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ABSTRACT

Software applications designed as a set of micro-services constantly
require supervision. Logging of applications can help development
teams explore and discover errors, exceptions, mistakes, and in-
efficiencies in the workflow within micro-services. Kubernetes is
the most popular technology to maintain, manage and work with
micro-services. Nevertheless, Kubernetes technology lacks in abil-
ity to effectively and efficiently provide logging information to
DevOps developers. To cope with this, there exist various solutions
to provide powerful logging capabilities. However, in this paper
main focus will be on two of the most popular stacks of logging
solutions that can also be integrated into Kubernetes infrastructure,
namely Elastic stack (also known as ELK stack) and PLG stack with
Prometheus. In addition to logging analysis, these stacks provide
an opportunity to alert on these logs based on specified rules, e.g.
alert on errors. The goal of this research paper is to understand
which stack is the most suitable for providing application logging
within Kubernetes infrastructure based on chosen metrics for a
Java application, as well as define which stack is more relevant in
terms of implementation based on a literature review. The results
showed that there is no significant difference between chosen met-
rics. However, the results of the analysis based on the literature
review showed that there is a large prevalence and usage of ELK
over PLG in various research papers.
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1 INTRODUCTION

Software applications play a huge role in people’s lives. Since the
beginning of software development, developers were focusing on
building monolithic applications, which have a single code base
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that includes multiple services [1]. These services can communicate
with external systems or consumers via different interfaces like
Web services, TCP connection, and REST API. Moreover, they sup-
port communication with each other, for instance, web application
service most of the time requires database service to store data.
However, with the growth of companies providing more and more
software solutions, the need for a different approach to software
development became extremely important. Due to the change from
a more conservative development method (Waterfall) to iterative
and with emphasis on responding to change over following a plan
(Agile) [13], companies tend to switch from monolithic software
to micro-services. That is where Kubernetes technology appears
as one of the best for managing and scaling micro-services appli-
cations. Kubernetes is an open-source system for automating the
deployment, scaling, and management of containerised applica-
tions [6]. Nevertheless, it is necessary to supervise the state of the
services, such as discovering potential errors, exceptions, the over-
all behaviour of a micro-service application, and other important
information, that would help development teams to understand
what should be debugged. Logging is one of the solutions to cope
with these problems. Log is defined as a record of performance,
events, or day-to-day activities by Meriam-Webster Dictionary [8].
It is designed to help to analyse malfunctioning of the application’s
behavior and to identify the part of application source code that
leads to an undesired behavior [3]. Kubernetes is a very popular
technology, but it does not contain an efficient solution to effec-
tively and easily apply logging technologies in its infrastructure
to analyse and store application logs. Although Kubernetes has a
built-in solution for gathering such data, e.g. writing to standard
output and standard error streams [5], it does not provide the pos-
sibility to process these logs, filter, cluster, and visualise them. To
cope with this, there exist various solutions, and the most popular
are the Elastic stack (Elastic search, Logstash, Kibana, Metricbeat)
[9, 14] and the PLG stack (Promtail, Loki, Grafana) [7, 10, 11] with
Prometheus. These approaches can help enhance logging and fill
the gap of missing functionality in a Kubernetes setup. Moreover,
these stacks provide opportunities to alert on application logs, the
best examples would be notifying users in Slack, Jira, and Email.
However, the application of logging stacks integrated into Kuber-
netes is popular among DevOps developers and in general among
programmers, it lacks scientific research. The goal of this research
paper is to analyse and compare these stacks in terms of system
metrics. The main focus of this research will be on the implementa-
tion of both stacks within Kubernetes infrastructure for a simple
Java application on a physical device MacBook Air 18. Moreover,
the literature review analysis will be conducted to discover which
stack is more relevant in terms of implementation for different use
cases.
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2 BACKGROUND
2.1 Terminology

Before continuing with the problem statement section, it is nec-
essary to establish the terminology that will be used further in
this paper, so the reader not familiar with DevOps has an idea of
what was used during the research. Therefore, looking ahead, in
this section technologies used will be listed with their tools and
supported with respective documentation from official sources. It is
worth mentioning that in this section only the description of tech-
nologies and tools will be observed, the steps taken to implement
them will be described in more detail later in this paper. The list of
used technologies and tools:

e Docker

e Kubernetes

e ELK

e PLG & Prometheus
e Java application

2.1.1 Docker. Docker [4] is an open platform for developing,
shipping and running applications on a physical/cloud machine or
just a node. It provides the ability to package the application called
containerisation. It is worth mentioning that there exist various
alternatives to it, such as Buildah, LXD, etc. Docker consists of
different objects, each with the objective to make Docker work.

o [mage is a read-only template with instructions for creating
a Docker container.

e Container is a runnable instance of an image. It can be cre-
ated, started, stopped, moved, or deleted using the Docker
API or CLL

e Docker-compose is a tool for defining and running multi-
container Docker applications. In Docker-compose, a YAML
format file is used to configure the application’s services.

o Docker hub is a hosted repository service provided by Docker
for finding and sharing container images, as well as pushing
and pulling images.

2.1.2 Kubernetes. Kubernetes or just K8s, as defined in the In-
troduction section, is an open-source system for automating the
deployment, scaling, and management of containerised applica-
tions [6]. Here and after Kubernetes will be referred to as K8s, the
official short name. In this section, only the K8s objects used in this
research will be described.

e Pod is a group of one or more containers, with shared storage
and network resources, and a specification for how to run
the containers. A Pod’s contents are always co-located and
co- scheduled, and run in a shared context.

o Kube-proxy is a K8s network proxy that runs on each node.
This reflects services as defined in the K8s API on each node
and can do simple TCP, UDP, etc.

o Minikube is a lightweight K8s implementation that creates a
VM on a local machine and deploys a simple cluster contain-
ing only one node.

2.1.3 ELK. ELK or Elastic stack [14] is a stack of logging solutions
made by Elasticsearch company. There exist different products,
however, in this paper, only 4 of them will be used.
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o Elasticsearch is a distributed, RESTful search and analytics
engine. Moreover, it centrally stores the data for lightning
fast search, fine-tuned relevancy, and powerful analytics that
scale with ease.

e Kibana is a free and open frontend application that provides
search and data visualisation capabilities for data indexed in
Elasticsearch and acts as the user interface for monitoring,
managing, and securing an Elastic Stack cluster.

e Logstashis afree and open server-side data processing pipeline
that ingests data from a multitude of sources, transforms it,
and then sends it to chosen stash.

e Metricbeat is a data shipper for collecting and shipping vari-
ous system and service metrics to a specified output destina-
tion.

2.14 PLG & Prometheus. PLG stack is a stack of logging solu-
tions provided by Grafana labs company [11]. In addition to that, for
purpose of retrieving the system metrics, Prometheus technology
provided by SoundCloud company will be used [7].

e Grafana is an open-source frontend application to query,
visualise, alert on, and understand data pipelined to it.

o Loki is a horizontally scalable, highly available, multi-tenant
log aggregation system inspired by Prometheus. It is de-
signed to be very cost effective and easy to operate.

e Promtail is an agent which ships the contents of local logs
to a private Grafana Loki instance. It primarily is able to
discover targets, attach labels to log streams, and push them
to the Loki instance.

e Prometheus is a free software application used for event mon-
itoring and alerting. It records metrics in a time series data-
base built using an HTTP pull model, with flexible queries
and real-time alerting.

2.1.5 Java application. Java application will be used for test-
ing purposes and represent the logs’ spamming application with
different log levels, namely info, warn, debug, and error, which
is the most popular and widely used. The program was created
specifically for this research to pipeline a large number of logs with
different chances of appearing. The probability of the log with info
level is 50%, both warn and debug levels are with a probability of
20%, and the error logs are with a probability of 10%. Moreover,
each level has its number of times to be printed into the console
log, namely info - 100, debug - 50, warn - 30, and error - 10. The
process iterates infinitely until manually stopped with a delay of
5 seconds between each log’s print. The application runs twice in
different pods with different configurations.

3 PROBLEM STATEMENT

DevOps requires a more integrated solution for infrastructure and
operations, and therefore the need of analysing logs increases. Find-
ing the right solution appears to be challenging and complex, as
existing solutions require different resources of a node, have lim-
itations on where they can be deployed, and require substantive
knowledge of the development team for proper implementation. In
the monolithic applications, the logs are aggregated in one place,
while in micro-service architecture the applications have their own
logs aggregated in different places in non-persisting containers.



Analysing and alerting on application logs within Kubernetes infrastructure

The ELK and PLG stacks can help solve this problem, but they lack
scientific research.

The problem statement will lead to the following research ques-
tion:

What is the difference between ELK and PLG stacks, based
on the performance and implementation relevance?

To answer this question, it is necessary to subdivide it into
smaller sub-questions. Each subquestion will explore the problem
statement in depth observed from different perspectives, namely:

(1) Is there a significant difference between stacks in terms of
performance?

(2) What is the prevalence and usage of the ELK stack and PLG
stack in various research papers, and how do they compare
in terms of their implementations across different domains
and use cases?

4 RESEARCH METHODS

This research will be divided into 2 stages according to the subques-
tions mentioned above. The results of each subquestion will help to
answer the research question of this paper. For the 1st subquestion,
it is necessary to analyse the performance of each stack deployed
on a shared single physical node when integrated into K8s infras-
tructure for a Java application. To conduct such analysis, specific
metrics of a physical node are chosen, including a hypothesis to
be tested with these metrics with the aforementioned logger appli-
cation, providing a practical foundation for the research. For the
2nd subquestion, a systematic literature review will be conducted
to understand the relevance of each stack based on different im-
plementation scenarios. A literature review will help to discover
which stack is more popular for various implementations. Thus,
the focus will be made on the number of appearances in chosen
databases, as well as providing an overview of the most popular
IT-related sectors where the combination of K8s and either of the
stack is used and deployed. It is necessary to mention, that only
research papers will be used in the literature review and not the
documentation of mentioned technologies and tools.

5 PERFORMANCE ANALYSIS

The performance analysis will consist of 3 hypothesises per each
chosen metric to be tested. These metrics are essential for under-
standing the differences between stacks in terms of performance.
The chosen metrics are:

e CPU Usage: measure the percentage of the total CPU capac-
ity that is being used when the stacks are deployed. Lower
CPU capacity indicates that the stack requires fewer node
resources.

e Indexing Latency: measure the time taken by each stack to
process and index log events. Lower latency indicates faster
processing and indexing capabilities.

e System Load: system load is a measure of the amount of
computational work that a computer system performs. In
this case, the processes are running K8s and stacks.

To avoid confusion, it is necessary to understand the difference
between CPU Usage and System Load. CPU usage refers to the
percentage of time the CPU is actively executing tasks or processing
instructions, while System Load represents the amount of work
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being performed by both running and waiting processes. Moreover,
the System Load takes into account not only CPU usage but also
other system resources, such as disk I/O, network activity, and
memory usage. All three metrics are available in Kibana for the
ELK stack and in Grafana for PLG. Each hypothesis will be tested
with a suitable statistical method. For research, it is intended to
conduct hypothesis testing with two data sets. There exist two
methods, i.e. two-sample t-test and paired t-test. Generally, the two-
sample t-test is used when the data of two samples are statistically
independent, while the paired t-test is used when data is in the
form of matched pairs [15]. The method is chosen to be a 2-sample
t-test, since the gathered data sets are independently deployed on
the node. Moreover, the advantage of this method is that it will
help to understand if there is a significant difference between each
stack in terms of each metric. All tests will be conducted using the
MacBook Air 18 as the node where stacks will be integrated. The
data samples will be gathered in a timeframe of 10 minutes.

5.1 Setup Limitations

Before continuing with the setup section, it is necessary to mention
the limitations faced during the integration of stacks on the node.
The initial plan was to integrate each stack into the K8s minikube
cluster and run the Java application at the same time, as stacks are
better in performance and simplicity of integration when deployed
within the same environment. However, during the integration
of the ELK stack into the minikube, it was found that there are
not enough resources on the node, as it requires higher CPUs and
RAM for deployment. Therefore, it was decided to run the stack
as the Docker-compose file within Docker and connect it to the
Java application within the minikube. To keep the stacks within
the same environment, i.e. in Docker, it was decided to also run
PLG in Docker as a Docker-compose file. However, during the
implementation of Promtail and the lack of documentation on it,
as well as the time limitation given on research, it was not possible
to perform the connection between the Java application inside of
the minikube to the Promtail running inside Docker. To make PLG
work and save time, it was decided to run PLG inside the minikube,
as was intended initially. This limitation does not necessarily have
a great impact on the performance, but for the sake of research
accuracy, it would have been better to have the application run in
the same environment.

5.2 Setup

In this section, the setup, made for testing the hypothesises, will
be shortly described to give an overview of how Docker, K8s, and
both stacks operate with each other. First of all, the Docker desktop
application was installed on the node. After that, the K8s’ minikube
Docker image was pulled into the Docker using the CLI in the node’s
terminal. As it was mentioned in the limitations section, the ELK
stack was deployed within Docker via the Docker-compose file, con-
taining the configurations for Elasticsearch, Kibana, Logstash, and
Metricbeat. After that, using the Helm package manager the config-
uration file containing configurations for Grafana, Loki, Promtail,
and Prometheus was deployed as pods within minikube using the
CLI in the terminal. After that two different Java applications were
dockerised (containerised using Docker), pushed to the Docker hub
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repository, and then pulled with the help of a configuration file as
an image to run a Java application pod within minikube. As it was
mentioned earlier, both applications have the same functionality,
but different configurations according to Promtail and Logstash
documentation. The connection between Logstash and Java appli-
cation was established using the TCP protocol and managed by
kube-proxy for service discovery. The connection between Promtail
and Java application was established automatically, as Promtail and
Java application are running on the same cluster, i.e. minikube. The
deployment of each stack was successful, so Logstash and Promtail
can gather Java logs and pipeline them to respective services.

5.3 Hypothesis Description

In this section the description of the hypothesis will be shown and
the steps to perform the testing procedure will be listed. The testing
procedure will be the same for each metric with respective data
sets.

(1) Model: two data samples will be gathered while the applica-
tion is running within the given timeframe with respect to
each stack per each metric

(2) Hypothesis:

(a) Ho: the mean (p,;x) metric’s value of ELK is equal to the
mean (pp14) metric’s value of PLG (terk = ppig)

(b) Hip: the mean (y,jx) metric’s value of ELK is significantly
different from the mean (p,14) metric’s value of PLG (gerx #

Hplg)
(3) Significance level: @ = 5%
(4) Notation:
(a) Sample size - ny
(b) Sample mean - Xy
(c) Sample standard deviation - sy

(5) Test statistics:
Pooled standard deviation is a measure of the variation,
spread or dispersion of the data around the mean, sp:

Sp = \/(nl - l)sf + (ng — 1)3%/(n1 +ny—1)

Test statistic is a statistical test that is used to compare the
means of two groups, t:

t=(x - Xz)/SP\/l/nl +1/n2
(6) Compute p-value: reject Hy = if the p-value < @ = 5%
(7) Draw statistical conclusion.

5.4 Results

In this subsection, the results and calculations of statistical tests
for each metric will be presented (see Table 1). The data gathered
is shown in Appendix A at the end of the paper (see Fig. 3). All
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calculations are made according to formulas stated in the testing
procedure.

Metrics
Statistical
atstica CPU Usage | Latency Indexing | System Load
values
n Nejj = 10, Nelk = 41, Neike = 17,
Nplg = 10 Nplg = 41 Nplg = 17
B Xeik = 40.72, | Xepp = 9.3956, Xelk = 23.0317,
X _ _ -
Kplg = 43.92 | Kpig = 7.8802 Xplg = 235705
s Selk = 15.659, | Sepp = 12.529, Selk = 6.3111,
Xplg = 11.701 | s = 11431 Splg = 7-5003
Sp sp = 13.822 | sp = 119925 sp = 6.9312
t t=-0.517682 | t =0.572097 t =-0.226644
p-value p=0.610984 | p=0.56886 p = 0.822142
Conclusion | Reject Hy Reject Hy Reject Hy

Table 1: Results overview

After the conduction of the hypothesis testing with the stated
testing procedure using a two-sample t-test and from the results
of testing each metric, it can be concluded that concerning the
chosen metrics, there is no significant difference between stacks
deployed on the shared physical node. Both stacks were deployed
independently and could not affect the performance of each other
during the data gathering. All the data were gathered as mentioned
above in a timeframe of 10 minutes. The results were expected,
as they were deployed on a shared physical node with limited
resources and a single cluster. In addition, the stacks are similar
in terms of approaches to building a logging solution, i.e. search
engines on non-relational databases, using JSON format files for
faster and more efficient parsing, etc. Two of the chosen metrics are
related to the performance of the physical node when stacks are
deployed, and the latency metric is mostly related to the processing
powers of the stack itself. From the results, it is seen that even for
different kinds of metrics there is no sufficient evidence that there is
a significant difference between stacks. Nevertheless, section 8 will
describe how various aspects of deployment could have affected
the results.

6 LITERATURE REVIEW

In this section literature review analysis will be conducted. The
purpose of the analysis is to explore which stacks are more relevant
in terms of practical implementation on various cases and to provide
an overview of these cases. This will help to provide a theoretical
foundation for the research. As it is was mentioned before, the
method is chosen to be a literature review, as it will help provide a
summary and synthesis of the existing knowledge.

6.1 Search Terms

To conduct a literature review it is necessary to state the search
terms. In this research, the focus is mainly on two aspects: K8s and
both stacks. Since the objective is to analyse existing literature, a
state which stack is more relevant in terms of implementation, and
in what are these cases, the search terms would contain “Kubernetes
or K8s and” any of the following terms:
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ELK

PLG
Elasticsearch
Logstash
Kibana
Promtail
Grafana
Loki
Prometheus

6.2 Database Search

In order to locate the relevant research papers, the search was con-
ducted in the following databases: IEEE, ScienceDirect, Wiley, and
JSTOR. Moreover, the filters were limited to finding papers starting
from 2014, the year when Kubernetes was officially published as
open-source software, and to research papers written in English.

6.3 Inclusion & Exclusion Criteria

The inclusion and exclusion criteria are defined to find papers
focused on the implementation of ELK or PLG within Kubernetes
infrastructure in IT-related sector (see Table 2).

Exclusion criteria
Research must exclude
conference proceedings,
news, documentations,
and book chapters

Inclusion criteria

Research must contain
only research articles

Research must contain an
example of either of stack
implementation within
K8s
Research must be done in
English
Research must be done
after 2014

Full-text is available -

Table 2: Inclusion & Exclusion Criteria Overview

6.4 Screening Process

The screening process was conducted with an emphasis on inclusion
and exclusion criteria and used the aforementioned search terms.
Moreover, to filter the gathered research papers PRISMA four-phase
flow diagram [12] will be used and a research paper by Carrera-
Rivera A. (2022) was used as an additional guidance [2]. All articles
were imported into the Mendeley software for screening.

Following the four-phase flow diagram, the following steps were
conducted (see Fig. 1). The search resulted in 177 articles from the
aforementioned search terms. After that, 69 papers were deleted as
duplicates. Next, the papers were assessed and checked for eligi-
bility based on inclusion and exclusion criteria. Out of 108 papers
that were left after removing the duplicates, 76 of the papers were
removed as assessed as not eligible for this study. Therefore, only
32 papers will be analysed in the literature review.
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Figure 1: Four-phase flow diagram

6.5 Results of Usage Prevalence

The analysis of the included research papers shows that all of the
papers after 2017, with the biggest rate of 30.03% were published in
2021. All of these papers contain information on the implementation
of Kubernetes and either stacks or any technology from these stacks.
In the analysis, the results were categorised into either the full
stack or some of the technologies from these stacks, or the mix
of technologies from both stacks. The analysis concludes that in
53.1% ELK stack or any technology included in the stack was used,
in 31.3% PLG stack or any technology included in the stack was
used including Prometheus, and in 15.6% the mix of technologies
included in both stacks were used (see Fig. 2), which mostly was
the mix of Elasticsearch and Prometheus. It can be seen that in over
a half of use cases, the ELK stack was implemented for particular
solutions.

6.6 Results of Stacks’ Implementation

In this section, the included research papers were analysed in terms
of the use cases in which the stacks were implemented. The anal-
ysis showed that the use cases’ topics are extremely diverse and
capture different domains. The largest number of papers were re-
lated to the Monitoring and Cloud-edge Environment (3 papers
per each). The next were Security Architecture, Data Analysis, Net-
working, Blockchain, and VMi Management (2 papers per each).
Lastly, the use cases‘ topics that were mentioned only once in the
research papers’ list and could not be clustered further are Trigger
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Mix of both: 5 - 15.6%

T ELK:17-531%

_~

PLG: 10-31.3%

WEK PG Mix of both

Figure 2: Pie chart of technologies used in papers

System (Physics related), Data Visualisation, Data Management, Au-
tomatic DFD Extraction, Machine Learning, Log analysis, Malware
Exposure, Cloud Scheduling, Cloudification Middleware, Workload
Simulation, Integration with Raspberry Pi, Auto Scaling System,
and Science Platform (Astronomy) (1 paper per each). From such a
distribution, we can derive possible patterns if there is any trend
for a particular stack usage for particular use case (see Table 3), use
cases mentioned only once will not be considered.

Stack Usage per 1 paper
Monitoring Prometheus & | Mix of both | Prometheus &
Grafana full stacks Grafana
Cloud-edge | Elasticsearch | Elasticsearch Grafana
environment & Kibana & Kibana
Securit Full ELK .
Architectﬁre stack Elasticsearch )
Data Full ELK Full ELK
Analysis stack stack )
Networking Prometheus & Elasti?search )
Grafana & Kibana
. Elasticsearch | Elasticsearch
Blockchain & Kibana & Logstash )
VMi Full ELK
Prometheus -
Management stack

Table 3: Stack usage across domains

It can be observed from the table that the prevailing stack is

ELK. For instance, in Data Analysis-, Security Architecture-, and
Blockchain-related use cases the authors of the research prefer
using either a full ELK stack or a combination of ELK products.
In the case of PLG, it can be seen that this stack and its products
separately prevail in Monitoring-related use cases. For the other
use cases, it can be seen that there is no specific preference over
the stack, so both ELK and PLG products were used to implement
particular use cases.
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To summarise, the literature review was conducted, and out of
177 located research articles, 32 were eligible to be analysed con-
cerning the inclusion and exclusion criteria. Based on the analysis,
there is a large prevalence and usage of ELK over PLG in various
research papers (over a half = 53.1%). Moreover, when compared to
specific use cases, the ELK still shows a higher rate of usability and
implementation in similar and different use case domains.

7 RECOMMENDATIONS

In this section, the recommendations concerning the stacks will be
discussed. ELK and PLG have different implementations in terms
of the languages they were written in, thus they provide differ-
ent functionality as well as compatibility with other technologies.
Therefore, to implement a particular solution for a specific use case,
it is necessary to understand how each product within the stack
works, which functionality it provides, and which resources are
needed for deployment. It is needless to say, that the substantive
knowledge of Docker and Kubernetes is required from the devel-
opment team to be able to manage the containers and pods and
configure them. From a personal perspective, the ELK stack seems
more complete as all solutions are part of a single stack and have
their necessary functionality, which helps to reach a goal with-
out separate products. Other products can be deployed as well if
needed, but usually, it is not the case. However, the PLG stack pro-
vides a larger flexibility in terms of different implementations, as a
great number of products can be connected to Grafana, and these
products can be mixed to achieve a required objective. Another
advantage of Grafana against Kibana is the dashboard flexibility
since it provides the opportunity to create dashboards with required
metrics and parameters. Nevertheless, to be able to create such a
dashboard it is required to know Grafana QL language, which is
very time-consuming and was a limitation during this research. It
is certain that stacks serve the common solution and are extremely
popular among developers, to be able to efficiently and correctly
deploy them, it is required to refer to its documentation.

8 EVALUATION

This section elaborates on the limitations faced during the research.
The main limitation is related to the given timeframe of the research.
Within the 8 weeks provided to conduct the research, most were
spent on getting familiar with Docker, Kubernetes, ELK, and PLG
products, and for the deployment of it on the node. Docker and
Kubernetes are the backbones of DevOps development, and it is
crucial to obtain enough knowledge to be able to deploy applications
as well as configure them. Networking knowledge is required as
well, since all the Docker and Kubernetes objects, e.g. minikube,
have their networking parameters, such as IP addresses, ports, etc.
Without this knowledge the implementation becomes challenging.
(Regarding the 'S¢ subquestion)

o The lack of MacBook Air 18 resources led to the inability to
do quick manipulations with the Docker and Kubernetes ob-
jects, such as starting a pod/container, stopping it, restarting,
and deleting. For instance, sometimes the process of stop-
ping the set of containers where ELK was deployed could
take up to 15-20 minutes or stuck in an infinite loop of being
stopped.
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e FLK (Kibana) and PLG (Grafana) provide different imple-
mentations of metrics provision. Kibana has a default set
of dashboards with important metrics to explore the perfor-
mance of either CPU usage or Networking, Grafana does not
have such default dashboards. Such dashboards can only be
either manually created (within a given timeframe it would
impossible) or found suitable in the dashboard marketplace
(dashboards are free). Nevertheless, searching for dashboards
that would match the ones Kibana provides was challeng-
ing, as most of them require their own tools setup, such
as InfluxDB and Telegraf, which are not included in this
research.

2nd

(Regarding the subquestion)

o The timeframe provided for this research led to the reduced
size of literature review sample size. Without this limitation,
the research with a larger number of research papers might
have been statistically more accurate and, thus, be more
representative not only in terms of the stacks’ usage and
implementation but also in which domains these stacks were

deployed.

9 CONCLUSION

In this paper, the two most popular stacks of logging solutions were
considered and analysed from two different perspectives. For the
practical foundation, the statistical analysis was conducted based
on the chosen metrics to establish if there is any significant dif-
ference between the stacks in terms of performance. The chosen
statistical method was a two-sample t-test. The results of the hy-
pothesis testing showed, that for each metric there is no significant
difference between the stacks. For the theoretical foundation, the
literature review was conducted to establish which stack prevails
in terms of usability in various research papers, and compare them
in terms of their implementations across different domains and use
cases. The analysis showed that the ELK stack prevails in terms of
usability across different research papers showing 53.1%, whereas
the PLG showed only 31.3%, and the mix of the products imple-
mented showed 15.6%. From the clustering of the use cases where
the stacks were implemented, it was discovered that the ELK also
prevails in terms of usability, especially in such cases as Data Anal-
ysis, Security Architecture, and Blockchain. Nevertheless, the PLG
products were used with the same amount of appearance as ELK
(for instance, in Networking it is 50/50: Grafana and Prometheus
and Elasticsearch and Kibana). In conclusion, answering the main
research question of this paper, the results showed that in terms
of practice, there is no significant difference between the stacks,
and at the same time there is a large prevalence and usage of ELK
over PLG in various research papers, as well as when compared to
specific use cases, the ELK still shows a higher rate of usability and
implementation in similar and different use case domains.

9.1 Future Work

The extended timeframe and support from DevOps professionals
would hugely improve the accuracy of results.

o The extended timeframe would highly increase the sample
size to conduct a stronger literature review.
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e It is necessary to have a team of proficient developers to be
able to ask for a piece of advice and recommendation on how
to properly set up the technologies and deploy them.

This would enhance the analysis and show more useful and valu-
able results. Moreover, in the future, such analysis would help to
formulate a methodology for developers, such as guidance on how
to deploy and in which domains which stack is more suitable.
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CPU Usage (%) Latency System load
Indexing (ms) (1m)

ELK 72.8,61.1,39.3,47, 0.71,0.73,1.32, 19.02, 20.66, 22.98,
38.3, 35.9, 33.4, 14.74,0.27, 3.74, 15.95, 25.13, 27.17,
28.5, 28.8, 22.1 2.99, 6.57, 0.68, 35.97, 30.22, 24.95,

0.41, 10.06, 1.19, 14.82, 19.58, 29.09,
0.81, 0.32, 3.78, 31.7,22.81, 17.75,
4.55, 5.93, 37.58, 13.26, 20.48
45.69, 1.47, 0.33,

3.46, 13.95, 32.41,

26.97,18.04, 4.21,

7.62,1.32,7.32,

6.62, 4.24, 23, 45.1,

18.63, 2.18, 0.81,

0.45,1.31, 1.02,

22.69

PLG 48.4,42.9, 38.5, 0.48, 4.91, 0.674, 37.9,22.1,13.5,
65.2, 48.1, 38.8, 7.7,0.77,0.674, 20.7,17.3, 37.4,
41.9, 58.3, 29.5, 0.77, 9.63, 0.963, 18.5, 22.3, 32.8,
27.6 0.674,0.77,5.78,  16.7,21.7,20.2,

0.578, 40.1,0.309, 33.0, 20.5, 17.7,
37.9,0.285,0.285, 19.5,28.9

1.93,7.92, 2.12,
7.44,32,34.1,11.3,
2.1,12.41,0.55,
2.31,1.01, 0.69,
1.89, 24.76, 1.05,
4.23, 10.59, 0.78,
3.46, 29.92, 15.8,
1.48

Figure 3: Data used in the Hypothesis testing
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