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ABSTRACT 
Image segmentation is part of computer vision tasks, with 
significant implications for the accurate identification and 
classification of indoor settings. Enhancing the performance of 
neural network-based image segmentation models can be 
achieved through depth information integration. This study 
moves beyond a survey to experimentally evaluate the 
integration of depth data within these models and pinpoint the 
most effective methods. The research delves into the primary 
sources of depth data and their incorporation into neural 
network models for image segmentation. Furthermore, this 
study probes the impact of depth information on the 
performance of DeepLabV3 Plus architecture, specifically with 
the implementation of a Shape-aware Convolution 
(ShapeConv) layer on the ResNext101 backbone. The research 
was conducted using the NYU Depth Dataset V2, with a 
critical focus on addressing the intricacies, challenges, and 
limitations inherent to depth information integration. In doing 
so, the study offers insights into the optimization of image 
segmentation models, particularly in the context of indoor 
environment analysis.  
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1. INTRODUCTION 

In our increasingly digitized world, computer vision has 
emerged as a branch of artificial intelligence [1]. This field of 
study has influenced the way machines perceive, interpret, 
and make sense of visual data. The significance of computer 
vision stretches across a diverse array of applications, from 
medical imaging [2] autonomous vehicles [3], and robotics 
[18] to security systems [4] construction [5]. 
 
Diving deeper into the realm of computer vision, image 
segmentation [6] emerges as one of its components. It refers to 
the process of dividing an image into multiple segments, often 
with the aim of simplifying or altering the representation of an 
image into something more meaningful and easier to analyze. 
Image segmentation, by partitioning an image into non-
overlapping regions, provides a granular analysis of each 
constituent object, helping machines to recognize, track, and 
categorize these elements. 
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Semantic segmentation [7], a particular type of image 
segmentation, takes this analysis a step further. Instead of just 
identifying regions of the image, semantic segmentation seeks 
to assign each pixel in the image a class label, such as table, 
‘bed’, ‘chair’, and so forth. This process of pixel-level 
classification enables a more comprehensive understanding of 
an image’s content, making semantic segmentation valuable in 
applications that demand a high level of detail and precision. 
 
However, it has been observed that the effectiveness of image 
segmentation, including semantic segmentation, can be 
potentially enhanced with the inclusion of depth data [8], [17], 
[21], [24]. Depth information, which offers insight into the 
relative distances of objects within a scene, provides additional 
context that aids in the accurate identification and 
classification of objects, particularly in complex indoor 
environments. 
 
2. PROBLEM STATEMENT 

Integrating depth information into neural network-based 
image segmentation models can potentially enhance their 
performance in accurately identifying and classifying indoor 
environments. Nonetheless, it is essential to comprehend the 
most effective methods for including depth data, its impact on 
the performance of various neural network architectures, and 
the challenges tied to the process. This study aims to explore 
these aspects to contribute to the development of more 
effective image segmentation models for indoor environments. 
The main research question in relation to the study is: 

How does incorporating depth information into neural 
network-based semantic segmentation models influence their 
accuracy and effectiveness in identifying and classifying 
indoor environments? 

The question is supported by the following sub-questions, 
each addressing an aspect of the primary research query: 

1. What are the main sources of depth information? 
- Identifying the most effective methods to integrate 

depth information into these models can assist in 
maximizing the benefit of incorporating this 
additional data, leading to potentially improved 
accuracy and effectiveness. 

2. What are the methods for integrating depth information 
into neural network models for image segmentation? 
- Identifying the most effective methods to integrate 

depth information into these models can assist in 
maximizing the benefit of incorporating this 
additional data, leading to potentially improved 
accuracy and effectiveness. 
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3. What challenges and limitations are associated with 
integrating depth information into neural network-based 
image segmentation models, particularly in the context of 
indoor environment recognition? 
- Identifying the challenges and limitations related to 

the use of depth information can help in devising 
strategies to overcome them, paving the way for the 
broader adoption of depth information in image 
segmentation models. 

 
3. RELATED WORK 

This section presents a preliminary overview of literature in 
the realms of image segmentation, depth information, and 
neural network-based models. The primary emphasis is on 
studies that have delved into the inclusion of depth 
information in image segmentation models and assessed the 
impact of diverse methods on model performance, as well as 
the use of RGB-D datasets. 

3.1. Sources of Depth Information 
As computer vision tasks gain increasing complexity and 
detail, the integration of depth data becomes valuable to their 
performance. Depth information augments the perceptual 
capability of these models by providing spatial understanding 
of the scenes and objects in focus. Different sources and 
methods of acquiring depth data have been explored and used 
in the field. Here, we will delve into the state-of-the-art 
techniques employed for gathering depth information, 
highlighting those which incorporate well with computer 
vision tasks. 

3.1.1. Stereo Vision 
Stereo vision [9] involves the use of two cameras positioned at 
different locations to capture the same scene, mimicking 
human binocular vision. By measuring disparity between 
corresponding points in the two images, depth information 
can be derived. While this technique has been widely used in 
computer vision tasks, it poses challenges including accurate 
image correspondence and susceptibility to texture-less or 
occluded regions [10]. 

3.1.2. Time-of-Flights Sensors 
Time-of-Flight (ToF) sensors [11] estimate depth information 
by measuring the round-trip time of an artificial light signal 
provided by a laser or an LED. The depth map obtained from 
ToF sensors is dense and can provide real-time data, making 
them popular in fields like robotics. However, they can 
struggle in outdoor environments due to interference from 
ambient light and often exhibit noise on reflective or 
absorptive surfaces. The technology is used in devices like the 
Microsoft’s Kinect v2 [12]. The device projects modulated 
infrared light onto the scene and measures the phase shift 
between the emitted and reflected light to estimate depth. 

Light Detection and Ranging (LIDAR) [15], a type of ToF 
sensor, uses pulsed lasers to measure the distance between the 
sensor and the object, creating a 3D representation of the 
scene. LIDAR offers high accuracy and resolution but is 
generally more expensive and can struggle with detecting 
small or thin objects. 

 

3.1.3. Structured Light Sensors 
Structured Light sensors [13] project a specific light pattern 
onto a scene and measure the deformation of this pattern to 
estimate depth. While offering high resolution, structured light 
sensors can struggle with rapid motion or sunlight 
interference. This technology is used in popular devices like 
Microsoft’s Kinect v1, which combines RGB and depth 
cameras to provide high-resolution depth data [14]. 

3.1.4. Depth from Monocular Images 
An increasingly popular source of depth information comes 
from monocular images through the use of deep learning. 
Techniques have been developed to estimate depth from a 
single 2D image [16], largely powered by Convolutional 
Neural Networks (CNNs). Despite being more susceptible to 
errors than hardware-based methods, the progress in this area 
is rapid and the accessibility of monocular cameras makes this 
method highly appealing. 

3.2. Integrating Depth Information into Neural 
Networks for Image Segmentation 

The incorporation of depth information into image 
segmentation models can enhance their performance in 
accurately identifying and classifying objects in both indoor 
and outdoor environments. One of the ways in which depth 
information can be integrated is through data augmentation, a 
technique that can increase the robustness of models to 
variations in the data [20]. Shorten and Khoshgoftaar [20] 
discuss the importance of image data augmentation for deep 
learning, including the use of depth information for improved 
performance. 
 
In the following sub-sections, we delve deeper into specific 
techniques for integrating depth information into neural 
networks for image segmentation. 
 
3.2.1. Depth as Additional Input Channel 
The use of depth maps as additional input channels to color 
channels in the input data has shown to be beneficial for 
image segmentation. A prominent example of this approach is 
Fully Convolutional Networks (FCNs) [17]. FCNs treat depth 
information as an extra channel in the input image, passing it 
through the same convolutional and pooling layers as the 
color channels. 
 
A noteworthy extension of this approach involves encoding 
the depth data into different forms, such as the HHA (Height 
above ground, Horizontal disparity, and Angle with gravity) 
encoding [18]. The HHA encoding can be directly 
concatenated with the RGB image to form a 6-channel input, 
which can be processed by a standard CNN. The HHA 
encoding provides different perspectives of depth information, 
which has been found to improve the performance of 
segmentation tasks, especially for indoor scenes [18]. 
 
3.2.2. Multi-Modal Fusion Techniques 
There are multiple techniques for fusing RGB and depth 
information in neural networks [19]. Early fusion involves 
concatenating RGB and depth data in the input layer and 
processing them jointly throughout the network. Late fusion, 
on the other hand, processes RGB and depth data through 
separate branches of the network and combines their features 
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in a later stage. Slow fusion is a balance between the two, 
fusing the data at multiple stages of the network. These 
techniques aim to leverage the complementary information in 
RGB and depth data to improve the segmentation 
performance. 
 
3.3. Existing Neural-Network Based Segmentation 

Models Incorporating Depth  
The use of depth information has been a trend in the evolution 
of neural network-based models for image segmentation. This 
section examines the impact of incorporating depth 
information into these models, especially convolutional neural 
networks (CNNs), and assesses the improvements in 
segmentation performance observed in various studies. 
 
In their study, Couprie et al. [21] adapted a multiscale 
convolutional network to exploit the depth information in 
addition to the standard RGB data for indoor scene labeling. 
Their work utilized the NYU depth dataset, which contains 
RGB images paired with depth maps, as well as labeled ground 
truth data for a wide range of indoor scenes such as offices, 
stores, and home rooms. The dataset is particularly 
challenging due to the diverse range of object categories, 
varied lighting conditions, and occluded objects it includes. 
The team’s innovation lay in training a multiscale 
convolutional network with both the RGB and depth data. 
They compared the performance of their model with that of a 
model trained only on RGB data and found that the addition of 
depth information significantly improved the recognition of 
certain classes of objects, such as floors, ceilings, and 
furniture. They found a 15% or more gain in accuracy for those 
classes of objects. 
 
Chen et al. [22] expanded the field with the introduction of 
DeepLab, a sophisticated method for semantic image 
segmentation that employs deep convolutional nets, atrous 
convolution, and fully connected Conditional Random Fields 
(CRFs).  Where “deep convolutional nets” refers to neural 
networks with multiple layers designed for image analysis. 
“Atrous convolution” is a technique that captures contextual 
information at different scales by introducing gaps in 
convolutional filters. “Fully connected Conditional Random 
Fields (CRFs)” are probabilistic models used for post-
processing to improve segmentation results by considering 
spatial dependencies. 
 
Building upon these initial studies, Cao et al. [24] proposed a 
novel model called ShapeConv which introduced a shape-
aware convolutional layer for indoor RGB-D semantic 
segmentation. They validated their model using three popular 
indoor RGB-D benchmarks: NYU-DepthV2, SUN-RGBD, and 
the Stanford Indoor Dataset (SID). Their ShapeConv model 
showed significant improvements over baseline models 
including DeepLab across different architectures including 
ResNet and ResNext, outperforming the baselines in metrics 
like Pixel Accuracy, Mean Accuracy, Mean IoU, and Frequency 
Weighted Intersection Over Union. 
 
The integration of depth information into neural network-
based image segmentation models contributes to their 
performance. Theoretically, depth information should provide 
a more robust spatial understanding, helping the model to 

distinguish between foreground and background objects more 
effectively, as well as recognize the spatial relationships 
between objects. The studies substantiate this theory, 
demonstrating improvements in segmentation accuracy upon 
the inclusion of depth data. This highlights the potential and 
adaptability of incorporating depth information into neural 
network-based image segmentation models. 
 
4. METHODOLOGY 
4.1. Dataset 
This study utilizes the NYU Depth Dataset V2, primarily 
chosen due to its specific focus on indoor environments [23]. 
This dataset includes a wide range of indoor scene types, 
providing corresponding RGB images and depth maps, making 
it well-suited for training and validating models aimed at 
indoor scene semantic segmentation. Importantly, it offers real 
depth data, enabling an authentic assessment of models 
trained to incorporate depth data. The dataset contains 1449 
labeled pairs of RGB and depth images for both 13 and 40 
classes. Furthermore, to maximize the utility of the depth data, 
it is preprocessing HHA encoding. 

4.2. Model 
An open-source implementation of DeepLabV3 Plus with a 
ResNext101 backbone was utilized for the semantic 
segmentation task [24]. Four separate models were created, 
each trained on different combinations of data channels: RGB, 
RGB + HHA (Horizontal disparity, Height above ground, and 
Angle with gravity), RGB + Depth, and RGB + Depth + HHA. 
DeepLabV3 Plus was chosen for its proven performance on 
several benchmark datasets. Its use of atrous convolution and 
fully connected Conditional Random Fields (CRFs) improves 
segmentation outcomes. The ResNext101 backbone was 
selected due to its ability to extract complex features from a 
high number of input channels. The ShapeConv layer, 
integrated into the ResNext101 backbone, utilizes shape cues 
derived from depth information, thus providing a more refined 
understanding of indoor scenes [24]. This model setup aims to 
answer the question of the impact of integrating depth 
information into the model. 

4.3. Implementation 
The dataset was divided into 60% for training, 20% for 
validation, and 20% for testing. Firstly, the training phase 
involves teaching the model to make accurate predictions 
using labeled data. Then, the validation phase helps fine-tune 
the model’s settings and assess its performance on unseen 
data. Finally, the testing phase evaluates the model's 
performance on completely new data to measure its real-world 
effectiveness. 

All models were trained with the same splits and 
configurations to minimize bias. The best epochs, as 
determined by the highest mean Intersection over Union 
(mIoU), were saved for each model, and used in the testing 
phase. 

4.4. Evaluation Metrics 
To assess the performance of the models, several metrics were 
computed. These metrics include Intersection over Union 
(IoU), Mean IoU (mIoU), and Accuracy. IoU measures the 
overlap between predicted and ground truth segmentation 
masks, while mIoU calculates the average IoU across different 
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classes or categories. Accuracy represents the overall pixel-
level classification accuracy. 

To optimize the computation process, the implementation 
leveraged the processing power of GPUs. Moreover, CUDA’s 
mode was used for convolutional operations, ensuring 
optimized computation performance. 

By utilizing these evaluation techniques and computational 
optimizations, the performance of the semantic segmentation 
models trained on the NYU Depth Dataset V2 could be 
effectively measured and compared. 

5. RESULTS 

This section provides an overview of the experimental results 
obtained from testing the four variants of the DeepLabV3 Plus 
model integrated with the ResNext101 backbone on the NYU 
Depth Dataset V2. 

All the models had very similar times for training and 
inference given the same dataset. 

Table 1. Performance of the four models on the 13 classes of the 
NYU Depth Dataset V2. The values represent the scores of the 
evaluation metrics: Equal mIoU, Frequency Weighted mIoU, Pixel 
Accuracy, and Class Accuracy. The highest values for each evaluation 
metric are marked with green color. 
Model Equal 

mIoU 
Frequency 
Weighted 
mIoU 

Pixel 
Accuracy 

Class 
Accuracy 

RGB 0.6407 0.7225 0.8339 0.7646 
RGB + 
Depth 

0.6677 0.7411 0.8454 0.7805 

RGB + 
HHA 

0.6684 0.7423 0.8479 0.7818 

RGB + 
Depth + 
HHA 

0.6740 0.7431 0.8480 0.7933 

 

Table 2. Performance of the four models on the 40 classes of the 
NYU Depth Dataset V2. The values represent the scores of the 
evaluation metrics: Equal mIoU, Frequency Weighted mIoU, Pixel 
Accuracy, and Class Accuracy. The highest values for each evaluation 
metric are marked with green color. 
Model Equal 

mIoU 
Frequency 
Weighted 
mIoU 

Pixel 
Accuracy 

Class 
Accuracy 

RGB 0.5128 0.6368 0.7669 0.6342 
RGB + 
Depth 

0.5383 0.6512 0.7768 0.6617 

RGB + 
HHA 

0.5394 0.6518 0.7772 0.6547 

RGB + 
Depth + 
HHA 

0.5430 0.6562 0.7811 0.6677 

 

From Table 1, for the 13 classes model, while the RGB alone 
had an mIoU of 0.6407, adding depth information increased the 
mIoU to 0.6677. Further integration of HHA information, with 
or without depth, led to extremely slight improvements, 
increasing the mIoU to 0.6740 and 0.6684 respectively. 

The performance enhancements were also consistent in the 40 
classes model as we can observe from Table 2 Here, the RGB 
alone model had a mIoU of 0.5128. Adding depth increased this 
score to 0.5383, while adding HHA and the combination of 

depth and HHA information pushed the score very little 
further to 0.5394 and 0.5430 respectively. 

Fig. 1. Visual comparison of the performance of the RGB model (bottom 
left) and the RGB, Depth, and HHA model (bottom right), contrasted 
against the original RGB image (top left) and the ground truth (top 
right). 
 
The segmentation produced by the model trained on RGB data 
appears to struggle with classifying and separating areas 
where colors are similar or overlap due to the lighting 
conditions. This is especially notable in the darker areas of the 
image where there is less contrast between objects as we can 
observe from Fig. 1. 
 
The results obtained from the experiments clearly indicate that 
the inclusion of depth information consistently improved the 
performance of the models, both in terms of equal mIoU, 
frequency weighted mIoU, pixel accuracy, and class accuracy 
especially when similar colors overlap and in darker light 
conditions. Models that utilized HHA and Depth in 
combination with RGB data outperformed the model that only 
used RGB data across all classes. 

Notably, the combination of RGB, Depth, and HHA data 
yielded the best results, albeit with a slight increase in 
performance. Importantly, the training and inference times for 
all four models (RGB, RGB+DEPTH, RGB+HHA, 
RGB+HHA+DEPTH) were the same. This suggests that 
utilizing RGB+HHA+DEPTH channels may be the most 
beneficial approach since it does not incur additional time 
costs and delivers superior performance. However, it should be 
noted that the performance improvement is relatively small 
and insignificant which suggests further exploration. 

These results align with the hypothesis that depth data can 
provide an additional layer of context, facilitating more 
accurate identification and classification of objects, especially 
in intricate indoor environments. 

6. REFLECTION 
6.1. Challenges 
Through the process of model implementation, a key challenge 
was ensuring the correct and meaningful integration of depth 
information. This required a thorough understanding of the 
dataset and its structure, as well as the ability to process and 
incorporate the depth information effectively into the model. 
Additionally, while the actual training and inference times 
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were comparable for all models, the preprocessing of HHA 
data, which involves converting depth maps to HHA encoding, 
can be computationally intensive. This could pose a challenge 
in environments where computational resources are limited. 
However, once the preprocessing is done, there’s no 
significant difference in the time taken for training and 
inference of the different models. 

6.2. Limitations 
As with any study, there were limitations to this research. One 
key limitation was the use of a single dataset, the NYU Depth 
Dataset V2, for training and validating the models. While it is 
comprehensive in terms of the variety of indoor environments 
it represents, it includes only 1,449 labeled pairs of RGB and 
depth images. For deep learning models, and particularly for 
complex tasks such as semantic segmentation, larger datasets 
generally enable models to learn more generalized features 
and thus achieve better performance. This could be the reason 
of the only slight performance increase from the results when 
incorporating depth information. 

Additionally, only one model architecture (DeepLabV3 Plus 
with ResNext101 backbone) was used in the study. While this 
architecture has proven performance [22][24], other 
architectures may respond differently to the inclusion of depth 
data. 

7. CONCLUSION 

The integration of depth information into semantic 
segmentation models, as explored in this study, builds on the 
existing body of work, and extends it by providing an 
empirical evaluation. 

In conclusion, the results have consistently shown enhanced 
performance across models when depth information is 
incorporated, confirming the advantages presented in previous 
literature [17, 21, 24]. It should be noted that even though 
benefits of incorporating depth and HHA data are evident, the 
gains are relatively small especially in comparison to the 
previous literature. 

The findings provide insights for researchers and developers 
working on advanced computer vision tasks, emphasizing the 
need for depth data incorporation to augment the perceptual 
capabilities of neural network models. This observation invites 
further investigation into optimizing the integration of depth 
data to maximize performance improvements. Additionally, 
exploring the use of depth and HHA data across a wider range 
of datasets and model architectures is a promising avenue for 
future work. 
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