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Abstract
The advances in deep neural networks (DNN) have enabled the de-
velopment of some of the most sophisticated systems currently used
in various industries. DNN systems are used in applications such
as autonomous driving, where traditional software engineering is
insufficient. DNNs, however, lack the explainability inherent in con-
ventional software methods. A problem linked with such networks
is the possibility of attackers introducing backdoors (attacks) that
hinder the decision process of the models. This research explores the
effect of visualization algorithms, such as Grad-CAM, on backdoor
mitigation methods, specifically for models that classify traffic signs.
The contribution of this paper is to show the explainability capabili-
ties of heat maps in the context of trojaned traffic sign DNN models.
Visualizing the network’s activations aims to solidify the work of the
backpropagation mitigation research. To achieve that, we introduce
a novel method of exploring individual feature maps’ activations,
offering evenmore crucial detail in the networkworkings. This paper
should aid the development of more robust DNNs for autonomous
driving systems.

Additional KeyWords and Phrases: DNN, Autonomous driving system, Back-

door mitigation, Grad-CAM, Grad-CAM++, Heat maps, Individual feature

map, Convolution, Traffic sign classification, Explainable artificial intelli-

gence, XAI

1 Introduction

This assignment is executed along with AUDI AG as part of the

KARLI project (link). The research is about visualisation of security

risks in the context of Deep Neural Networks (DNN) for traffic sign

recognition in autonomous driving systems.

Deep Neural Networks (DNN) have become an essential part of

developing systems for autonomous driving [12]. Researchers and

developers cannot use traditional software development methods to

derive complex functionalities such as traffic sign detection. DNN,

however, do have the problem that they are primarily black boxes

and therefore hard to understand and debug [1]. This is particularly

problematic in safety-critical applications. Their lack of understand-

ing of how they make decisions is dangerous, as it might be the

case that a DNN takes its decisions based on features which are

correlated to what should be detected and not the relevant input

itself [8].

This brings the issue of backdoors, which attackers or circumstances

can introduce in the training data of DNN. Backdoors ‘trick’ the

model into misclassifying its input ‘because it considers properties

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Fig. 1. The two crossing signs in their most common environments.

that should not be decisive for the output’ [12]. For example, in the

case of traffic signs, pedestrians crossing signs are more likely to

be present in an environment with urban background compared

to animal crossing signs which are usually placed in rural settings

(Fig. 1). This leads to the model classifying based on the background,

not the sign itself. This is an example of unintentional backdoors

(present due to a strong correlation to certain features for a few

classes). However, there can also be intentional backdoors (present

due to an attacker’s poisoning of training data) [3].

Contributions and objective: The objective of this BSc thesis is
to apply Heat Maps (HM) such as Grad-CAM on a case study about

traffic sign detection. HMs provide a way to visualize which part of

an image a neural image focuses on for its classification [9].

The contributions of this paper are:

(1) Introduce a novel method to visualize single feature maps (Sec.

8.2). We do this by modifying the original Grad-CAM (Sec. 6.2).

(2) Apply HM on a trained model which includes backdoors (also

called a trojan model) and identify triggers in feature maps that lead

to misclassification (Sec. 8.3).

(3) Show how feature map heat maps can identify crucial details

that are usually hidden when looking at layer heat maps (Fig. 12).

(4) Use grad-cam as a validation tool for identified compromised

neurons by Artificial Brain Stimulation [3] (Sec. 8.4).

(5) Visualize backdoors on benign images by artificially manipulat-

ing layer outputs (Sec. 8.5).

The research should aid the development of a defence mechanism

for backdoor mitigation in DNN for traffic sign detection [3].
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Research questions: The main question that this research aims to

derive an answer to is:

What is the effect of visual explanation algorithms, such as Grad-CAM,
and their contribution to defensive mechanisms against attacks in the
context of traffic sign detection DNN?
More questions of interest are:

• Are HM suitable for explainable traffic sign detection?

• Which particular version of HM computation provides the best

results for this case study and why?

• Which features of traffic signs are the ones AI method focus on?

• Do they focus on the right features?

• How could the robustness of traffic sign detection be improved?

• Are HM useful in identifying harmful trojan triggers that lead

to misclassification?

• Are HM useful in identifying more transparent triggers?

• Are HM useful in identifying a trigger without it being present

in the input image?

Justification: This research is important as it contributes to de-

veloping more robust and safe autonomous driving systems that

employ DNN. It aids the proper execution of critical human tasks

such as traffic sign detection. The possibility of misclassification

can lead to the loss of personal life or those of others, stressing the

research’s importance even more.

What is more, this type of technique has not been used in the con-

text of backdoor mitigation with Artificial Brain Stimulation and is

essential to know to which extent it can help this process.

Structure: This paper includes an introduction, seven core para-

graphs, a conclusion and future work.

After this introduction, the first section covers the relevant literature

for this research and its importance (Sec. 2).

The next section goes over the research methodology and approach.

There we discuss the two main streams of the project, research and

implementation, and how they complement each other (Sec.3).

Then a section is dedicated to the existing solution and discussion

on the state of the art. There we compare different Grad-CAM im-

plementations (Sec. 4).

Further, we give a more detailed description of Grad-CAM with a

focus on its functionality (Sec. 5).

After this section, we present the novel approach, which highlights

the activations of individual feature maps. We also introduce the

artificial stimulation of feature maps that allows visualizing a back-

door on a benign image (Sec. 6).

The next section discusses the CNN models we use to evaluate the

activations. It provides details about the model architectures, the

training data and the expected classifications (Sec. 7).

Then comes the section about experiments, where we present the

various visualisations and configurations of Grad-CAM. We discuss

the results and their importance to better understand backdoor is-

sues (Sec. 8).

The concluding paragraph highlights the results of this study by

answering the main research questions (Sec. 9).

Finally, we conclude the paper with proposed future work 10.

2 Review of Literature

The main background for this research is based on existing literature

on backdoor attacks and their respectivemitigationmethods, such as

[12], [5], [6], [4], [13], [7]. The previous work [3] of my supervisors,

Akshay Dhonthi and Ernst Moritz Hahn is especially important

as this research attempts to aid the development of their defence

mechanism.

As our main tool for the research is Grad-CAM and its derivatives,

the papers that formally describe these tools are essential [9], [2].

From them and the paper on sanity checks for saliency metrics [11],

we can derive conclusions on which tool is best for this research.

Since this project falls in the sphere of explainable AI or XAI, related

literature is reviewed [1], [10], [8]. These papers introduce the field

of XAI and its importance in the general field of AI. Moreover,

they discuss the dangers hidden in neural networks’ unexplored

mechanics.

3 Methodology & Approach

We divide this project into two main streams, research and imple-

mentation.

In the project’s first phase, we conduct essential research on the

problems at hand. The first topic we take a deeper look into is the

existing research on backdoors and then a deep down into the work

of Grad-CAM and Grad-CAM++. We identify the key differences

and highlights of the two algorithms and choose the most suitable

one.

While conducting the research, we begin testing on a custom traffic

sign recognition model (link) using TensorFlow 2.0. This model

allows us to gain an intuition of the capabilities of Grad-CAM.

In the next stage, after receiving satisfying results from the basic

model, we apply the heat map analysis to a pre-trained model. In

this stage, we test if we can use heat maps to visualize the triggers

of the attacks. The last two steps are mainly part of the implemen-

tation stream. Their contribution is essential to answering the main

research question of this study. Furthermore, we conduct a deeper

literature review.

The Grad-CAM testing utilizes different visualization techniques.

First, we focus on analyzing individual layers. Second, we compare

the different layers. This provides insight into the general mechanics

of the model. Ultimately, we mainly focus on analyzing individual

neurons and feature maps.

For this, we require an addition to the Grad-CAM mechanism since

Grad-CAM, as is, can only be used to evaluate single layers. However,

conducting proper testing deeper into the layers is essential for the

last stage of this research. Hence, we develop the individual feature

map evaluation. Section 6 focuses on the details of this contribution.

The final experiment demonstrates how with the help of the new

functionality, Grad-CAM can visualize the trojan trigger in benign

images. We achieve this by artificially stimulating target feature

maps.

The metrics for this research are the ASR (attack success rate) on

individual feature maps and the prediction probability of input

images that we pass to the models. The ASR is necessary as it

indicates the success of an attack that leads to a wrong prediction.
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Fig. 2. Grad-CAM vs Grad-CAM++. Grad-CAM++ appears to perform better.
(low quality image from the original paper[2]).

With higher ASR, the attack trigger should be more pronounced on

the heat map. In addition, the prediction value is crucial as it is part

of the gradient computation. Meaning it directly influences the heat

map activations.

4 Grad-CAM vs Grad-CAM++

The two leading solutions we consider for this research are Grad-

CAM and its increment, Grad-CAM++. Intuitively, the latter should

be a better version of the original Grad-CAM and thus be the pre-

ferred tool for the research. This section explains that although

Grad-CAM++ is more advanced than normal Grad-CAM, its ad-

vantages are not crucially beneficial. Further, we comment on a

prior experiment with different Grad-CAM implementations where

Grad-CAM++ achieved lower results than Grad-CAM on the mea-

surements proposed therein by the author.

To understand the increments of Grad-CAM++ over Grad-CAM,

first, this section gives an intuition behind one of the main aspects

of Grad-CAM. As described in the original paper [9], calculating

the weights vector is one critical part that defines the Grad-CAM

algorithm. In Section 5, we further explain this vector’s purpose and

why it is crucial for the functionality of Grad-CAM.

The algorithm uses backpropagation to calculate the weights. These

weights represent the unweighted average of the partial derivatives

(gradients) of the score for a particular class, with respect to the

feature map activations for a specific layer as shown in formula 1.

The increment that the researchers introduce with Grad-CAM++ is

the addition of weighting coefficients for the pixel-wise gradients

for class 𝑐 and convolutional feature map 𝐴𝑘
[2].

Fig. 3. Example comparison CAM methods. Grad-CAM achieves a higher
result on the combined metric, according to Gildenblat’s experiments.

These new weights bring two main improvements. First, the au-

thors of the paper claim that pixel-wise weighting is more model-

appropriate and consistent with the model’s predictions. And sec-

ond, Grad-CAM++ is better at recognising multiple objects for the

required class 𝑐 .

Fig. 2 directly compares Grad-CAM and Grad-CAM++. In the third

and fourth examples (top-down), the heat map covers a larger area

of the object. For the first two examples, Grad-CAM++ manages to

identify multiple objects much better.

Some metrics in the paper [2] also support these advantages. Nev-

ertheless, they are not particularly advantageous for the current

use case. The second improvement can be discarded easily due to

the nature of the data set that was used to train the traffic sign

recognition models. Each image has a single traffic sign. Section 7

gives more detail on the data.

Further, the first improvement is unimportant for this research as the

more significant activation area may lead to confusing visualisations

that do not focus directly on the trigger. Due to the weighted partial

derivatives, Grad-CAM++ gives more emphasis to certain features

[2]. More expansive heat maps present the increased number of

higher activations. This is good for general recognition of an object.

For example, if an object is situated in a complex environment and

it is needed to show that the desired object influences the model’s

confidence. However, this case falls outside the scope of this research.

In this study, we focus more onmore precise and focused activations,

not the whole object.

In addition, this tutorial from Jacob Gildenblat on the use of different

CAM methods and their comparison provides good experiments

that measure the two CAM methods (link). The last section covers

the results from two metrics proposed in a paper dedicated to sanity

checks for saliency metrics [11]. The metrics are Most Relevant First

(MORF) and Least Relevant First (LERF). The first one evaluates

the performance of the CAMs after removing the highest attention

pixels first, while the other focuses on removing the least attention

pixels first.

The tutorial’s author later combines these metrics into a single

final metric used to evaluate the performance of Grad-CAM, Grad-

CAM++ and other CAM methods. The evaluation shows that in

all tests, except the last one, which considered a class with lower

confidence, Grad-CAM outperformed Grad-CAM++. Fig. 3 gives an

example of one of the tests.
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All of these factors lead to the decision to use Grad-CAM to conduct

this study’s measurements, not Grad-CAM++.

5 Grad-CAM functionality

The previous section explains the justification behind the choice of

Grad-CAM as the visualization tool for this research. In this section,

we will review the details of how Grad-CAM works (Fig. 4).

Fig. 4. Grad-CAM overview. More details in papers [9] [2].

First, we provide the definition of the terms [9]. The class for which

we make the prediction is defined by 𝑐 , and the score for this class

is 𝑦𝑐 . 𝐴𝑘
represents the feature map activations of a convolutional

layer for the 𝑘th feature map. 𝑖 and 𝑗 are the pixel coordinates (width

and height) of the activations on the image, with 𝑍 being the total

number of pixels.

As we mention in Section 4, the algorithm uses backpropagation to

calculate weights. Equation 1 illustrates how these weights represent

the unweighted average of the partial derivatives (gradients) of

the score for a particular class with respect to the feature map

activations for a specific layer. Meaning the gradients are global-

average-pooled along the spatial dimensions to obtain the weights

tensor. If there are, for example, 32 feature maps in a layer, there are

32 individual weights in the tensor, each representing the weight

of one feature map, ‘extracted’ from the gradients. The weights

essentially capture the ‘importance’ of feature map 𝑘 for a target

class 𝑐 . This is why they are so crucial for the functionality of Grad-

CAM.

𝑤𝑐
𝑘
=

1

𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖 𝑗

(1)

Once the weights have been calculated, point-wise multiplication

is done with the original convolution outputs of the layer. This is

followed by a reduction summation operation to obtain the final heat

map (Fig. 5). ReLU function is applied since Grad-CAM considers

only the positively influential activations [9]. This heat map is then

upscaled to match the input image and is superimposed on top of it,

giving the final visualisation.

In terms of implementation, Grad-CAM requires the original image,

the preprocessed image, the model and the predicted class of the

image to derive a visualization. The classical implementation also

needs a layer name because the software derives heat maps for

particular layers.

This sums up the functionality of Grad-CAM. We present examples

of Grad-CAM visualizations in Section 8.

Fig. 5. Grad-CAM functionality model.

6 Novel architecture

This section will first explain why we introduce the novel feature

and how it contributes to the research. Then we give more details

on its functionality. It is vital to grasp the original functionality

of Grad-CAM to follow this section attentively. We conclude the

section by explaining the artificial activation of target feature maps

that allows the localisation of triggers on benign images.

6.1 Motivation
For the purpose of better understanding the influence of the triggers

on trojaned models, we need visualizations of single feature maps

of layers. Meaning being able to present heat maps that correspond

to the activations of an individual feature map. This component

requires delving deeper into the model’s workings than looking at

layers.

This research requires visualizations for single feature maps since

normal Grad-CAM can only visualize individual layers, which is a

high-level abstraction that is usually unable to grasp the details of

the model’s reasoning. This leads to Grad-CAM missing to interpret

essential features, such as a trigger of an attack, which are decisive

for the final prediction.

There are past attempts to present the activations of single feature

maps (link), but we could not find any in the context of Grad-CAM.

Moreover, there are none in the exact way that this study proposes.

6.2 Functionality of individual feature map heat mapping
We present the original calculation of the weights in Grad-CAM in

equation 1 and explain the functionality in Section 5 with the help

of Fig. 5. The current section details the functionality of the single

feature map capability.

After understanding the basic functionality, we realize that the

gradients and convolution outputs are independent. This makes

it possible to retrieve a particular value from the global-average-

pooled gradients, essentially the weight of the indexed feature map.

Then this value can be multiplied by the convolution output matrix

of the same index. This means that we isolate the contribution of a

single feature map, which is the goal. The revised original equation

[9] becomes:

𝐿𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀𝑠𝑖𝑛𝑔𝑙𝑒−𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑅𝑒𝐿𝑈 (𝑤𝑐

𝑘
𝐴𝑘 ) (2)

Here, 𝑐 is the class in question, 𝑘 is the index of the feature map

that we would like to visualize,𝑤𝑐
𝑘
is the weight of the feature map

(equation 1) and𝐴𝑘
is the activations matrix of the feature map also

referred to as the convolution outputs of the feature map.

We achieve a relatively simple solution after several more compli-

cated versions. It requires a clear understanding of Grad-CAM and
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the math behind it. We extract the gradients from the initial convo-

lution outputs and then calculate the weights. This process allows

the new algorithm to work since it keeps the feature maps’ matrices

separate. The contributions of all the feature maps are combined

only after the summation operation along the depth of the batch.

And since we are concerned with one feature map, the equation

does not require the summation at the end.

6.3 Functionality of artificial feature map stimulation for
benign image backdoor visualization

This feature was needed as we want to understand if it is possible

to visualize a trigger with Grad-CAM, even on benign images. We

accomplish this by manipulating the activations of target feature

maps in a specific layer.

To achieve this, we capture the convolution outputs of a layer and

the specific feature map matrix. From there, we do two types of

operations. Either replace all feature map activations with custom

ones or stimulate specific parts and nullify the others.

The model’s final prediction is combined with the convolution out-

puts to obtain the gradients. Thus, we need to get the prediction

influenced by the modified feature map. For this purpose, we con-

struct a new model, starting from the next layer after the target

one.

Finally, we pass the artificially stimulated feature map and the new

prediction into Grad-CAM to visualize the trigger on the benign

image.

7 Data set and CNN models

This section introduces the data set and themodels we use to conduct

the necessary experiments. The popular GTSRB (German Traffic

Sign Recognition Benchmark) data set includes a vast collection

of traffic signs that we utilize. We also describe the architecture of

three traffic sign recognition models. Table 1 provides a summary

of the models.

7.1 Data
The data set that the researchers used to train the models comes

from the German Traffic Sign Recognition Benchmark. The test

images are also from this data set.

Preprocessing reshapes all input images into dimensions of (32, 32, 3)
height, width and the third dimension representing RGB. Each image

consists of a single traffic sign.

There are 43 classes, ranging from different ‘Speed limit ...’ signs to

‘Children crossing’. In the trojaned models, the trigger would result

in misclassification, regardless of the actual sign.

Fig. 6 shows the trojaned images, which are typical sign images

with a trigger imposed on them. A coloured square in the corner of

the image represents the trigger. The trigger is quite apparent for

the first trojan model, while for the second one, the trigger is more

transparent.

7.2 Models
It is important to grasp the intuition behind Grad-CAM. Therefore,

first, we use a basic custom test traffic sign recognition model. This

basic model has the following architecture: 107147 total parameters,

5 convolution layers, and the number of features per layer ranges

(a) Trigger at the top left, repre-
sented by a yellow square.

(b) Trigger at the top right, rep-
resented by a vague blue-green
square.

Fig. 6. Example of images with an introduced trigger.

from 8 to 32. This model is trained only on benign data and performs

the function of a standard traffic sign recognition model.

The next model is the first trojaned model. It is trained on the more

apparent triggers. The model has the following architecture: 516139

total parameters, again 5 convolution layers, and the number of

features per layer ranges from 32 to 128. One of those layers has

as many as 128 feature maps. This model predicts a ‘Stop’ sign on

every input image with the trigger.

The last model is trained on the more transparent triggers. The

model follows the AlexNet architecture. It has the following archi-

tecture: 1264727 total parameters, 5 convolution layers, and the

number of features per layer ranges from 9 to 96. This model pre-

dicts a ‘No passing for vehicles over 3.5 metric tons’ sign whenever

the trigger is present.

Thesemodels are used to gather different results and understandings.

We present the final visualizations and conclusions in the following

section.

# parameters trojan class # features per layer

Basic

model

107147 - 8, 16, 16, 32, 32

Trojan 1 516139 Stop 32, 64, 128, 64, 32

Trojan 2 1264727 No passing ... 9, 32, 48, 64, 96

Table 1. Summary of the models, consisting of number of parameters, the
trojan class and the number of features per layer. For the basic model, there
is no trojan introduced. The trojan models predict the trojan class for every
input image when the trigger is present.

8 Experiments

This section goes over the experiments of this research and their

results. First, we show the intuition behind Grad-CAM with heat

maps from the basic model. Afterwards, we demonstrate the ‘single

feature map’ feature. Furthermore, we present the visualizations

of the trigger from the first trojan model, then the section shows

results from the second trojan model. There we explore heat maps

for specific compromised features.

In the experiments with trojan model 2, we make a case of the

relation between the attack success rate (ASR) and the prediction
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value of an image. The results show that a lower prediction value

leads to worse heat maps of the trigger due to having lower gradients.

However, with a high ASR, this effect can be circumvented. We

demonstrate this in the second to last experiment.

We conclude the section with visualizations of the trigger on be-

nign images without a backdoor. This experiment is important as

it demonstrates that if we know the compromised activations for a

feature, they can be used to identify a trigger on a clear image.

8.1 Grad-CAM heat maps for benign images passed to a
basic traffic sign recognition model

(a) Image with class ‘Stop’. (b) Layer: conv2d_2

Fig. 7. Heat map for basic model layer ‘conv2d_2’ with predicted ‘Stop’
label.

We use the basic model to understand Grad-CAM and answer

whether such software applies to traffic sign recognition models.

For this purpose, we pass a ‘Stop’ sign image to the Grad-CAM

implementation. The image is relatively high-quality compared to

the rest of the data set, and we use it to show the capabilities of

Grad-CAM best.

Fig. 7 shows the original image, and next to it is the heat map for

the basic model’s second convolution layer, ‘conv2d_2’. We can see

how in this specific layer, the model explores the text on the sign

but also focuses on the edges and the background.

Plotting all convolution layers produces Fig. 8. Even on this ‘higher’

level of abstraction of the model workings, the complexity of the

internals of CNNs is evident. Some layers focus on more specific

parts of the sign, while others take a more abstract approach [14].

(a) Layer: 5 (b) Layer: 4 (c) Layer: 3 (d) Layer: 2 (e) Layer: 1

Fig. 8. Heatmaps for all convolution layers of the basic model with predicted
‘Stop’ label.

8.2 Individual feature map heat maps
The previous section gave the intuition on how Grad-CAM can be

used to explain the layer activations of a model with regard to a

class label. In the following paragraph, we present the novel method

of recognizing the activations of single feature maps. We use the

basic model again as an example. Fig. 9 presents all the basic model’s

second convolution layer feature maps.

(a) FM 0 (b) FM 1 (c) FM 2 (d) FM 3 (e) FM 4 (f) FM 5

(g) FM 6 (h) FM 7 (i) FM 8 (j) FM 9 (k) FM 10 (l) FM 11

(m) FM 12 (n) FM 13 (o) FM 14 (p) FM 15

Fig. 9. Heat maps for all layer ‘conv2d_2’ feature maps of the basic model
with predicted ‘Stop’ label.

It is interesting to see the variety of features throughout the maps.

Usually, their values would all be summed up in Grad-CAM to

produce a single mapping for a layer. Here we can see how each

feature contributes to the model’s decision.

8.3 Visualizations of the trigger for trojan model 1
After exploring the main functionalities and our extension of Grad-

CAM with a simple model, we present heat maps for the first tro-

janed model. More about the model architecture and input data can

be seen in Section 7.

(a) Layer: 5 (b) Layer: 4 (c) Layer: 3 (d) Layer: 2 (e) Layer: 1

Fig. 10. Heatmaps for all convolution layers of trojanmodel 1 with predicted
‘Stop’ label. The second layer gives a clear indication of the trigger.

The main focus here is to see where and how the trigger of the

misclassification is activated. The desired results would be that for

an image with a trigger present, Grad-CAM would highlight the

area of this trigger.

We execute the first experiment on Fig. 6 and can identify the trigger

(red patch top left) even on the ‘layer’ level (Fig. 10). We understand

from the heat maps that the second layer has the most precise

representation of the trigger.

With the help of our addition to Grad-CAM, we can explore which

featuremaps contribute to this visualization and give amore detailed
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understanding of the model internals. The architecture summary

shows that this layer has 64 feature maps. We select a group of them

that best represent the results.

(a) FM 1 (b) FM 2 (c) FM 8 (d) FM 9 (e) FM 13 (f) FM 16

(g) FM 21 (h) FM 22

Fig. 11. Heat maps for all feature maps of layer 2 of trojan model 1 with
predicted ‘Stop’ label. FM 2, 9, 13, 21 locate the trigger.

A considerable part of the feature maps (Fig. 11) focus on the trojan

trigger. The heat maps indicate that the trojan trigger is the main

reason for the prediction. There are also activations in other areas,

which hints at the model’s deviation from the standard classification,

which would concentrate on parts of the sign. The trigger is a small

part of the image, but it is enough to fool the model. The findings

reveal the danger of trojaned models. Furthermore, the ‘colder’ areas

represent much lower or negative activations. Furthermore, since

Grad-CAM only considers the positive activations, only the trigger

has warmer mapping.

(a) Layer: 3

(b) FM 1 (c) FM 2 (d) FM 8 (e) FM 9 (f) FM 14 (g) FM 20

Fig. 12. Illustrating how the layer visualization is unsuccessful in identifying
the trigger, as it is mixed with other activations. While the layers’ feature
maps (FM) can reveal it.

Afterwards, we consider looking inside the layers that do not have

such a clear indication of the trigger, the third layer for example

(Fig. 12).

Interestingly enough, here we see the influence of the trigger on

the model itself more clearly. Looking at feature maps 14 and 20,

for example, they show how the model still tries to concentrate on

the sign itself, but the trigger imposes its influence. It is important

to state that the model can still predict benign images correctly.

The final misclassification is due to the fact that more activations

are focusing on the trigger, which on average, will remove the

importance of the ‘normal sign’ features.

8.4 Heat maps for specific compromised features for
trojan model 2

This model has been trained with a different set of trojan triggers.

The malignant images have a more transparent trigger. However,

even with such a trigger, the model is fooled. The maps below

represent these activations, focusing on specific feature maps with

a higher attack success rate, leading to a higher potential to be

corrupted by the trigger.

Layer Feature map ASR

Config. 1 conv2d_6 31 0.86

Config. 2 conv2d_9 70 0.57

Config. 3 conv2d_9 78 1.00

Table 2. Configurations tested with trojan model 2. The table indicates
the target layer and feature map. There, the trigger should have a higher
presence. Further, with a higher attack success rate (ASR), we expect the
trigger to be more prominent on the heat maps.

We execute the following experiments on the configurations from

Table 2. We demonstrate the first and the third as the second has

similar results to the first. For these configurations, it is crucial to

see indications of the trigger on the feature maps we mention in

the table.

(a) FM 18 (b) FM 24 (c) FM 31

Fig. 13. Heat maps for config. 1 of trojan model 2. The input image is sign
‘Speed limit (70km/h)’. The expected trigger localisation at feature map 31
is off. More accurate representation at FM 18 and 24.

The first experiment (Fig. 13) considers configuration one and vi-

sualisations for the trojan sign ‘Speed limit (70km/h)’. Here, the

algorithm should indicate the trigger on feature map (FM) 31. While

we can see the trigger, it is off. However, FMs 18 and 24 are much

more pronounced with the trigger. The prediction value of the trojan

label is vital for this experiment. For this image, it is approximately

26.8. The prediction value is important as we use it to extract the

gradients in combination with the convolution outputs.

The ‘Go straight or right’ sign of the second experiment (Fig. 14)

has a much lower prediction probability of 7.7; this time, we cannot

see the activations of the trigger on feature map 31.

The following experiment (Fig. 15) considers configuration three

and visualizations of feature maps 60-78 for the trojaned sign ‘Speed

limit (70km/h)’. Here, the algorithm should give a stronger indication

of the trigger on feature map (FM) 78. Furthermore, the ASC is a

very high 1.0.

We conduct the last experiment on configuration 3 (Fig. 16) to un-

derstand if a higher ASC compensates for the lower prediction value

of the ‘Go straight or right’ sign.
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(a) FM 18 (b) Fm 24 (c) FM 31

Fig. 14. Heat maps for config. 1 of trojan model 2. The input image is sign
‘Go straight or right’. The prediction value for this image is much lower.
This leads to no trigger visualization for FM 31 and vague heat maps for the
rest FMs.

(a) FM 49 (b) FM 69 (c) FM 78

Fig. 15. Heat maps for config. 3 of trojan model 2 with predicted ‘No passing
for vehicles over 3.5 metric tons’ label. A higher ASR leads to more confident
trigger localization at FM 78.

(a) FM 49 (b) FM 69 (c) FM 78

Fig. 16. Heat maps for config. 3 of trojan model 2 with predicted ‘No passing
for vehicles over 3.5 metric tons’ label. FM 78 identifies the trigger, despite
the lower prediction value.

The results show that with a very high attack success rate, the

algorithm can reveal the trigger even for the image with a much

lower prediction probability.

8.5 Visualizing the trigger on images without a backdoor
The examples below show the triggers of trojan model 1 and trojan

model 2 for two benign images. Section 6.3 explains how we got

these visualizations with artificial manipulation.

(a) Benign 1 (b) Trigger 1 (c) Benign 2 (d) Trigger 2

Fig. 17. Trigger visualization on benign images. The trigger for trojan model
1 is located at the top right, while for trojan 2 it is located at the upper-
middle right section.

9 Conclusion

We conclude that heat map (HM) visualization algorithms can be

used with trojaned traffic sign recognition models. Grad-CAM has

proved helpful in confirming the results and the reverse-engineering

of the activations that Artificial Brain Stimulation first identified.

This research found that heat maps are useful for explaining traffic

sign detection. Both in benign and trojaned images, the activations

reflected the models’ decisions. Further, the Grad-CAM implemen-

tation showed great results with small and more sophisticated CNN

models.

We deemed the traditional Grad-CAM to provide the best results for

this case study. Even though we considered the more sophisticated

Grad-CAM++, its advantages of multiple object recognition and a

more aggressive activation concentration were deemed unnecessary

in this case study. Additionally, prior research has shown that Grad-

CAM++ performs worse when tested than Grad-CAM.

Regarding feature focus, for benign images, the models focused pri-

marily on the shape of signs and the text/digits of the sign itself. For

trojaned images, there was a clear preference towards the location

of the trigger. In most cases, HMs visualized only the trigger. At

the same time, the rest of the images had either too low or nega-

tive activations, which showed the prevalence of these triggers in

the model training. However, since the trojaned models could still

recognize benign images and label them with their true value, this

could be seen throughout the different layers and feature maps by

some ‘residual’ activations on the actual sign features.

Moreover, the individual heat-map analysis proved to recognize

even more compromised feature maps for particular convolution

layers. We observed this when provided with feature maps with

supposedly higher attack success rates. In some cases, Grad-CAM

showed stronger trigger visualizations in adjacent feature maps and

not specifically for the desired one (Sec. 8.4).

The Grad-CAM implementation showed promising results in visu-

alizing more transparent triggers. They show the effectiveness of

the algorithm.

With the help of the artificial stimulation of target feature maps,

Grad-CAM managed to visualize triggers on benign images. This

can be used to evaluate compromised activations from previous

research and identify a backdoor without it being present in the

input image.

In conclusion, this paper showed that algorithms such as Grad-CAM,

which provide visualizations of the intruding triggers, can aid the de-

velopment of backdoor mitigation solutions such as Artificial Brain

Stimulation. The results from this paper should aid the development

of more robust traffic sign recognition models.

10 Future work

Future research direction can explore how Grad-CAM can be made

even more sensitive to more transparent triggers. Moreover, with

the help of the artificial feature map manipulation, researchers can

further evaluate custom compromised activations. Future research

can also focus on the effect of different manipulation methods on

the generated heat map.
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