Designing a Testbed for Human Activity Recognition
Using Multiple ESP32 Microcontrollers with Wi-Fi and

Serial Data Transfer

Jelle Veldmaat, j.p.veldmaat@student.utwente.nl,

University of Twente, The Netherlands

Figure 1. Multiple ESP32 microcontrollers used for HAR.

ABSTRACT

Significant advancements have been made in leveraging Wi-Fi
signals for Human Activity Recognition (HAR). Most notably
with the utilization of Channel State Information (CSI).
Nevertheless, the current landscape lacks a straightforward
approach to conduct HAR experiments involving multiple ESP32
microcontrollers. This research paper presents a notable
contribution by introducing a well-designed testbed for HAR,
employing multiple ESP32 microcontrollers. The study
demonstrates the feasibility of transmitting CSI data over Wi-Fi
without detrimental consequences, thus offering enhanced
convenience and scalability compared to conventional serial cable
connections.

1. INTRODUCTION
1.1 Context and motivation

Human Activity Recognition (HAR) is an area of research that
focuses on the automatic identification and classification of
human activities using data from various sensors [1]. By utilizing
advanced machine learning techniques and algorithms, HAR can
offer valuable insights into understanding human behavior and
support various applications such as health monitoring, smart
devices, surveillance systems and augmented reality [2].

The goal of HAR is to categorize individuals' activities based on
collected sensor data, such as accelerometers, gyroscopes, heart
rate monitors, GPS, and even environmental data [3]. By
analyzing and interpreting patterns in this data, HAR systems can
identify various activities including walking, running, stair
climbing, sitting, standing and others [4].

Wi-Fi-based sensors for HAR have demonstrated significant
promise, particularly those that emphasize the utilization of
Channel State Information (CSI) rather than solely relying on
Received Signal Strength Indicator (RSSI) measurements [4].
Devices and routers that make use of Wi-Fi are numerous in
today's homes, it offers advantages in terms of accessibility and
convenience [5]. HAR utilizing Wi-Fi technology provides the
advantage of contactless monitoring, as illustrated in Figure 1.
This approach eliminates the requirement for participants to wear
dedicated devices [6], which is particularly beneficial in scenarios
involving elderly individuals who may occasionally forget to
wear such devices. Moreover, it enhances privacy by relying on
CSI to predict activities, avoiding invasive techniques such as
camera surveillance. This technology finds valuable applications
in various domains, including elderly homes where HAR can be
utilized for fall detection [7], as well as in security systems [7].

Numerous research studies have indicated the feasibility of HAR
through the utilization of CSI [8]. Historically, these experiments

TSclIT 39, July 7, 2023, Enschede, The Netherlands

have heavily relied on the utilization of an Intel 5300 Network
Interface Card (NIC), an outdated device that is known for its
unreliability and being over a decade old [9]. However, recent
advancements have demonstrated the capability to capture CSI
data using ESP32 microcontrollers [10]. The results obtained for
HAR using ESP32 have been comparable to those achieved with
the NIC. The compact size and affordability makes it an ideal
choice for large-scale deployment [10]. Given that the position of
these devices significantly impacts HAR outcomes, a greater
number of devices can yield improved results [11]. Nevertheless,
establishing a testbed for multiple ESP32s has posed challenges
due to the management of CSI data Coming from these devices.

1.2 Specific problem

The challenge resides in the consolidation of data from multiple
devices into a central point for processing. Presently, there is a
lack of an optimal solution, especially when the devices are
dispersed throughout a room. The conventional approach of
establishing serial cable connections to a central point becomes
impractical in such scenarios. Additionally, conducting
experiments with these devices poses difficulties in terms of
managing labeling, as well as controlling start and stop
commands from a centralized location. Effectively managing the
data becomes paramount to ensure that the respective CSI data
corresponds accurately to the designated experiment.

1.3 Research questions

Considering the problem statement, the following main research
question is formulated:

“What is an efficient and scalable approach to construct a testbed
for HAR using multiple ESP32 microcontrollers?”

With the following sub questions:

1. “How can the testbed be designed to enable seamless
experimentation, including labeling, synchronization
and control of multiple ESP32 devices?”

2. “How can the ESP32 microcontrollers be
interconnected to create a scalable network for data
collection?”

3. “What are the potential challenges and limitations
associated with building and using a testbed for HAR
with multiple ESP32 microcontrollers and how can they
be mitigated?”

1.4 approach and structure

In terms of the approach, the first step involves addressing
research question 1. In order to facilitate the management of
multiple serial connections, a USB hub will be implemented.
Subsequently, efforts will be directed towards optimizing the
experimentation process. This will involve the establishment of
dedicated folders for each experiment, as well as the development
of methods for initiating, terminating and labeling experiments.
The collected CSI data will be stored in CSV format, with file
names that correspond to the MAC addresses of the respective
ESP32 devices.

Jelle Veldmaat

Using serial cable connections present limitations. Consequently,
the focus will be shifted towards investigating transmitting CSI
data over Wi-Fi networks. However, to validate the effectiveness
of the initial approach involving serial cable connections and the
subsequent approach utilizing Wi-Fi, a series of experiments will
be conducted. These experiments aim to amplify the packet
request frequency, thereby augmenting the amount of collected
Channel State Information (CSI) data. Additionally, the number
of ESP32 nodes will be increased to assess the limitations
associated with employing multiple nodes. In conclusion, the
viability of the new method will be assessed and a list of the
necessary components will be provided.

2. REQUIREMENTS

Considering the research questions the following features are
required:

1. Usable for HAR
2. Scalable with multiple nodes
3. Controlled data collection

3. EXISTING SOLUTIONS
3.1 Current tool overview

The “ESP32 CSI Toolkit” [10], an established tool, provides the
means to extract CSI data from ESP32 microcontrollers by
leveraging various modes of operation. These modes encompass
an active access point, active station, and passive mode. In the
active station mode, the ESP32 initiates pings to the access point
node, generating the necessary CSI data. Conversely, the passive
mode operates by monitoring network traffic and collecting CSI
data from it. It is important to note that the tool functions using
Wi-Fi technology within the 2.4 GHz frequency band, which is
known to be more congested compared to the 5 GHz frequency
band. During typical collection not only CSI data is stored, but
also the following:

° Type . SGl

. Role . Noise Floor

. MAC Address . A-MPDU Count
. RSSI . Channel

. Rate . Secondary Channel
. Signal Mode . Local Timestamp
. MCS . Antenna

° Bandwidth . Signal Length

. Smoothing . Receiver State

. Not Sounding . Real-Time Set

. Aggregation . Real Timestamp
° STBC . Length

. FEC Coding . CSI Data

Two attributes are of particular interest for this research: The first
attribute is the "role" which represents the current mode of the
ESP32 microcontroller. This attribute provides information about
the operational state of the device during data collection. The
second attribute is the MAC (Media Access Control) address,

Designing a testbed for human activity recognition using multiple ESP32 microcontrollers with Wi-Fi and serial data transfer. TScIT 39, July 7, 2023, Enschede, The Netherlands

which indicates the original sender of the Wi-Fi data. However, it
should be noted that the MAC address of the ESP32 responsible
for collecting the data is not included in the dataset, which is an
important consideration. Also note that the size of this data is
typically about 454 bytes.

This tool enables the transfer of CSI data from multiple devices to
a centralized collection point via a serial cable. It leverages the
timestamps generated by the data-collecting device to ensure
accurate synchronization. Additionally, the tool provides the
capability to store the collected data on an SD card, if present.
While experiments utilizing multiple ESP32 microcontrollers
have demonstrated positive outcomes [10], these studies did not
address the collection and management of incoming CSI data,
particularly when dealing with data from multiple devices
simultaneously.

3.2 Multiple nodes

Currently, the focus lies on utilizing one ESP32 as an access point
and only one as a station [11], overlooking the challenges of
managing data from multiple devices. Furthermore, the passive
mode has shown inconsistency in this research, with a notable
failure to achieve the 34.5% data collected compared to an active
mode [10]. The limitation of the passive mode poses a challenge
when utilizing multiple nodes, as they cannot effectively
contribute useful CSI data in this mode. Consequently, the
network becomes more congested due to the increased frequency
of pings from the nodes in active mode.

Although the unmodified tool can be used with serial connections
to all ESP32 devices, this approach is not scalable as it involves
the inconvenience of running serial cables everywhere.
Additionally, managing the substantial amount of data generated
for HAR purposes becomes impractical without a more efficient
solution.

4. NEW ARCHITECTURE
4.1 ESP32 limitations

Since the ESP32 is a fairly cheap and small device certain
significant limitations exist:

1. Limited processing power: The ESP32 has a relatively
modest processing power compared to more powerful
microcontrollers or processors [12].

2. Limited memory: The ESP32 has limited internal
memory available for program storage and data
handling [13]. This can pose constraints when
developing complex applications or handling large
datasets.

3. Limited compatibility with certain software or libraries:
Since the original “ESP32 CSI Toolkit” [14] that is
built on the ESP-IDF development framework [15]
instead of the more popular arduino framework [16].
Many of the existing libraries are not compatible.

4.2 Facilitating HAR experiments

HAR eXPERIMENTS

The flow of a HAR experiment

Serlal WIFI
transfer transfer

Figure 2. Flow diagram for conducting experiments

In order to optimize HAR experiments utilizing multiple ESP32
microcontrollers, a flowchart (see Figure 2) was designed.
Supporting this, a custom Python tool [17] was developed to
enhance the management of these experiments. This tool
facilitates the initiation and termination of each experiment,
ensuring precise data collection from each ESP32 device while
effectively associating the collected data with its corresponding
experiment.

4.3 Wi-Fi data transfer

To facilitate the transfer of CSI data from ESP32 devices to a
central laptop, the use of Wi-Fi connectivity was implemented as
an alternative to relying on serial cables. This necessitated
modifications to be implemented to the original "ESP32 CSI
Toolkit" tool [14] enabling this functionality.

In addition to the attributes mentioned in Section 3.1, further
attributes were incorporated to support the Wi-Fi transfer process.
While the existing CSI data packet only included the MAC
address of the sender, typically the ESP32 acting as an access
point, a modification was made to include the MAC address of
the receiving node as well. This was necessary due to the absence
of a serial connection and the inability to identify the source of
each signal accurately. Incorporating the MAC of the receiving
node allowed for proper handling and management of the data on
the laptop.

TSclIT 39, July 7, 2023, Enschede, The Netherlands

To ensure data integrity, a numbering system was implemented
within each CSI data packet on the ESP32 devices. This
numerical identifier incrementally increases with each collected
CSI data, enabling the detection of any potential data loss during
the transfer process.

The size of the newly introduced CSI data packet is typically 551
bytes, representing an increase of 97 bytes compared to the
previous version, which had a size of 454 bytes. This increase is
due to the inclusion of additional information in the packets.
Considering the larger packet size, it is not desirable to send each
CSI data packet individually to the laptop due to the potential for
significant network congestion. Instead, the CSI data is
accumulated in the ESP32 and transmitted in larger batches.

Through experimentation, it has been observed that the ESP32
can store approximately 100 of these data packets, resulting in a
total data size of around 55,100 bytes (100 * 551). However,
despite the observation that the ESP32 still has available memory,
the ESP32 crashes at that point. This behavior could be attributed
to the ESP32 detecting a steady increase in memory usage and
interpreting it as a memory leak. While this issue has not been
addressed in this research, a predetermined threshold has been set
to trigger the transmission of data when the batch size reaches 40,
with the maximum batch size limited to §0.

It is worth noting when increasing the frequency issues may arise
where the ESP32 encounters challenges in transmitting previously
collected CSI data, resulting in the loss of all data within the
batch. A more sophisticated approach would involve overwriting
the most recently collected data instead of discarding the entire
batch. However, in the current design, this consideration has been
omitted since, in the context of HAR with low frequencies, it is
unlikely to reach this frequency limit in practice.

However, it's important to note that the timing in the CSI data is
not synchronized across all nodes, resulting in variations. To
address this, the local time of the laptop is added to the data.
Although the timing may not be perfect due to the data being sent
in batches, the incorporation of the node's time helps improve the
accuracy and provides a sense of the actual recording time of the
data.

Consequently, a laptop needs to be connected to the ESP32 acting
as an access point, establishing a server that listens to the POST
requests sent by the nodes containing their respective batches of
CSI data.

4.5 Required components

The introduction of Wi-Fi CSI data transfer eliminates the
requirement for a serial cable and port for each node. A serial
cable is only needed to set up the testbed for the initial flashing of
the ESP32’s only the following components are needed:

Hardware:

e 2 or more ESP32 microcontrollers
e 1 USB A male to micro USB male cable
e | Laptop with Wi-Fi and a serial port

Jelle Veldmaat

Software:

e Custom Python tool for HAR experiments [17]
e ESP32 CSI toolkit with Wi-Fi CSI data transfer [18]
o ESP-IDF version 4.3 [15]

5. VERIFICATION

To validate the effectiveness of the new architecture that is
utilizing Wi-Fi data transfer, a series of experiments were
conducted (see Appendix A). The primary objective was to assess
whether the Wi-Fi-based data transfer method performed
comparably to the conventional serial data transfer approach.
Additionally, the experiments aimed to determine the feasibility
of multiple nodes simultaneously requesting packets from the
access point and the maximum achievable frequency at which this
is possible.

The validation experiments for the proposed model were
conducted within an office room (see Appendix B), where the
ESP32 nodes were distributed throughout the space. The
experiments included both serial and Wi-Fi CSI data transfer
methods, involving configurations with 1, 2 and 9 station nodes
and 1 access point node. Also a laptop was present for data
collection and experiment management with the use of the Python
tool [17]. It is important to note that for HAR purposes, a
frequency of CSI information as low as 10 Hz is typically
sufficient [19].

5.1 CSI data frequency

120 1 —®— 1, serial

1, wifi e
—e— 2, serial -
- 2, wifi -~
100 1 —e— 9, serial -
—&— 9, wifi - —
=== Ideal

80

hz_actual
&
g

40 4

1b iO 4b EIO EIO 160 12‘0
hz_setting

Figure 3. Comparing the actual frequency with the set frequency.
The frequency at which CSI data is collected serves as a critical
parameter for achieving optimal results in HAR [7]. As illustrated
in Figure 3, an interesting observation reveals that the actual
frequency starts to decline as the frequency setting increases. This
phenomenon can be attributed to network congestion within the
Wi-Fi network. Notably, the impact is most pronounced when
there are 9 station nodes involved in the experiments. Another
noteworthy finding is that experiments employing Wi-Fi for data
transfer exhibit a higher actual frequency than the set frequency.
This occurrence can be attributed to the additional POST requests
transmitted to the laptop via the ESP32 acting as the access point.
Consequently, the access point's response to the POST request
allows for the collection of that CSI data as well. It is important to
mention that each POST request contains a minimum batch of 40
CSI data. Thus, the ESP32 might already have some CSI data

Designing a testbed for human activity recognition using multiple ESP32 microcontrollers with Wi-Fi and serial data transfer. TScIT 39, July 7, 2023, Enschede, The Netherlands

stored before the experiment commences. Currently, no action is
taken with regard to this fact.

Nevertheless, the ability of the new Wi-Fi-based solution to
handle 9 nodes at a frequency of 10 Hz which meets the
requirements for HAR [19] without major deviations even if the
frequency is doubled confirms its validity.

5.2 Time between CSI data collected

Similar to the impact of frequency, maintaining a consistent time
interval between CSI data collections contributes to the
effectiveness of HAR [19]. It is important to note that this
consideration differs from the frequency comparison discussed in
section 5.1 but has similarities.

0.10 1 —e— 1, serial
1, wifi
—e— 2, serial
—o— 2, wifi
—eo~— 9, serial
—&— 9, wifi
=== Ideal

0.08

packets

e
°
&

! 0.04 4

mean_time_between

0.02 4

10 20 40 60 80 100 120
hz_setting

Figure 4. The mean time between CSI collections.

—o— 1, serial
354 1, wifi
—8— 2, serial
—e— 2, wifi
—8— 9, serial
—e— 9, wifi
-=- Ideal

3.0 4

|_time

2.5+

pected

2.04

B 'ﬁ/— ‘%

10 20 4 60 80 100 120
hz_setting

mean_time / ex

Figure 5. Ratio of mean time and expected time between CSI collection
Figure 4 illustrates that when utilizing higher frequency settings
with 9 nodes, both the Wi-Fi and serial-based solutions exhibit an
increase in the mean time between data packets, resulting in a
lower sampling rate than the frequency set. To provide a more
comprehensive representation of the deviation in Figure 5 The
ratio of the expected time to the actual time is represented.
Notably, significant deviations become noticeable at
approximately 40 Hz, which, considering its higher than the
required 10 Hz for HAR, makes it well-suited for the intended
application [19].

5.3 Variation in time of CSI collection

Consistent time intervals between CSI packet collections in the
proposed solution contribute to its predictability, thereby assisting
the HAR model.

—o— 1, serial
1, wifi
—e— 2, serial
—o— 2, wifi
~o— 9, serial
T - 9. wifi
=== Ideal

~
o

packets

[
o

=
o

CV_time_between

0.5

0.0

1'0 2‘0 4‘0 5'0 sb 160 liQ
hz_setting
Figure 6. Coefficient of variation of the time between CSI collections
The coefficient of variation (CV) serves as a metric for evaluating
the consistency of time intervals between CSI data collection.
This metric plays a crucial role in relation to timing data, as it
indicates the stability of the network and, consequently, the
consistency of the results obtained from the HAR experiments. A
more consistent timing between packets leads to an evenly
distributed amount of data throughout the duration of the
experiment. Figure 6 illustrates that the 3 experiments using serial
connections show a more predictable time between CSI data
collections. This finding aligns with expectations, as these nodes
do not rely on Wi-Fi for transmitting their CSI data. A CV value
of 0.5 indicates that the standard deviation is half as large as the
mean. Given that the mean time is either lower or equal to the
expected time until 40 Hz (Figure 5), this is not a significant issue
since we have more CSI data than we need in these situations.

5.4 CSI data lost

By incorporating incremental numbering in the CSI data packet,
we have created a mechanism to identify missing numbers,
thereby detecting instances where CSI data generated by the
ESP32 is absent at the data collection point.

—o— 1, serial
1, wifi
—o— 2, serial
—o— 2, wifi
—8— 9, serial
—e— 9, wifi
——- Ideal
15

data_lost
=
5

o A * ¢ ad g *

1 20 2 50 80 100 120
hz_setting
Figure 7. Amount of data lost during transmission in a 15 seconds
experiment
As seen in Figure 7 there is only data loss during transmission
over Wi-Fi. This is likely because of network congestion and that
the nodes are unable to get rid of their CSI data batches with
POST requests. Because of the limited memory of the ESP32 CSI
data batches will be dropped.

TSclIT 39, July 7, 2023, Enschede, The Netherlands

! 0.98 4

transmission_ratio

e
©
N

—o— 1, serial
1, wifi
—e— 2, serial
—o— 2, wifi
0.96 1 —e— 9, serial
—o— 9, wifi
=== Ideal

10 20 40 Ehﬂ;iseﬁ‘ g 80 100 120
Figure 8. Successful transmission ratio

To provide a contextual understanding of the data loss, Figure 8
presents the ratio of transmitted data. This highlights that even
with relatively high frequency settings, the ratio of data lost
remains minimal. This observation underscores the robustness of
the system, as the impact of data loss on the overall data
collection process with ordinary frequencies is negligible.

5.4 Comparison to existing solutions

In the previous subsections, we have showcased the successful
integration of Wi-Fi and serial data transfer methods utilizing
multiple ESP32 microcontrollers for HAR experiments. The
management and facilitation of data from multiple nodes were
made possible by the Python tool. Nevertheless, it is important to
note that the Wi-Fi solution stands out for its exceptional
scalability and user-friendly nature, eliminating the requirement
for additional cables when incorporating additional nodes.
Moreover, the ESP32's low power consumption enables node
connectivity to a battery, further improving its convenience.

6. CONCLUSION

This paper presents an effective solution on how to build a
testbed using multiple ESP32 microcontrollers using Wi-Fi for
CSI data transfer.

6.1 Research question 1

“How can the testbed be designed to enable seamless
experimentation, including labeling, synchronization and control
of multiple ESP32 devices?”

The proposed solution incorporates several key components.
Firstly, the nodes connected to the access point synchronize their
time and include this information in their CSI data. Additionally,
a central location is designated for data collection, where the
received data from multiple nodes is labeled based on its origin
and stored for the ongoing HAR experiment. Importantly, this
solution is compatible with both serial and Wi-Fi CSI data
transfer methods, ensuring flexibility with different connectivity
options.

6.2 Research question 2

“How can the ESP32 microcontrollers be interconnected to create
a scalable network for data collection?”

Jelle Veldmaat

Firstly, it has been demonstrated that CSI data transfer is feasible
using serial cable connections in conjunction with the Python
tool. However, this approach faces scalability limitations due to
the reliance on physical cables. To address this constraint, a more
viable solution is proposed, involving the transfer of CSI data
over Wi-Fi using POST requests to a central laptop for data
collection. This alternative method offers improved scalability..

6.3 Research question 3

“What are the potential challenges and limitations associated with
building and using a testbed for HAR with multiple ESP32
microcontrollers and how can they be mitigated?”

Section 5 highlights several limitations that arise when increasing
the frequency beyond 40 Hz with 9 nodes operating in station
mode. Additionally, the current implementation lacks the ability
to switch a node from station mode to access point mode without
the requirement of a serial cable. Another drawback of the
original tool is the inconsistency observed in its passive mode,
where it occasionally fails to detect traffic for extended periods,
despite the presence of active signals. The cause of this
inconsistency remains unknown, but it is speculated that the
passive mode struggles to capture the relatively weak signals
emitted by an ESP32 functioning as an access point and another
ESP32 functioning as a station.

6.4 Main research question

“What is an efficient and scalable approach to construct a testbed
for HAR using multiple ESP32 microcontrollers?”

In order to establish an efficient and scalable testbed for HAR
using multiple ESP32 microcontrollers, the utilization of Wi-Fi
for CSI data transfer, along with a dedicated tool for data
management and labeling, has been adopted. This design has
proven to be both effective and scalable.

6.5 Future work

While the current verification has indicated satisfactory results
regarding the amount, variation and data loss of CSI data in my
proposed design, future work can further validate its
effectiveness. This can be achieved by conducting an in-depth
analysis of the CSI data, training a model using serial data and
subsequently testing it on data collected through Wi-Fi transfer.
Such experimentation would provide a more robust assessment of
the proposed design. Also, it is important to investigate potential
interferences from other nodes, which may introduce changes in
the CSI data and potentially impact the model's performance,
particularly when multiple station nodes are involved.

Additional future work can be done by dynamically changing the
access point node and the station nodes changing this
dynamically based on where the human activity takes place
further improves performance [10].

An interesting application of the proposed design is the real-time
use of the collected CSI data for activity recognition. By feeding
the CSI data directly into a trained model, it should become
possible to analyze ongoing activities in real-time.

Designing a testbed for human activity recognition using multiple ESP32 microcontrollers with Wi-Fi and serial data transfer.

7. REFERENCES

(1]

(2]

(4]

E. Kim, S. Helal, and D. Cook, “Human Activity
Recognition and Pattern Discovery,” I[EEE Pervasive
Comput., vol. 9, no. 1, pp. 48-53, Jan. 2010, doi:
10.1109/MPRV.2010.7.

C. Jobanputra, J. Bavishi, and N. Doshi, “Human Activity
Recognition: A Survey,” Procedia Comput. Sci., vol. 155,
pp. 698-703, Jan. 2019, doi: 10.1016/j.procs.2019.08.100.
M. Vrigkas, C. Nikou, and I. A. Kakadiaris, “A Review of
Human Activity Recognition Methods,” Front. Robot. Al,
vol. 2, 2015, Accessed: Jun. 24, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/frobt.2015.0002
8

J. Schifer, B. R. Barrsiwal, M. Kokhkharova, H. Adil, and J.
Liebehenschel, “Human Activity Recognition Using CSI
Information with Nexmon,” Appl. Sci., vol. 11, no. 19, p.
8860, Sep. 2021, doi: 10.3390/app11198860.

A. K. Sahoo, V. Kompally, and S. K. Udgata, “Wi-Fi
Sensing based Real-Time Activity Detection in Smart Home
Environment,” in 2023 IEEE Applied Sensing Conference
(APSCON), Bengaluru, India: IEEE, Jan. 2023, pp. 1-3. doi:
10.1109/APSCON56343.2023.10101249.

S. M. Hernandez and E. Bulut, “WiFi Sensing on the Edge:
Signal Processing Techniques and Challenges for
Real-World Systems,” IEEE Commun. Surv. Tutor., vol. 25,
no. 1, pp. 46-76, 2023, doi:
10.1109/COMST.2022.3209144.

Yongsen Ma, Gang Zhou, and Shuangquan Wang, “WiFi
Sensing with Channel State Information: A Survey,” ACM
Comput. Surv., vol. 52, no. 3, pp. 1-36, May 2020, doi:
10.1145/3310194.

H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, “Smart Home
Based on WiFi Sensing: A Survey,” IEEE Access, vol. 6, pp.
13317-13325, 2018, doi: 10.1109/ACCESS.2018.2812887.
D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool
release: gathering 802.11n traces with channel state
information,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 1, pp. 53-53, Jan. 2011, doi:
10.1145/1925861.1925870.

TScIT 39, July 7, 2023, Enschede, The Netherlands

[10] S. M. Hernandez and E. Bulut, “Lightweight and Standalone
IoT Based WiFi Sensing for Active Repositioning and
Mobility,” in 2020 IEEE 21st International Symposium on
“A World of Wireless, Mobile and Multimedia Networks”
(WoWMoM), Cork, Ireland: IEEE, Aug. 2020, pp. 277-286.
doi: 10.1109/WoWMoM49955.2020.00056.

[11] S. M. Hernandez and E. Bulut, “WiFederated: Scalable WiFi
Sensing Using Edge-Based Federated Learning,” IEEE
Internet Things J., vol. 9, no. 14, pp. 12628-12640, Jul.
2022, doi: 10.1109/JIOT.2021.3137793.

[12] “Overview of ESP32 features. What do they practically
mean?,” Tutorials.
https://exploreembedded.com/wiki/Overview_of ESP32 fe
atures._ What_do_they_practically_mean%3F (accessed Jun.
24, 2023).

[13] R. Teja, “Getting Started with ESP32 | Introduction to
ESP32,” ElectronicsHub, Feb. 17,2021.
https://www.electronicshub.org/getting-started-with-esp32/
(accessed Jun. 24, 2023).

[14] S. M. Hernandez, “ESP32 CSI Tool.” Jun. 07, 2023.
Accessed: Jun. 22, 2023. [Online]. Available:
https://github.com/StevenMHernandez/ESP32-CSI-Tool

[15] “espressif/esp-idf at release/v4.3.”
https://github.com/espressif/esp-idf/tree/release/v4.3
(accessed Jun. 22, 2023).

[16] “Arduino IDE 2.x.” Arduino, Jun. 24, 2023. Accessed: Jun.
24, 2023. [Online]. Available:
https://github.com/arduino/arduino-ide

[17] “Jelle3345/ESP32_testbed.”
https://github.com/Jelle3345/ESP32 _testbed (accessed Jun.
22,2023).

[18] “General - Jelle3345/MY_ESP32 CSI_TOOL,” GitHub.
https://github.com/Jelle3345/MY_ESP32 CSI_TOOL
(accessed Jun. 22, 2023).

[19] A.Khan, N. Hammerla, S. Mellor, and T. P16tz, “Optimising
sampling rates for accelerometer-based human activity
recognition,” Pattern Recognit. Lett., vol. 73, pp. 33—40,
Apr. 2016, doi: 10.1016/j.patrec.2016.01.001.

TSclIT 39, July 7, 2023, Enschede, The Netherlands

8. APPENDICES

Appendix A. Wi-Fi vs serial data transfer experiment results

Table Legend

The duration of each experiment was 15 seconds.

station amount transfer type hz setting
9 serial
2 wifi
1 serial
2 serial
9 wifi
1 wifi
2 serial
1 serial
9 wifi
9 serial
2 wifi
1 wifi
9 wifi
9 serial
1 wifi
2 wifi
1 serial
2 serial
2 serial
1 wifi
2 wifi
9 wifi
9 serial
1 serial
2 wifi
1 wifi
2 serial
9 wifi

9 serial

20
20
20
20
20
20
40
40
40
40
40
40
60
60
60
60
60
60
80
80
80
80
80

hz actual

Hz Setting: The intended frequency setting for data transmission.
Hz Actual: The actual frequency achieved during data transmission.
Expected Time Between Packets: The expected time interval between consecutive packets of data.
Mean Time Between Packets: The average time interval achieved between consecutive packets of data.
CV Time Between Packets: The coefficient of variation (CV) of the time intervals between packets, indicating the variability in timing.
Data Lost: The number of data packets lost in the 15 second experiment during transmission.
Transmission Ratio: The ratio of data packets received relative to the total transmitted data.

10.019
12
10.0667
9.9333
12.3333
13.3333
20.1
19.6667
23.4074
19.9333
24

24
38.9333
36.5778
45.3333
42.6667
39.9333
40.1667
59.2667
58.7333
58.7
442667
50.5259
58.9333
72.1333
69.4
75.8333
47.1481

49.9852

Station Amount: The number of ESP32 station nodes used in the experiment.
Transfer Type: The type of data transfer method used (e.g., Wi-Fi, serial).

expected time
between packets

0.1

0.1

0.1

0.1

0.1

0.1
0.05
0.05
0.05
0.05
0.05
0.05
0.025
0.025
0.025
0.025
0.025
0.025
0.0167
0.0167
0.0167
0.0167
0.0167
0.0167
0.0125
0.0125
0.0125
0.0125

0.0125

mean time
between packets

0.1
0.08
0.1

0.1
0.0796
0.0794
0.05
0.05
0.043
0.05
0.0419
0.0404
0.0256
0.0244
0.0227
0.0232
0.025
0.025
0.017
0.0169
0.0168
0.0224
0.0186
0.017
0.0137
0.0146
0.0133
0.0208

0.0185

CV time between

packets

0.0713
0.4578
0.0263
0.0309
0.46
0.4693
0.0618
0.0648
0.3606
0.229
0.3787
0.419
0.385
0.2933
0.2943
0.3174
0.1179
0.1226
0.1834
0.3833
0.3702
0.5149
0.3947
0.1686
0.4893
0.4195
0.3884
0.5789

0.3709

data lost

(=] o o o o o o <o o o o o <o

(= N = =]

0.2222

0.2222

Jelle Veldmaat

transmission ratio

0.9996

Designing a testbed for human activity recognition using multiple ESP32 microcontrollers with Wi-Fi and serial data transfer.

—_

serial

serial
serial
serial

wifi

S AL =)

wifi
1 wifi
2 serial
1 serial
wifl

serial

NSO o

wifi

1 wifi

Appendix B. The office used for verification of Wi-Fi vs serial data transfer

80
100
100
100
100
100
100
120
120
120
120
120
120

76.9333
90.5333
55.5889

87.5
44.4963

78.8
85.4667
88.1667

93.6
35.5778
45.1037
85.5667

96.1333

0.0125
0.01
0.01
0.01
0.01
0.01
0.01

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.013
0.0111
0.0181
0.0116
0.0224
0.0125
0.0116
0.0111
0.0107
0.0299
0.0227
0.0117

0.0105

0.1935
0.7275
0.6151
0.7248
0.5817
0.7218
0.7005
0.7786

0.774
2.5673

0.576
0.7324

0.7456

22.6667
0
1.5

TScIT 39, July 7, 2023, Enschede, The Netherlands

0.9998
0.9983

0.9992

0.9552

0.9989

0.9979

The image depicts a configuration consisting of a USB hub connected to ten ESP32 microcontrollers through their respective serial ports. The
node positioned on the table operates as an access point, while the remaining nodes are configured in station mode as per the experimental
requirements.

