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Smart agriculture applications have become a commonway of letting farmers
conduct basic, but timely intervention on their crops. This can save entire
regions from crop failure. Areas dependent on subsistence farming, and
high in population density are under pronounced risk of unexpected food
shortages. This application is still new and more data is required to expand
our early reactive capabilities against crop disease. Certain diseases can
become fatal for a plant even before symptoms are visible, and early diagnosis
can help mitigate crop loss. In this paper, we aim to analyse a dataset of
cassava plants. This study contributes to the field of early plant disease
diagnosis by improving our understanding of the utility of spectral data in
classifying crop diseases. We propose two goals - to investigate and analyze
the dataset, and to build, and evaluate supervised models to classify the
crop diseases. This study will consider research questions related to disease
growth, the usefulness of spectral readings for early diagnosis, and the
impact of different classifiers on disease classification.

Additional KeyWords and Phrases: Cassava,Manihot esculenta, Early disease
detection, Crop diagnosis, Smart farming, CBSD, CMD

1 INTRODUCTION
The cassava plant is an important crop for large parts of Sub-Saharan
Africa, and other tropical regions of the world. The crop may be
eaten directly or be processed into other kinds of food, like flour,
or be used as animal feed. It is chosen for its resilience, and high
return potential. Large populations of people depend on the proper
functioning of the chain of production of the cassava plant. "More
than 500 million people in tropical and sub-tropical Africa, Asia and
Latin America" [2] This chain is sensitive to disruptions, as only a
few percentage of change may mean millions will not get the food
they need, for a price they can afford.

Plant diseases spread quickly around the fields of these crops. A
related study [6] done around the region of Lake Victoria, and the
Tanzanian coast, has demonstrated the rapid and expansive spread
of the cassava brown streak virus. Tanzania alone is larger than
twice the size of Germany, and the disease can result in "estimated
yield loss of up to 70%" [6].
The two diseases that concern us are the Cassava Brown Streak

(CBSD), and the Cassava Mosaic (CMD) Diseases. These diseases
initially do not show symptoms [3] on the part of the plant above
soil. Therefore by the time symptoms are visible to the farmer, it
is too late for the plant. Early intervention can save entire regions
from crop failure.
Smartphones are central [4] to the implementation of current

smart farming solutions. Recommender systems [1, 10] are a good
application of smartphones. The advantage of such an approach is
the relatively low cost of implementation, and that it provides basic
help immediately to a large area at once. "Conventional smartphones
are equipped with several sensors that could be useful to support
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near real-time usual and advanced farming activities", [7] lowering
the risk of late crop disease diagnoses.

The quality of the help a smartphone is able to provide depends
on the quality of dataset, data analysis done, and the algorithms
used. Early disease recognition applications [5, 8, 13] using smart
phone cameras, and machine learning models trained on relevant
data are a common use case of this scheme. The camera is not always
enough for diagnosing all cases of plant health. The diseases that
effect the cassava plant typically don’t become visible until it is too
late, as mentioned before. Plant health can be better understood
through the measure of other kinds of data, particularly spectral
data.

In this paper we aim to analyse and interpret a dataset [3] created
by Owomugisha et al. This dataset contains spectral data, images,
expert rating of plant health, and biochemical data of many cassava
plants in different stages of growth.

Based on these, our goals are defined as:

• Goal 1: To investigate and analyse the dataset.
• Goal 2: To build supervised models to classify the crop dis-
eases.

The following research questions will be kept in mind throughout
the research.

• RQ1: How is disease growth effected by the screenhouse,
versus open field cases?

• RQ2: What is the extent of the benefit provided by the spec-
tral readings, for the early diagnosis of diseases?

• RQ3: What effect do the different type of classifiers have on
disease classification?

By the end of this research we aim to contribute to the field of
early disease diagnosis by exploring different modalities for the task
of crop disease recognition. This will be done in two ways. The first
is by analysing the dataset. Particularly, by investigating the degree
of usefulness of the spectral data, and the differences the various
descriptors have on the plant health. The second is by using various
models to classify the crop diseases. This has the added possibility
of being used for scanning cassava plants where it is feasible to take
spectral readings of the required kind.

2 RELATED WORK
Labelled Cassava Dataset [12]
A detailed dataset of cassava plants in various stages of growth,

with and without diseases. The diseases whose effects are studied
are the Cassava Brown Streak Disease, and Cassava Mosaic Dis-
eases. This collection consists of raw spectral data readings, images
(taken by smartphone), biochemical (lab) data, and expert scoring
of the disease stage. The biochemical data is taken as ground truth
in determining the disease onset. The disease scores are from 1 to
3 for field, and 1 to 4 for screenhouse. 1 meaning healthy, and 3/4
meaning diseased. Data has been collected from both a controlled
environment (screenhouse), and an open field where the plants are
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unsheltered from the natural elements. The data from the screen-
house has been collected for a time period of 19 weeks, and a time
period of 15 weeks for the open field.
Recommender System For Disease Detection [10]

An investigation of open field crop disease monitoring with real
time information feedback to three farmers. Such systems can pro-
vide basic help to many farmers over a large area. This implemen-
tation also works offline as farmers are not always connected to
the internet. It uses natural language processing, and question and
answer pairs to give the useful answer to the farmer. Multiple mod-
els are built and tested against each other. It is pointed out in the
paper that the a major limiting factor for the quality of answers is
the volume of available data.
Detection Of Plant Diseases Using Spectral Data [11]

The disease may not be visible on the cassava plant leaf by visible
light, but signs may be picked up by invisible spectral data. This
is a paper aimed at "developing methods for diagnosing cassava
diseases before they are visibly symptomatic on the plant" [11]. This
method uses spectral data and presupposes that using it can result
in a significant time advantage over visible light. It builds upon
past research [9] on this method, and presents the methodology of
applying this technique. The plants are grown in a closed, controlled
environment. The data is preprocessed, and dimensional reduction
using the PCA model is applied. Multiple training models are used
with both the original, and PCA data, and their performances are
compared. This study demonstrates the viability of detecting disease
using spectral readings. The steps taken for analysing spectral data
in our paper, follows those presented in this study.

3 METHODOLOGY
The dataset includes spectral, and image data, alongside other fea-
ture descriptors. The complete analysis is divided into four parts;
exploratory analysis, spectral classification, image classification,
and combined analysis. Each one of these parts have been coded in
a separate Jupyter notebook. The first section, Exploratory Analysis
serves to introduce the dataset. The data is plotted in various ways
to answer a number of questions. Spectral Classification and Image
Classification contain code that prepares relevant data, presents
some example cases, and feeds them to supervised classification
algorithms. Finally, the Combined Analysis section combines the
model training of both the image and spectral data into one note-
book and compares their performances directly. The description of
the process for each of these parts will be presented in the following
sections.

3.1 Preprocessing
3.1.1 Exploratory Analysis.
The dataset consists of multiple .csv files, and hundreds of .jpg files.
The spectral readings for each experiment group (field/screenhouse)
are stored in two .csv files; labelled "b", and "g". The reason for having
two spectral readings instead of one is because the sensor device
reads only a single point on the leaf. Therefore, having two readings
on different positions of each leaf will increase the information
recorded.

The data-frames are imported and preprocessed. The "b", and "g"
readings are joined into one. Inconsistencies in the column names
of the dataset are removed, and rows of data with missing values for
the disease_class and image_name columns are removed. At the end
of this process, we end up with two data-frames. One containing
field readings, and the other containing the screenhouse readings.
The columns of these data-frames are listed below:

Spectral Data (many columns, both "b" and "g"), disease_class,
week, cassava_variety, plant_number, leaf_number, image_-
name, chemical_test, expert_score, image_label.
Spectral, and image classification have been done on these two

data-frames. Each row in these data-frames represents a reading
from a single leaf.

After the preprocessing, the data is visualised according to these
queries:

• What is the number of leaves per week, for each disease_-
class?

• What is the number of leaves per week, for each expert_score?
• How do the chemical readings for all leaves change by week?
• How do the chemical readings for leaves grouped by disease_-
class change by week?

• How do the mean, median and standard deviation of chemical
readings, grouped by disease_class change by week?

• Plot the spectral data onto 2-d space using PCA.
• Plot the spectral data onto 2-d space using t-SNE.
• Plot the spectral data onto 3-d space using PCA.
• Plot the spectral data with 4 PCs.
• Plot the spectral data with 10 PCs.

The results of the exploratory analysis will be discussed in detail
under the The Dataset section.

3.1.2 Spectral Classification.
This section describes the process of analysing and classifying the
spectral data. The aforementioned data-frames contain the spectral
readings, but they will need to be processed before feeding them to
classification algorithms.
The first 4 weeks of disease data are removed. Healthy data for

all weeks are kept. This is because the first 4 weeks of diseased
data do not provide much information and can be removed without
significant loss. The noise in data is then reduced using a simple
moving average algorithm. All rows of spectral data are rewritten
using this moving average algorithm with a window length of 10
columns.

The next step is for the data to be regularised. The spectral read-
ings are scaled and this makes each (spectral) feature have a mean
of 0 and a standard deviation of 1. This ensures that all features are
on a similar scale and have a comparable impact on the classifiers.
Two versions of the same data will be compared. One with the

complete spectral readings, and another version with reduced num-
ber of spectral features using a dimensionality reduction algorithm.
Plotting the cumulative variance allows us to choose the appropri-
ate number of principal components. Fig. 16 shows the explained
cumulative variance by the number of components for both sets
of data. Alternate versions of both sets of data are created using
the PCA algorithm with 10 as the number of components. The final
data-frames and their columns are given in the table below:
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Table 1. Spectral data-frames

Data-frame Columns
field_image_spectral_averaged_df_scaled disease_class, image_name, Spectral Features
screenhouse_image_spectral_averaged_df_scaled disease_class, image_name, Spectral Features
field_image_pca_df disease_class, image_name, PC Features
screenhouse_image_pca_df disease_class, image_name, PC Features

3.1.3 Image Classification.
This section describes the similar process done on the image data.
The number of images present are fewer than the total number of
rows for both field and screenhouse data. Therefore the rows for
which an image isn’t present are filtered from the data-frames.

Out of the 3638 rows of field data, 1074 of them have an image. 808
healthy, 23 CBSD, and 243 CMB cases are present. For screenhouse
data, out of the total of 1361 rows, 351 images are present. 249
healthy, and 102 cases of CBSD are present. There are no images for
CMD. Fig. 17 shows examples of some images.

Feature extraction is applied to these images. We use a pretrained
ResNet-18 model for this purpose. This model has already been
trained on a large dataset and has learned weights and parameters.
We focus on the "avgpool" layer of the ResNet-18 model. This layer
performs average pooling, reducing the spatial dimensions of the
feature maps to 512 while retaining important information.

Before feeding the images into the model, we apply preprocessing
steps. Resizing the images to a standard size, normalizing the pixel
values to a common range, and converting them into a suitable
format for the model. Each image is:

• resized to 224 by 224 pixels
• converted to a PyTorch tensor
• normalized the pixel values of the image
• put into a a zero vector of size 512

The features are concatenated to their data-frame. The final data-
frames and their columns are given in the table below:

Table 2. Image data-frames

Data-frame Columns
filtered_field_feature_vectors_disease_class_df disease_class, image_name, Image Features
filtered_screenhouse_feature_vectors_disease_class_df disease_class, image_name, Image Features

3.1.4 Combined Analysis.
The purpose of this section is to directly compare the usefulness of
the spectral data versus the image data in detecting and classifying
plant diseases. It uses the data-frames prepared under the Spectral
Classification, and Image Classification sections.
Since not all rows have an image present, the corresponding

rows of data for the spectral readings also need to be removed to
compare them meaningfully. We end up with 4 data-frames. They
are described in the table below:

Table 3. Spectral and image data-frames

Data-frame Columns
filtered_field_image_spectral_averaged_df_scaled disease_class, image_name, Spectral Features
filtered_screenhouse_image_spectral_averaged_df_scaled disease_class, image_name, Spectral Features
filtered_field_feature_vectors_disease_class_df disease_class, image_name, Image Features
filtered_screenhouse_feature_vectors_disease_class_df disease_class, image_name, Image Features

3.2 Classification
The spectral classification, image classification, and combined anal-
ysis all use the same classification models. The following models
are used:

• XGBoost: xgb.XGBClassifier(objective=’multi:softmax’)
• Sklearn: KNeighborsClassifier(n_neighbors=3)

To monitor the model’s performance during training, we define
an evaluation set consisting of the training and validation data. We
use early stopping based on validation loss to prevent overfitting.
The early stopping rounds parameter is set to 5. The evaluation
metrics used are multi-class error rate (merror) and logarithmic loss
(mlogloss).

Other metrics; accuracy, precision, recall, and a confusion matrix
are recorded. The accuracy score measures the overall correctness
of the predictions. Precision shows the proportion of correctly pre-
dicted positive cases out of all cases predicted as positive. Recall
measures the proportion of correctly predicted positive cases out
of all actual positive cases. The confusion matrix visually repre-
sents the predicted versus actual class labels. We then calculate True
Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN) for each class.
To make it easier to interpret the the confusion matrix, we plot

two versions: one with actual values and another with percentage
values, giving 2 ways of seeing the the distribution of predictions.

We then provide examples of correctly and incorrectly classi-
fied images for each class. These qualitative examples allow us to
comment more on its performance.
Finally, we visualize the training and validation mlogloss and

merror over epochs, giving information about the model’s learning
progress and potential overfitting.

4 THE DATASET

4.1 Basics
The tables below show detailed information about our data-frames.

Table 4. Information on the field data-frame

Query Value
Number of rows 3638
Number of columns 7301
Number of unique values per column:
disease_class 3
week 14
cassava_variety 3
plant_number 10
leaf_number 3
image_label 3638
image_name 3638
expert_score 3
chemical_test 969
Value sets of some columns:
disease_class 1 (%46), 2 (%26), 3 (%29)
expert_score 1 (%54), 2 (%35), 3 (%12)

3



TScIT 39, July 7, 2023, Enschede, The Netherlands S. E. Yuceturk

Table 5. Information on the screenhouse data-frame

Query Value
Number of rows 1361
Number of columns 7299
Number of unique values per column:
disease_class 3
week 17
cassava_variety 3
plant_number 10
leaf_number 1
image_label 1361
image_name 1351
expert_score 4
chemical_test 1160
Value sets of some columns:
disease_class 1 (%48), 2 (%25), 3 (%28)
expert_score 1 (%87), 2 (%11), 3 (%4), 4 (%1)

The field data-frame has 3638 rows, while the screenhouse data-
frame has 1361 rows. The field data-frame contains a larger amount
of data compared to the screenhouse data-frame. However the
screenhouse data-frame has a longer observation period, a different
distribution of expert scores, and a wider range of unique values for
chemical test results compared to the field data-frame. For field, the
"leaf_number" column has three different leaf numbers. However,
in the screenhouse data-frame, the "leaf_number" column has only
1 unique value, suggesting that only one leaf per plant. In the field
data-frame, both "b_expert_score" and "g_expert_score" columns
have 3 unique values each, whereas in the screenhouse data-frame,
these columns have 4 unique values each.

4.2 Principal Component Visualization
Plots of the spectral data in 2-d and 10-d space and shown below.
3-d and 4-d plots can be found under the Appendix.

Fig. 1. Visualisation of field spectral data using PCA

Fig. 2. Visualisation of screenhouse spectral data using PCA

Fig. 3. Visualisation of field spectral data using t-SNE

Fig. 4. Visualisation of screenhouse spectral data using t-SNE
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The two plots above fail to show distinct cluster patterns. This
could be due to several factors. Firstly, the data points are distributed
in a continuous manner and this might make it challenging to iden-
tify distinct groups. Additionally, PCA and t-SNE are dimensionality
reduction techniques, and if the patterns in the data are spread
across many dimensions, these methods may struggle to represent
the data in a lower dimensional space. Moreover, datasets with high
variability or heterogeneity make it difficult for clustering algo-
rithms to identify clear clusters. Lastly, some datasets may lack clear
clusters due to their inherent complexity.

Fig. 5. Visualisation of field spectral data using PCA

Fig. 6. Visualisation of screenhouse spectral data using PCA

Visualising the data in 10 dimensions starts to show some clus-
tering for a subset of values. This suggests that the spectral data
clusters are too complex to be distinctly visualised in lower dimen-
sions. This is not unexpected since the original data readings have
a high number of dimensions.

4.3 Disease Spread

Fig. 7. Number of leaves per expert score by week for field and screenhouse
data

For both datasets, the number of healthy leaves steadily decrease
with each week. The number of healthy plants for screenhouse are
always a majority, even at the end of the experiment. For field data,
the healthy plants become a minority by the middle of the experi-
ment, and at the end, completely healthy plants are nonexistent.

Fig. 8. Chemical readings per disease class by week, for field and screen-
house data
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The above plots of chemical readings show a clear difference
between the healthy, CBSD, and CMD classes. The chemical readings
are taken as ground truth.

5 RESULTS
The table below lists the performances metrics for all training data.
The "filtered" label indicates that the rows in that data-frame for
which an image isn’t present have been removed. This insures parity
between field and screenhouse data when comparing them directly.
The expanded table with FP, TP, FN, TN can be found under the
appendix. Examples of disease class prediction have also been pro-
vided.

Table 6. Results table of classification models

Training Data Model Performance Metrics
Accuracy Precision Recall F-score

Field (Non-PCA) - Spectral
XGBoost 0.856 0.854 0.856 0.851
KNN 0.724 0.729 0.724 0.723

Average 0.790 0.791 0.790 0.787

Field (PCA) - Spectral
XGBoost 0.689 0.674 0.689 0.675
KNN 0.606 0.596 0.606 0.596

Average 0.648 0.635 0.648 0.636

Screenhouse (Non-PCA) - Spectral
XGBoost 0.816 0.814 0.816 0.812
KNN 0.704 0.711 0.704 0.705

Average 0.760 0.763 0.760 0.759

Screenhouse (PCA) - Spectral
XGBoost 0.730 0.727 0.730 0.717
KNN 0.644 0.632 0.644 0.625

Average 0.687 0.680 0.687 0.671

Field - Image
XGBoost 0.762 0.698 0.762 0.698
KNN 0.762 0.736 0.762 0.744

Average 0.762 0.717 0.762 0.721

Screenhouse - Image
XGBoost 0.647 0.639 0.647 0.643
KNN 0.718 0.705 0.718 0.711

Average 0.683 0.672 0.683 0.677

Field (Filtered) - Spectral
XGBoost 0.936 0.935 0.936 0.930
KNN 0.882 0.873 0.882 0.877

Average 0.909 0.904 0.909 0.904

Field (Filtered) - Image
XGBoost 0.861 0.817 0.861 0.808
KNN 0.851 0.810 0.851 0.824

Average 0.856 0.814 0.856 0.816

Screenhouse (Filtered) - Spectral
XGBoost 0.942 0.946 0.942 0.940
KNN 0.914 0.914 0.914 0.914

Average 0.928 0.930 0.928 0.927

Screenhouse (Filtered) - Image
XGBoost 0.714 0.659 0.714 0.671
KNN 0.771 0.757 0.771 0.761

Average 0.743 0.708 0.743 0.716

6 DISCUSSION
In this section the results are interpreted, compared, and commented
on.

6.1 Spectral
6.1.1 PCA vs. Non-PCA.
A performance drop when using PCA for the "Field - Spectral" and
"Screenhouse - Spectral" data is apparent. The accuracy, precision,
recall, and F-score values are consistently lower for the PCA data
compared to the non-PCA. The F-scores for the non-PCA data range
between 0.851 and 0.705. Those with PCA have F-scores between
0.596 and 0.717, indicating a decrease in the overall balance between
precision and recall.
The difference in performance between the non-PCA and PCA

versions can be attributed to the nature of Principal Component

Analysis. PCA reduces the dimensionality of the data by projecting
it onto a lower-dimensional space while maximizing the variance.
This reduction may cause a loss of information, including relevant
features that contribute to accurate classification. Consequently, the
reduced feature set used in the PCA version may lead to decreased
discrimination power and result in lower accuracy, precision, recall,
and F-scores compared to the non-PCA version.

6.1.2 Screenhouse vs. Field.
Comparing the performance values of the field and screenhouse
data, we can observe that field generally outperformed screenhouse
in terms of accuracy, precision, recall, and F-score. Particularly for
class 0 (appendix).

One potential reason for the difference in performancemay be due
to the field environment having a more diverse range of conditions,
leading to a larger variation in spectral patterns and potentially
making it easier for the models to differentiate between classes. In
contrast, the screenhouse environment is more controlled, resulting
in less variation and potentially making classification more chal-
lenging. Another reason could be that the spectral characteristics
captured by the sensors in the field and screenhouse environments
could be different, causing variations in the performance.

6.2 Image
We can see that the "Field - Image" model generally outperforms
the "Screenhouse - Image" model in terms of accuracy, precision,
recall, and F-score. Field data achieves an accuracy of 0.762 whereas
screenhouse has an accuracy of 0.647 and 0.718. It is worth noting
that KNN performs slightly better than the XGBoost model.
The number of images present are 1074 for field, and 351 for

screenhouse. Having more images in the field dataset increases the
chances of capturing a wider range of variations in plant growth,
lighting conditions, and other factors that affect image features. On
the other hand, the screenhouse dataset, with a smaller number of
images, might suffer from limited representation and potential bias.

6.3 Combined
Looking at field and screenhouse data, field spectral data performs
worse than screenhouse spectral data for both models. However,
for images the field data performs better than screenhouse. Overall,
there doesn’t seem to be a major performance difference between
field and screenhouse data. Image data from screenhouse performs
the worst out of the four data sets of this section. This is consistent
with the results from the Image section.

Comparing image and spectral data, we can observe that both
models achieve high accuracy scores for spectral, with values be-
tween 0.882 and 0.942. Accuracy values of models for image data
are between 0.714 and 0.861. Image data also has worse F-scores.
Between 0.877 and 0.940 for spectral and between 0.671 and 0.824 for
image. This indicates that for image data, the classification model’s
performances in terms of balancing precision and recall is worse.
The spectral data provides richer information for classification

tasks in this context. When compared directly, and only for those
leaves that a image exists, the spectral data performs better.

Spectral data captures the reflectance properties of different wave-
lengths, providing more detailed information about the leaf than the
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image taken from a phone camera. The spectral data, being more
specific to the properties of the samples, appears to be better suited
for distinguishing between different disease classes in this particular
comparison.

6.4 XGBoost vs. KNN
For the image data, the XGBoost model tends to have higher accu-
racy, precision, recall, and F-score compared to the KNN model on
average. Similarly, for spectral data, XGBoost generally performs
better than KNN. However, it’s worth noting that the performance
difference between the two models is relatively small. XGBoost
consistently shows slightly higher performance.

XGBoost is based on ensemble learning, and uses gradient boost-
ing algorithms. Ensemble learning is a learning technique that com-
bines multiple individual models to create a stronger predictive
model. Gradient boosting is a method where base models are trained
sequentially, and each subsequent model is trained to correct the
mistakes of the previous models. The models are combined by giving
more weight to the models that perform well. XGBoost generally
performs well with high-dimensional data.

On the other hand, KNN is a lazy learning algorithm that classifies
data points based on the majority vote of their nearest neighbors. It
is comparatively a simple algorithm that performs well when the
data has clear boundaries or local structures. It tends to work better
with low-dimensional data where local proximity plays the primary
role in determining the class labels.
Therefore, the reason why KNN performs worse may be due

to it struggling to capture the complex patterns present in high-
dimensional data, where picking up on global relationships are
necessary for accurate classification.

6.5 Example Prediction Cases
A collection of example cases of disease class predictions are given
below. It is worth noting that the correct predictions all have uniform
lighting, background and the photo contains only the leaf itself in
clear focus. Similarly, the incorrect predictions appear to have been
taken under different lighting conditions. The experimenter’s hand
is visible in some, and the background of the leaf is not always
entirely covered by the white sheep of paper.
The preprocessing done on both the images and spectral data

were minimal. To improve disease class predictions, expanding the
preprocessing of the images by standardizing lighting, removing the
background, cropping the leaf, aligning the image, and normalizing
colors should be considered. These steps will enhance image consis-
tency, reduce variations, and aid the model in accurately predicting
disease classes.

Fig. 9. Examples of disease class prediction

7 CONCLUSION
This study aimed to investigate the utility of spectral in comparison
to image data for classifying crop diseases, and explore the impact
of different classifiers on disease classification.

The results revealed that spectral data outperformed image data
in predicting diseases. Image data showed slightly lower perfor-
mance, indicating that the classification models struggled to balance
precision and recall when using image-based features. Spectral data
provided more detailed information about the leaves and proved to
be better suited for distinguishing between different disease classes.

Among the classifiers evaluated in this study, the XGBoost model
consistently performed better than the KNN model. This perfor-
mance advantage may be attributed to XGBoost’s ability to capture
complex patterns and relationships in high-dimensional data, which
is crucial for accurate disease classification.

This study contributes to the field by highlighting the advantage
of utilizing spectral data for early disease diagnosis in crop plants.
By demonstrating the superior performance of spectral data over
image data, we emphasize the potential of spectral readings for
timely disease detection.

Furthermore, the comparison of different classifiers provided in-
sights into the potential edge that ensemble learning algorithms like
XGBoost in handling high-dimensional data for disease classification
may have over "lazy learning".
Future research in this field can explore several avenues for im-

provement. Firstly, addressing the limitations of this study, such
as the relatively small size of the screenhouse image dataset, or
the limited preprocessing of both the image and spectral data can
enhance the generalizability and robustness of the findings.
Secondly, the study can be expanded by including other classi-

fication models of different types, which can provide a more com-
prehensive evaluation of the performance of various algorithms.
By including these additional models with different algorithmic
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types, we can perform a more comprehensive evaluation of various
classification approaches. This expanded analysis will provide a
better understanding of which algorithms are most effective for
crop disease classification, and potentially reveal alternative models
that outperform ensemble algorithms.
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8 APPENDIX

A EXPLORATORY ANALYSIS

Fig. 10. Leaves by week per disease class for field and screenhouse data

Fig. 11. Chemical readings by week for field and screenhouse data
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Fig. 12. Chemical readings of leaves per disease class by week for field and screenhouse data

Fig. 13. Mean, median and standard deviation of chemical readings by week per disease class for field data

10



Enhancing Early Disease Diagnosis: Analysis of a Cassava Plant Dataset TScIT 39, July 7, 2023, Enschede, The Netherlands

Fig. 14. Mean, median and standard deviation of chemical readings by week per disease class for screenhouse data

Fig. 15. Visualisation of spectral data using PCA in 3 PCs for field and screenhouse data
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Fig. 16. Visualisation of spectral data using PCA in 4 PCs for field and screenhouse data

B SPECTRAL CLASSIFICATION

Fig. 17. Cumulative variance explained by the number of principal components for field and screenhouse data
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Fig. 18. Examples of spectral data for field and screenhouse before reducing noise

Fig. 19. Examples of spectral data for field and screenhouse after reducing noise

C IMAGE CLASSIFICATION
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Fig. 20. Example images from field and screenhouse data

D COMPLETE TRAINING RESULTS

Table 7. Extended results table of classification models

Training Data Model Class Performance Metrics
TP TN FP FN Accuracy Precision Recall F-score

Field (Non-PCA) - Spectral

XGBoost 0 350 261 50 13 0.856 0.854 0.856 0.851
1 108 513 25 28
2 119 477 22 56

KNN 0 296 249 62 67 0.724 0.729 0.724 0.723
1 96 466 72 40
2 96 447 52 79

Average - - - - - 0.790 0.791 0.790 0.787

Field (PCA) - Spectral

XGBoost 0 307 206 105 56 0.689 0.674 0.689 0.675
1 91 493 45 45
2 67 440 59 108

KNN 0 280 172 139 83 0.606 0.596 0.606 0.596
1 62 498 40 74
2 67 413 86 108

Average - - - - - 0.648 0.635 0.648 0.636

Screenhouse (Non-PCA) - Spectral

XGBoost 0 129 109 18 11 0.816 0.814 0.816 0.812
1 50 186 19 12
2 39 190 12 26

KNN 0 109 101 26 31 0.704 0.711 0.704 0.705
1 36 186 19 26
2 43 168 34 22

Average - - - - - 0.760 0.763 0.760 0.759
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Screenhouse (PCA) - Spectral

XGBoost 0 116 100 27 24 0.730 0.727 0.730 0.717
1 45 181 24 17
2 34 181 21 31

KNN 0 117 75 52 23 0.644 0.632 0.644 0.625
1 20 191 14 42
2 35 173 29 30

Average - - - - - 0.687 0.680 0.687 0.671

Field - Image

XGBoost 0 159 9 43 4 0.762 0.698 0.762 0.698
1 0 209 2 4
2 5 161 6 43

KNN 0 147 19 33 16 0.762 0.736 0.762 0.744
1 1 210 1 3
2 16 150 17 32

Average - - - - - 0.762 0.717 0.762 0.721

Screenhouse - Image

XGBoost 0 43 3 13 12 0.647 0.639 0.647 0.643
1 3 43 12 13

KNN 0 46 5 11 9 0.718 0.705 0.718 0.711
1 5 46 9 11

Average - - - - - 0.683 0.672 0.683 0.677

Field (Filtered) - Spectral

XGBoost 0 158 18 10 2 0.936 0.935 0.936 0.930
1 2 183 0 3
1 16 163 2 7

KNN 0 150 18 10 10 0.882 0.873 0.882 0.877
1 0 181 2 5
1 16 155 10 7

Average - - - - - 0.909 0.904 0.909 0.904

Field (Filtered) - Image

XGBoost 0 160 3 25 0 0.861 0.817 0.861 0.808
1 0 183 0 5
1 2 164 1 21

KNN 0 154 7 21 6 0.851 0.810 0.851 0.824
1 0 182 1 5
1 6 159 6 17

Average - - - - - 0.856 0.814 0.856 0.816

Screenhouse (Filtered) - Spectral

XGBoost 0 52 14 4 0 0.942 0.946 0.942 0.940
1 14 52 0 4

KNN 0 49 15 3 3 0.914 0.914 0.914 0.914
1 15 49 3 3

Average - - - - - 0.928 0.930 0.928 0.927

Screenhouse (Filtered) - Image

XGBoost 0 47 3 15 5 0.714 0.659 0.714 0.671
1 3 47 5 15

KNN 0 46 8 10 6 0.771 0.757 0.771 0.761
1 8 46 6 10

Average - - - - - 0.743 0.708 0.743 0.716
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Table 8. Confusion matrices

Training Data Model Confusion Matrix
Actual Percentage

Field (Non-PCA) - Spectral XGBoost

KNN

Field (PCA) - Spectral XGBoost

KNN

Screenhouse (Non-PCA) - Spectral XGBoost
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KNN

Screenhouse (PCA) - Spectral XGBoost

KNN

Field - Image XGBoost

KNN

Screenhouse - Image XGBoost
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KNN

Field (Filtered) - Spectral XGBoost

KNN

Field (Filtered) - Image XGBoost

KNN

Screenhouse (Filtered) - Spectral XGBoost
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KNN

Screenhouse (Filtered) - Image XGBoost

KNN

Table 9. Log Loss, and Classification Error

Training Data Model merror mlogloss

Field (Non-PCA) - Spectral XGBoost
KNN - -

Field (PCA) - Spectral XGBoost
KNN - -

Screenhouse (Non-PCA) - Spectral XGBoost
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KNN - -

Screenhouse (PCA) - Spectral XGBoost
KNN - -

Field - Image XGBoost
KNN - -

Screenhouse - Image XGBoost
KNN - -

Field (Filtered) - Spectral XGBoost
KNN - -

Field (Filtered) - Image XGBoost
KNN - -

Screenhouse (Filtered) - Spectral XGBoost
KNN - -
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Screenhouse (Filtered) - Image XGBoost
KNN - -
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