSCoWmethod. This approach enables us to make quan-
titative comparisons between the requirements and the resulting
product. In the “Method” chapter, we provide a detailed descrip-
tion of the development setup and introduce our proposed solution
called “µScope”. In the “Evaluation” chapter, we reflect on the devel-
opment process, compare the resulting product against our formal
requirements, and evaluate its effectiveness in addressing the issues
highlighted in the literature review section. In “Future Work” we
propose possible improvements to µScope and describe alternative
solutions.

1 EXISTING TECHNOLOGY

Fig. 2. STM32 Development Setup

1

https://demcon.com


TScIT39, July 07, 2023, Enschede, The Netherlands Tom Smeets

Following is an overview of this system, what each component does
and how they interact with each other. The components described
below can also be seen in Figure 2 where we describe how they are
connected.

1.1 STM32
Microcontrollers come in a number of different variants. The STM32
is a 32-bit ARM Cortex Microcontroller produced by STMicroelec-
tronics [1]. This microcontroller can be programmed to control
various external devices electronically. Once deployed, the micro-
controller is fully integrated into a circuit board that incorporates
the electronics of the whole system.

1.2 Nucleo Development Board
To effectively write software for the STM32, the use of a Develop-
ment Board is essential. One popular option is the STM32 Nucleo
Development board, as depicted in Figure 2. This development board
offers easy access to all features of the microcontroller, eliminating
the need of manual circuit design before deployment. By utilizing
the provided pin headers, external electronic devices can easily be
connected. Once the software development is complete, developers
can seamlessly integrate the microcontroller into the final system.

1.3 JTAG and SWD
To write and deploy software for the microcontroller, developers
must have the ability to interact with it effectively. This can be
achieved through interfaces such as JTAG [2] or the more recent
SWD [3] [4]. These interfaces allow for tasks such as uploading the
program, starting stopping, and stepping through the code. Addi-
tionally, an important feature is the ability to directly read from and
write to the microcontroller’s memory.

1.4 J-Link

Fig. 3. A J-Link Debug Probe

To facilitate the communication with the Microcontroller over JTAG
or SWD, an external module is required. The SEGGER J-Link [5]
is such a device and can be connected over a USB cable to the
developers computer. The J-Link is depicted Figure 3. Figure 2 shows
a different variant connected over SWD with the STM32. All the
features such as readingmemory and controlling the current process
are provided over this J-Link interface. They are accessible by using
a program running on the developers machine called the “JLink GDB
server” [6]. This program provides the features of the J-Link over
various local TCP sockets. The primary socket that is commonly
used for debugging is the GDB server socket to which a GDB client
can connect and both control and inspect the running process on the

microcontroller. GDB provides additional features such as allowing
for multiple simultaneous connections and ability to read debugging
symbols giving readable labels to memory locations.

1.5 ST-Link
The J-Link is not the only programmer that is able to do this. A
device called the ST-Link is developed by STMicroelectronics and is
significantly cheaper. In addition to an external tool, it also comes
embedded into the Nucleo development board [7] as seen in Figure 2.
This has the advantage that you don’t need an additional USB cable.

1.6 SWO
A developer needs to be able to receive feedback of a running pro-
gram to be able to find and solve issues that might arise. A common
solution is to send the information as text messages to the devel-
opers computer for inspection. With microcontrollers such as the
STM32 this is possible by connecting an external wire to one of
the microcontrollers pins. After writing a small driver to transmit
the data, it can be received on the developers computer. This is not
optimal due to the need for a driver an additional cable.

Fortunately is such a feature directly integrated into the SWD inter-
face with the inclusion of a Serial Wire Output (SWO) [8] pin. The
text sent over SWO is accessible over the ST-Link and J-Link on the
developers computer.

1.7 RTT
Sending data over SWO is not instantaneous and requires for the
microcontroller to wait while the text is being sent over the cable
to the developers machine, as measured by SEGGER [9]. This will
cause inconsistent delays and is a big problem for time critical
software. A solution for this is developed by SEGGER, called “Real
Time Transfer” which advertises a significantly lower overhead for
transmitting text [10]. The low overhead is achieved by writing
the messages into a small circular buffer in the microcontroller’s
memory, which can be done with a much smaller delay [9]. The
need for an additional SWO pin is now also removed as RTT works
directly over the SWD memory interface. However RTT also has
a number of disadvantages. One disadvantage is that it requires
a region of memory, which may be limited on microcontrollers.
Another big disadvantage is that RTT only works with the J-Link
and not with the ST-Link.

2 PROBLEM STATEMENT
Viewing and navigating the long stream of debug messages sent
from microcontrollers such as the STM32 is difficult, due to the high
throughput of the messages and the interleaving of messages from
different tasks.

The current state of the art tools are lacking and do not provide
a flexible interface for viewing these messages. This calls for a
solution that can efficiently view and navigate debug messages. In
the next chapter we will compare the state of the art tools that allow
for viewing debug messages. We will also describe why they are
insufficient.

2



µScope: A Reusable Interface For Debugging STM32 Microcontrollers TScIT39, July 07, 2023, Enschede, The Netherlands

3 PREVIOUS WORK

3.1 SEGGER J-Link RTT Viewer

Fig. 4. SEGGER J-Link RTT Viewer

As an external tool, SEGGER provides the J-Link RTT Viewer. This
is a piece of software for viewing RTT messages sent over the
USB cable to the developers computer [11]. This program lists all
messages and groups them into a number of channels. However,
these channels have to be setup beforehand on the microcontroller’s
program and cannot be changed during execution. A screenshot of
this software can be seen in Figure 4.

Allowing for only a number of predefined channels over which
the output can be seen is limiting its usefulness. It is not clear
how these channels should be allocated. Allocating a channel for
each module separately will prevent the direct comparison of the
output, as some modules might be related and require to be viewed
together. Combining all messages into a single channel preserves
the correct ordering, but will cause issues when unrelated messages
are obstructing the view of the developer.

Improving the existing SEGGER RTT Viewer is not possible, the
source code is not available for modification. Fortunately SEGGER
provides an API that can be used to send and receive the RTT text
by communicating over a local TCP socket [12]. We will use this in
the Method chapter to develop a solution.

3.2 STM32 Cube IDE
STMicroelectronics provides an integrated development environ-
ment (IDE) called the STM32 Cube IDE [13]. This IDE has a number
of features integrating the compiler, the debugger and additional
tools into a single graphical interface. This IDE can connect to both
the J-Link and ST-Link GDB servers. Text output is also supported
over SWO and displayed in the SWV ITMData Console, but requires
some setup [14]. This console also supports multiple channels but
have to be setup in advance on the microcontroller’s program and
cannot be changed during execution, just as the J-Link RTT Viewer.

The STM32 Cube IDE is great for getting started with STM32 de-
velopment but lacks some modern features. This was noted by a
stakeholder at Demcon. A more commonly preferred solution is

Fig. 5. STM32 Cube IDE

the Visual Studio Code IDE[15], which is a more flexible editor that
allows installing extensions for each use case.

3.3 Cortex Debug

Fig. 6. Cortex Debug Visual Studio Code Extension

One of these extensions is Cortex-Debug [16], which integrates a
number of tools into Visual Studio Code [15]. The extension provides
integration with the ST-Link and J-Link GDB servers and allows
for debugging the programs from within the editor. An additional
window is provided that can receive both SWO and RTT messages
from the microcontroller.

Compared to the J-Link RTT Viewer is the Cortex Debug more
convenient for developers who already make use of the Visual Stu-
dio Code IDE. Integrating these tools into the Visual Studio Code
editor has a number of advantages, streamlining the development
setup. However, the viewer is even more limited than the J-Link
RTT Viewer and allows for viewing only a single channel of mes-
sages. The filtering of messages is not possible. A screenshot of this
software can be seen in Figure 6.

4 LITERATURE REVIEW
In “How developers debug” [17], the authors describe how “printf
debugging” is often the very first tool developers use to start their
search for a bug.

“Interviewees praised printf as a universal tool that one can
always resort back to, helpful when learning a new language
ecosystem, in which one is not yet familiar with the tools
of the trade.” [17, p. 9]

Printf debugging means that a developer places statements in the
program that write the current value of variables as text into an
output buffer. Such a tool is widely available in many program-
ming languages. The STM32 supports this either via RTT or SWO.

3



TScIT39, July 07, 2023, Enschede, The Netherlands Tom Smeets

However, the authors also note that developers are aware of its
shortcomings in concurrent programs.

“that it is insufficient for concurrent programs, primarily
because the [output] interleave[s]” [17, p. 9]

This issue can be resolved with correct locking but messages them-
selves are still interleaved. In the Evaluation section we describe
how µScope addresses this shortcoming.

Layman et al explored professional debug challenges and needs
of developers at Microsoft in “Debug Revisited”[18]. They found
that the difference between the sequential thought process and the
non-sequential execution of multithreadded environemnts provide
a source of difficulty.

Velihorski et al analyzed the usability of the STM32CubeMonitor
tool for remote development. [19] They concluded that using the
correct tools it is possible to remotely debug embedded software.

5 FORMAL REQUIREMENTS
The requirements resulting from a number of meetings with the
stakeholder at Demcon are compiled into a list using theMoSCoW [20]
method. Due to the nature of this research it is difficult to predict the
time requirement of researching and developing a solution. Using
the MoSCoW method allows us to focus on the important features
first and transition to lesser important features later. We choose this
method to ensure that we remain in scope while still staying flexible
with the time requirements.

The MoSCoW method is made of four parts. The “Must Haves”
are the most important requirements that are needed to create the
“Minimum Viable Product” [21]. The requirements listed as “Should
Haves” are not essential for a working product but will greatly
improve it. The “Could Haves” are additional features that are less
important and should only be considered at the end. The features
that are out of scope and should not be considered are listed in
“Won’t Haves”.

5.1 Must Haves
Displaying Messages. The tool should be able to intercept debug
messages sent by the microcontroller and display them on a screen.
The messages should be remembered and viewable for a reason-
able duration. The primary and suggested method to intercept the
messages is by going over RTT.

Filtering. A solution is needed that allows for separating the output
into the parts that are relevant to the developer. This can be done
by filtering the messages on a given search term.

Reusability. The tool should not be dependant on any specific project
at Demcon. Making the tool entirely independent allows for easy
reuse into other projects. Demcon works on many different projects
that could benefit from this tool.

5.2 Should Haves
Sending Commands. Sending custom commands to the microcon-
troller is useful in some cases, making it possible to directly instruct

the embedded software to perform some predefined action. Ex-
amples are sending commands to read a sensor value or move an
actuator.

Low Overhead. Sending debug messages should not interfere with
the currently running process on the microcontroller. Because the
microcontroller has a limited memory capacity and processor speed
the program should stay as small and fast as possible. The viewing
application has less strict requirements due to the more capable
hardware of personal computers.

5.3 Could Haves
Visual Studio Code Extension. Integrating the tool into the Visual
Studio Code ecosystem will give a number of advantages to the
developers. Allowing for easy integration into the current toolset
without the need of installing and starting external software.

Beyond J-Link. The tool could support other interfaces in addition
to RTT, increasing the support to devices by other manufacturers.
One example is to support the integrated ST-Link programmer in
the Nucleo development board.

Tracking And Plotting Data. A communication channel can be used
to send the state of variables, which can then be plotted in some
graphical window.

5.4 Won’t Haves
Full Debugging Environment. The tool will not provide a complete
debugging environment. The focus of the tool will solely be visual-
izing and navigating debug messages sent by microcontrollers.

6 METHOD

6.1 Experiment Setup
The following system setup was used during this Research. This
was chosen because it is commonly used by Embedded Software
Developers, including those at Demcon.

The setup consisted initially of a STM32 microcontroller embedded
onto a Nucleo board. The Nucleo was connected to a laptop over
a USB cable, providing power and data. The embedded ST-Link
was communicating over SWD with the microcontroller. On the
laptop we run the STM32 Cube IDE [13] which starts a ST-Link GDB
Server over which GDB can communicate and SWOmessages can be
received. The STM32 Cube IDE allowed for quick development and
deployment of an embedded example program that communicates
with SWO and RTT. This required minimal setup. Later during the
research we added a J-Link to the setup, also communicating over
SWD with the microcontroller and connected over a second USB
cable to the laptop. For using the J-Link we ran the official SEGGER
J-Link GDB Server [6]. Which provided access to RTT, SWO and
a GDB connection. The final setup that was used can be seen in
Figure 2.

6.2 Prototype
The initial prototype is written in C and makes use of a console
window to display the received messages. This interface has been
chosen to keep the program simple, allowing for us to focus on the

4



µScope: A Reusable Interface For Debugging STM32 Microcontrollers TScIT39, July 07, 2023, Enschede, The Netherlands

Fig. 7. µScope Prototype

research and development of the logic and communication code for
RTT and SWO. A screenshot of the program in action is shown in
Figure 7.

The program quickly gained features that required a more sophisti-
cated method of displaying information on the screen. The screen is
updated immediately once the user enters a character to change the
filter. This is implemented by using the Windows Console API [22].
Initially, the redrawing was done by moving the terminal cursor
using Virtual Terminal Sequences [23] and overwriting some sec-
tions of the screen. This quickly became complicated and caused
flickering of the screen due to intermediate states of this process
being visible. This resulted in the program transitioning to a dif-
ferent method called “Double Buffering” [24]. Here the screen is
not directly updated like before, but fully re-rendered into a hid-
den buffer. Once finished, the hidden buffer is switched with the
visible buffer, making the changes visible immediately. The previ-
ously visible buffer can be reused again as the next hidden buffer. A
visualisation of this can be seen in Figure 8.

Fig. 8. Double buffering Console windows

While this was sufficient for a prototype and the minimum viable
product, it was difficult to use, and made implementing some fea-
tures such as tabs very difficult.

6.3 Visual Studio Code Extension
Initially we researched existing GUI libraries such as GTK [25] and
QT [26], but decided to settle with a Visual Studio Code Extension,

as this was one of the “Could Have” requirements. Making the tool
quick and easy to use was one of the main goals and guided the
interface design. In Figure 9 we show the current interface of this
Visual Studio Code extension.

Fig. 9. “µScope Interface”

Before being able to use the console we first have to create a con-
nection to the microcontroller. A number of different methods are
supported, such as RTT, SWO and RTT over GDB as seen in Fig-
ure 10. A more detailed explanation of RTT over GDB can be seen
in chapter 6.6. Once a connection type is selected a default port and
IP address are provided. It is possible to change them to connect
to a different target. The host address “127.0.0.1” indicates the cur-
rent computer, but can be changed to the IP address of an external
computer if needed. A connection can be established by pressing
the “Connect” button. All messages sent over RTT or SWO are now
shown in the console pane on the left.

Fig. 10. Connection Type Selector

By including extra information in the debug messages, such as
the current file, line and function, we can intelligently filter these
messages. The following macro was used on the microcontroller to
automatically insert these tags into the messages.

#define TO_STRING0(x) #x
#define TO_STRING(x) TO_STRING0(x)

5



TScIT39, July 07, 2023, Enschede, The Netherlands Tom Smeets

#define dbg(fmt, ...) SEGGER_RTT_printf(0, __FILE__ \
":" TO_STRING(__LINE__) ":" fmt "\n", ## __VA_ARGS__)

It can be used just as any other ‘printf‘ method. An example usage
is the following.

// create a simple incrementing counter
static u32 counter = 0;

// continiously call this to run the program
void update(void) {

// print the counter and increment it
dbg("Counter: %d", counter++);

// blink the led on the microcontroller
HAL_GPIO_TogglePin(LD1_GPIO_Port, LD1_Pin);
HAL_Delay(100);

}

This information can then be used for filtering. The filter input
box on the bottom left can be used for this. Changing the filter
immediately updates the console for quick feedback. Multiple filter
terms can be given by separating them with a boolean OR operator
represented by the vertical pipe symbol “|”. A booleanAND operator
is also supported by separating terms with an ampersand “&”. A filter
text of “lib & value | other” matches messages that contain
both “lib” and “value” at the same time, or messages that just contain
“other”. The AND operator binds more strongly than the OR. The
implementation of this grammar is kept minimal and focusses on
easy to write filters. If a more advanced grammar is required for a
filter the user can select “Regex” in the filter type drop-down on
the right. Then the filter for that tab will be interpreted as a regular
expression allowing more sophisticated filters.

A prominent feature is the tab list at the top of the window. Each
tab consists of a different filter set by the user. Switching between
the tabs can be done by clicking on them. Tabs can be added and
removed, and the filter dynamically updated. Saving the content
of the console can be done by pressing the “Save As” button. The
console can be cleared with the “Clear All” button.

6.4 How RTT Works
Communicating over RTT works by reading and writing directly
to the microcontroller’s memory [27]. The primary structure is the
RTT control block which is located at a fixed location in memory
defined by the linker. The address is fixed for the duration of the
program but can be different for different programs. The structure
contains a region of memory which is used as a circular buffer where
all the text is written to. Additional variables in the control block are
used to describe the buffer size and store the read and write cursor.
This text written to the circular buffer can then be transmitted over
SWD or JTAG by the J-Link. Because the linker can place this control
block anywhere inmemory it is not possible for the J-Link to directly
locate it. By writing a unique id at the beginning of this structure it
can be located by the J-Link by scanning the entire memory region
looking for the id.

One of the provided methods by the RTT library on the micro-
controller is SEGGER_RTT_printf(...). This method will combine
variables and text into a list of characters and write them into one
of the circular buffers. While the microcontroller is writing text
it is advancing a write-cursor telling the host exactly how much
text is written. The host can then read this data and advance the
read-cursor until it matches with the write-cursor. A visualisation
can be seen in Figure 11.

Fig. 11. Illustration of a circular buffer

6.5 RTT and SWO
When developing for a microcontroller, the user has either a ST-Link
or a J-link server running. These provide all the communication
with the microcontroller over a number of interfaces, usually with
local TCP sockets on a predefined port. For example, the J-Link
server sends the RTT text on the port 1902. A viewer can connect
to that port and receive the RTT messages. The ST-Link also hosts
a similar interface for SWO but on a different port.

6.6 RTT over GDB
While the primary requirement was to provide an interface to RTT
messages, this still required a SEGGER J-Link programmer and
limited the compatibility of this tool. Before receiving the J-Link
programmer we initially had only access to the embedded ST-Link
programmer, which was present on the Nucleo development board.

First we attempted using the “ST-Link Reflash” tool that SEGGER
provides, which can convert a ST-Link debugger into a J-link de-
bugger by changing the firmware [28]. Despite following the in-
structions, we were not able to upload the new firmware onto the
Nucleo development board. Not wanting to spend too much time
on this issue we decided to investigate the ST-Link tooling and how
to communicate with it.

We realized that it could be possible to read the RTT buffer using
a ST-Link device by reading the memory directly. This would also
increase the support for RTT to a wide range of other devices with-
out needing to change the program running on the microcontroller.
Initially we used the Open Source ST-Link toolset [29] using the
stlink_read_mem32() method to read memory at a given address.
While this worked well, it could not share the microcontroller con-
nection with other programs such as the debugger, which was a big
limitation.

A better method is reading memory directly with the debugger. The
ST-Link starts a GDB Server over which a debugger can inspect and
control a program. While usually used for integrating a debugging

6



µScope: A Reusable Interface For Debugging STM32 Microcontrollers TScIT39, July 07, 2023, Enschede, The Netherlands

interface into an editor, it also allows for reading and writing mem-
ory. In contrast to the ST-Link library, the GDB server does support
multiple connections.

To read the text from themicrocontroller we start the GDB client and
configure a number of settings to allow reading of memory while
the program is still running. GDB supports scanning a memory
region for a sequence of bytes with the find command. Using this
we can find the initial “SEGGER RTT” id string and use that address
to locate the buffer, as well as the read and write cursors. By polling
the write cursor cursor we can discover when new text is written.
Then, the portion of memory between the read-cursor and the write-
cursor is read and forwarded to the console. Finally the read-cursor
is advanced to match the write-cursor, allowing the microcontroller
to write more data.

7 EVALUATION

7.1 Requirements
Both the Must Haves and the Should Haves requirements are fully
implemented.

Displaying Messages. µScope is able to intercept debug messages
sent by the microcontroller and display them on a screen. The
messages are remembered and viewable for a reasonable duration.
Messages are receivable over RTT which satisfies the first “Must
Have”.

Filtering. Using µScope the developer is able to quickly filter mes-
sages into relevant parts.

Reusability. µScope is fully independent of any specific project. The
tool is reusable and works on any platform supporting Visual Studio
Code. By directly using the RTT and SWO message stream we
remove the need for custom code on the microcontroller. This makes
the tool immediately useable in any existing project using these
interfaces.

Sending Commands. Sending commands from the interface works
fully over RTT and SWO and can be received by any existing code on
the microcontroller. Sending text is however not yet implemented in
the “RTT over GDB” feature. This is a possible improvement for the
future. The received text can be handled on the microcontroller, the
implementation of these commands is out of scope and is specific
for each project.

Low Overhead. µScope achieves a very low overhead by making
direct use of the exiting RTT code on the microcontroller. A small
memory section is required for RTT however, which is not the
case for SWO. The developer can choose the best option for each
project. The visual studio extension applies some tricks to be kept
performant. Reducing the number of HTML elements and keeping
the updates to a minimum. To keep the interface interactive the
messages have to be limited eventually.

Transmitting debugmessages should not interfere with the currently
running process on the microcontroller. Because the microcontroller
has a limited memory capacity and processor speed the program
should stay as small and fast as possible. The viewing application

has less strict requirements due to the more capable hardware of
personal computers.

Visual Studio Code Extension. µScope is fully implemented as a
Visual Studio Code extension and does not require additional in-
stalls. The extension can be set as a recommended extension in a
workspace, allowing for easy installation of µScope during project
setup [30].

{
"recommendations": ["DEMCON.uscope"]

}

Beyond J-Link. µScope supports multiple interfaces such as the ST-
Link and OpenOCD. RTT is supported on these platforms by manu-
ally implementing RTT over a GDB connection.

Tracking And Plotting Data. There was not enough time to imple-
ment data plotting due to the time constraints. This would require
a significant time investment in the user interface and addition of
data channel. We decided to not implement data plotting.

7.2 The MoSCoW Method
We setup the requirements using the MoSCoW Method and ap-
plied this method during the development. We made this decision
deliberately, to allow for a more flexible development time frame.

However, some disadvantages were encountered as a result of de-
veloping this way. Initially we completed the MVP as a separate C
program with all the “Must Have” features. This took a number of
weeks of our time but resulted in a satisfactory result.

However, while transitioning to the “Should have” features we en-
countered a problem. Developing a Visual Studio Code Extension
is not possible in C and required us to completely throw away our
previous work and start anew in JavaScript. Fortunately we could
still apply the acquired knowledge from our research into this new
program. However, if we had started immediately with the Visual
Studio code extension it would have cost us less time to develop.

7.3 Literature
In the Literature Review section we explored a number of real world
use cases and issues with debugging.

In “How developers debug” [17, p .9] the subjects note that printf
debugging is insufficient for concurrent programs due to the inter-
leaving of the output. Concurrent programs are also present on the
STM32 and are widely used in practice. RTT partially solves the
interleaving problem by locking the output buffer during each printf
statement. This prevents interleaving of the words inside a message.
Messages are still interleaved per line and have an undefined order-
ing. This is addressed by µScope. Related messages of a given task
can be viewed together by using filters over a number of tabs.

Velihorski et al described the benefit of remote debugging in “Re-
mote Debugging of Embedded Systems in STM32CubeMonitor” [19].
By utilizing TCP connections we allow for the ability of remotely
sending and receiving the debug messages.

7



TScIT39, July 07, 2023, Enschede, The Netherlands Tom Smeets

8 FUTURE WORK
Some improvements could still be made to µScope. Currently we
combine all messages and display them directly into the console.
However, for a large amount of messages is the HTML renderer not
performant enough by itself. The message limit could be increased,
which could be achieved by dynamically creating and removing
HTML elements while the user is scrolling. This could be an entire
research topic of itself.

µScope is only available as a Visual Studio Code Extension. An exter-
nal tool applying a similar interface could be useful for developers
not using Visual Studio Code. Revisiting the original C program
could be a good starting point.

The “RTT over GDB” feature does not support sending data back
to the microcontroller. This would work similarly to receiving data
and uses an additional circular buffer in memory.

The plotting of variables was also not implemented in the end. This
could be done by defining a syntax over the text interface that defines
key-value pairs of variables. This allows us to re-use the same text
channel for data, keeping the compatibility with the interfaces that
allow for only a single channel. The tabs in the interface could have
a “text-mode” and a “plotting-mode” setting, allowing for the same
method of filtering.

The RTT over GDB feature could be abstracted away and provided as
a full separate program. Connecting to a GDB session and opening
a TCP socket for RTT to be received.

CONCLUSION
In this paper we solved a practical problem that Demcon employees
were having during the development of embedded software. By
iteratively working and gathering feedback from stakeholders we
were able to develop and publish the “µScope” Visual Studio Code
extension. Employees at Demcon have already successfully applied
this tool and are using it in future projects. We are already looking
into expanding the tool to support even more microcontrollers other
than the STM32. By publishing and open sourcing the tool under a
permissive license we increase its reach and usability to the wider
community.

µScope is available for free on the Visual Studio CodeMarketplace as
“DEMCON.uscope” and on GitHub as a free and open source project
at “https://github.com/DEMCON/uscope”. Any contributions are
welcome and can be submitted by creating an Issue or a Pull Request.

ACKNOWLEDGMENTS
I would like to thank my supervisor Dr. Ir. Vadim Zaytsev at The
University of Twente and my supervisor Ir. Tim Klein Nijenhuis at
Demcon.

REFERENCES
[1] ST, (2023), STM32 32-bit Arm Cortex MCUs, https://www.st.com/en/

microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
[2] Joint Test Action Group, (1990), IEEE Std 1149.1-1990, IEEE Standard Test Access

Port and Boundary-Scan Architecture, 10.1109/IEEESTD.1990.114395

Fig. 12. µScope in the Visual Studio Code Marketplace

[3] ARM, (2006), Debug Interface v5 Architecture Specification, https:
//developer.arm.com/documentation/ihi0031/a/The-Serial-Wire-Debug-Port--
SW-DP-/Introduction-to-the-ARM-Serial-Wire-Debug--SWD--protocol

[4] ARM, (2023) JTAG/SWD Interface, https://developer.arm.com/documentation/
101636/0100/Debug-and-Trace/JTAG-SWD-Interface

[5] SEGGER, (2023), J-Link, The Market-leading debug probe, https://www.segger.
com/products/debug-probes/j-link/.

[6] SEGGER, (2023), J-Link GDB Server, https://wiki.segger.com/J-Link_GDB_Server
[7] STMicroelectronics, (2023), ST-LINK/V2 in-circuit debugger/programmer for

STM8 and STM32 https://www.st.com/en/development-tools/st-link-v2.html
[8] ARM, (2006), Debug Interface v5 Architecture Specification, https:

//developer.arm.com/documentation/ddi0314/h/Serial-Wire-Output/About-
the-Serial-Wire-Output

[9] SEGGER, (2023), J-Link RTT Product Page, https://www.segger.com/products/
debug-probes/j-link/technology/about-real-time-transfer/

[10] SEGGER, (2023), J-Link RTT Wiki, Real Time Transfer, https://wiki.segger.com/
RTT.

[11] SEGGER, (2023), J-Link RTT Viewer, https://www.segger.com/products/debug-
probes/j-link/tools/rtt-viewer/.

[12] SEGGER, (2023), TELNET channel of J-Link software, https://wiki.segger.com/
RTT#TELNET_channel_of_J-Link_software

[13] STMicroelectronics, (2023), STM32 Cube IDE, https://www.st.com/en/
development-tools/stm32cubeide.html

[14] PCB Artists, (2021), Enable SWO Debug Output in STM32 CubeMX,
https://pcbartists.com/firmware/stm32-firmware/debug-printf-stm32-using-
swo-serial-wire/

[15] Microsoft, (2015-2023), Visual Studio Code, https://code.visualstudio.com/
[16] Marcel Ball, (2017), Cortex-Debug, Visual Studio Code extension for enhanc-

ing debug capabilities for Cortex-M Microcontrollers, https://marketplace.
visualstudio.com/items?itemName=marus25.cortex-debug,

[17] Beller M, Spruit N, Zaidman A., (2017), How developers debug, PeerJ Preprints
5:e2743v1, doi:10.7287/peerj.preprints.2743v1

[18] L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, (2013),
Debugging Revisited: Toward Understanding the Debugging Needs of Contem-
porary Software Developers, 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement, Baltimore, MD, USA, 2013,
pp. 383-392, doi:10.1109/ESEM.2013.43.

[19] O. Velihorskyi, I. Nesterov, M. Khomenko, (2020), Remote Debugging of Em-
bedded Systems in STM32CubeMonitor (pp.22-25). International Scientific and
Practical Conference Theoretical and Applied Aspects of Device Development
on Microcontrollers and FPGAs (MC&FPGA), doi:10.35598/mcfpga.2020.007.

[20] Clegg, Dai and Barker, Richard, (1994), Case Method Fast-Track: A RAD Ap-
proach, 978-0-201-62432-8, https://dl.acm.org/doi/10.5555/561543.

[21] Wernham, Brian, (2012), Agile Project Management for Government, Maitland
and Strong, ISBN 978-0957223400.

[22] Microsoft, (2023), Windows API Reference, Console Developer’s guide & API Ref-
erence, https://learn.microsoft.com/en-us/windows/console/console-functions

[23] Microsoft, (2023), Windows API Reference, Virtual Terminal Sequences,
https://learn.microsoft.com/en-us/windows/console/console-virtual-terminal-
sequences

[24] OSDev.org, (2021), Double Buffering, https://wiki.osdev.org/Double_Buffering
[25] GNOME, (1997-2023), GTK, https://www.gtk.org/
[26] The Qt Company, (1995-2023), Qt, https://www.qt.io/
[27] SEGGER, (2023), How RTT works, https://wiki.segger.com/RTT
[28] SEGGER, (2023), Converting ST-LINK On-Board Into a J-Link,

https://www.segger.com/products/debug-probes/j-link/models/other-j-
links/st-link-on-board/

[29] st-link.org, (2020-2023), Open source STM32 MCU programming toolset, https:
//github.com/stlink-org/stlink

[30] Visual Studio Code Documentation, (2023), Workspace recommended
extensions, https://code.visualstudio.com/docs/editor/extension-marketplace#
_workspace-recommended-extensions

8

https://marketplace.visualstudio.com/items?itemName=DEMCON.uscope
https://github.com/DEMCON/uscope
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
10.1109/IEEESTD.1990.114395
https://developer.arm.com/documentation/ihi0031/a/The-Serial-Wire-Debug-Port--SW-DP-/Introduction-to-the-ARM-Serial-Wire-Debug--SWD--protocol
https://developer.arm.com/documentation/ihi0031/a/The-Serial-Wire-Debug-Port--SW-DP-/Introduction-to-the-ARM-Serial-Wire-Debug--SWD--protocol
https://developer.arm.com/documentation/ihi0031/a/The-Serial-Wire-Debug-Port--SW-DP-/Introduction-to-the-ARM-Serial-Wire-Debug--SWD--protocol
https://developer.arm.com/documentation/101636/0100/Debug-and-Trace/JTAG-SWD-Interface
https://developer.arm.com/documentation/101636/0100/Debug-and-Trace/JTAG-SWD-Interface
https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/
https://wiki.segger.com/J-Link_GDB_Server
https://www.st.com/en/development-tools/st-link-v2.html
https://developer.arm.com/documentation/ddi0314/h/Serial-Wire-Output/About-the-Serial-Wire-Output
https://developer.arm.com/documentation/ddi0314/h/Serial-Wire-Output/About-the-Serial-Wire-Output
https://developer.arm.com/documentation/ddi0314/h/Serial-Wire-Output/About-the-Serial-Wire-Output
https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/
https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/
https://wiki.segger.com/RTT
https://wiki.segger.com/RTT
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://wiki.segger.com/RTT#TELNET_channel_of_J-Link_software
https://wiki.segger.com/RTT#TELNET_channel_of_J-Link_software
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://pcbartists.com/firmware/stm32-firmware/debug-printf-stm32-using-swo-serial-wire/
https://pcbartists.com/firmware/stm32-firmware/debug-printf-stm32-using-swo-serial-wire/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug
https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug
https://doi.org/10.7287/peerj.preprints.2743v1
https://doi.org/10.1109/ESEM.2013.43
https://doi.org/10.35598/mcfpga.2020.007
https://dl.acm.org/doi/10.5555/561543
https://learn.microsoft.com/en-us/windows/console/console-functions
https://learn.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences
https://learn.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences
https://wiki.osdev.org/Double_Buffering
https://www.gtk.org/
https://www.qt.io/
https://wiki.segger.com/RTT
https://www.segger.com/products/debug-probes/j-link/models/other-j-links/st-link-on-board/
https://www.segger.com/products/debug-probes/j-link/models/other-j-links/st-link-on-board/
https://github.com/stlink-org/stlink
https://github.com/stlink-org/stlink
https://code.visualstudio.com/docs/editor/extension-marketplace#_workspace-recommended-extensions
https://code.visualstudio.com/docs/editor/extension-marketplace#_workspace-recommended-extensions

	Abstract
	1 Existing Technology
	1.1 STM32
	1.2 Nucleo Development Board
	1.3 JTAG and SWD
	1.4 J-Link
	1.5 ST-Link
	1.6 SWO
	1.7 RTT

	2 Problem Statement
	3 Previous Work
	3.1 SEGGER J-Link RTT Viewer
	3.2 STM32 Cube IDE
	3.3 Cortex Debug

	4 Literature Review
	5 Formal Requirements
	5.1 Must Haves
	5.2 Should Haves
	5.3 Could Haves
	5.4 Won't Haves

	6 Method
	6.1 Experiment Setup
	6.2 Prototype
	6.3 Visual Studio Code Extension
	6.4 How RTT Works
	6.5 RTT and SWO
	6.6 RTT over GDB

	7 Evaluation
	7.1 Requirements
	7.2 The MoSCoW Method
	7.3 Literature

	8 Future Work
	Acknowledgments
	References

