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Indoor scene recognition is an emerging technology with significant poten-
tial for smart homes, robotics, and virtual/augmented reality applications.
However, the robustness of indoor scene recognition algorithms against
adversarial attacks is a significant concern for their practical deployment.
This research project aims to investigate the impact of adversarial data
augmentation on the robustness of an indoor scene recognition algorithm.
We develop an indoor scene recognition model based on image caption-
ing and comprehensively analyse its accuracy in classifying indoor scenes.
Subsequently, we employ data augmentation techniques, specifically image
superimposition on both the test and training datasets. By superimposing
five images featuring diverse objects to our dataset, such as a Christmas
tree, airplane, monkey, train, and palm tree, we aim to evaluate the model’s
reaction to noisy input and assess its ability to generalize in the presence of
unexpected objects within indoor scenes. Moreover, by training a model on
superimposed and standard images, we aim to evaluate whether the new
model has enhanced regularisation, transfer learning capabilities, and noise
tolerance.

Additional Key Words and Phrases: Indoor scene recognition, Robust-
ness, Image captioning, Image superimposition

1 INTRODUCTION

Indoor scene recognition is a field of study that involves developing
algorithms to recognise different indoor environments. In this study,
we propose a novel approach for indoor scene recognition by adopt-
ing the high-level context representation method proposed in the
paper [5]. Specifically, our algorithm for indoor scene recognition
is based on captioning the image and subsequently utilising the
high-level context representation for classification purposes.

Goal 1 To implement an indoor scene recognition algorithm based
on image captioning, using a subset of the Places365 dataset
of indoor scene images by adopting the high-level context
representation approach proposed in the paper [5]

Goal 2 To augment the test dataset by superimposing to the test
pictures images with objects that are not typically found
indoors in order to test the robustness and accuracy of the
indoor scene recognition algorithm

Goal 3 To compare the performance of the initial model, trained
exclusively on standard data, with that of an alternative model
trained on a blended dataset comprising 80% standard data
and 20% superimposed data.

Hence, the following research questions (RQs) emerge:

RQ1 How effective is the implementation of an indoor scene recog-
nition algorithm based on image captioning using a subset of
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the Places365 dataset, considering the adoption of the high-
level context representation approach proposed in [5]?

RQ2 What is the impact of augmenting the test dataset by super-
imposing images with objects not typically found indoors on
the robustness and accuracy of the indoor scene recognition
algorithm?

RQ3 How does the performance of the initial model, trained ex-
clusively on standard data, compare to that of an alternative
model trained on a blended dataset comprising 80% standard
data and 20% superimposed data?

The subsequent sections of this paper are organized as follows:
Section 2 provides an overview of the Related Work related to our
research, highlighting prior studies and developments in the field
of indoor scene recognition, image captioning, and image superim-
position. Section 3 focuses on dataset creation. Section 4 details
the methodology adopted for this study, elucidating the steps taken
to implement the indoor scene recognition algorithm based on im-
age captioning. Section 5 of the paper presents the experimental
details, highlighting our specific choices to optimize the training
process and ensure the reproducibility of the experiments. Section
6 presents the obtained results and offers an in-depth discussion
of the findings. The performance of the implemented algorithm,
including its robustness and accuracy in classifying indoor scenes,
is thoroughly analyzed and interpreted. Furthermore, the impact of
augmenting the test dataset with superimposed images is examined
and discussed. Finally, Section 7 summarizes the key conclusions
drawn from this research. It highlights the implications of the find-
ings in relation to the goals outlined earlier. Section 8 outlines
future work that can be done, suggesting areas where further explo-
ration and refinement can contribute to the advancement of indoor
scene recognition algorithms.

2 RELATED WORK

To gather relevant literature related to the research domain, the
databases Scopus, Google Scholar, and IEEE were utilized. By em-
ploying search terms such as "Indoor scene recognition”, "Image
Captioning" and "Data Augmentation Techniques", numerous schol-
arly documents were identified, which had previously explored these
areas of interest. There are several approaches to indoor scene recog-
nition, including utilizing object representations, Bayesian object re-
lation models, and deep learning-based algorithms [14][18][11][10].
These algorithms can be used for various applications, such as mo-
bile robot navigation and indoor localization[18][10][1]. Some stud-
ies have proposed using a combination of different algorithms to
improve recognition accuracy[11]. The mentioned studies present
an interesting opportunity to perform a comparative analysis of
their algorithms with the proposed implementation in terms of accu-
racy and performance. During the literature review process focusing
on image captioning for indoor scene recognition, a limited number
of relevant studies were found. Only one paper [13] was identified.



TScIT 39, July 7, 2023, Enschede, The Netherlands

The study proposes a framework for indoor scene captioning from
streaming video. As for Data Augmentation, several papers propose
useful techniques. In paper [4], the authors investigate techniques to
improve the robustness of the solution to motion blur using training
data augmentation at each or both stages of the solution, i.e., object
detection and captioning, and observe improved results. Paper [16]
does quantitative analysis of various basic image manipulation tech-
niques, suggesting ways of adding noise and objects to images. The
paper [3] proposes a technique that can be used to improve model
accuracy and make networks more robust to adversarial attacks: it
creates new image data based on image/label pairs, where a patch
from one of the two images in the pair is superimposed on to the
other image, creating a new augmented sample. We would use a
similar mechanism, but instead of superimposing only a patch of
the image, we will overlay the entire image while re-scaling it to a
reduced size.

Fig. 1. Raw Caption: A woman tak- Fig. 2. Raw Caption: A bar with a
ing a picture of herself in a bathroom  bunch of bottles of wine.

mirror. Processed Caption: bar bunch bot-
Processed Caption: take picture tle wine

bathroom mirror

3 DATASET CREATION
3.1 Standard train and test dataset

A dataset comprising indoor scene images was compiled. The dataset
was specifically narrowed down to a subset of seven distinct scene
categories, namely bar, bathroom, bedroom, classroom, kitchen,
living room, and movie theatre. These categories were extracted
from the Places365 dataset, each consisting of 5000 images. For
training the baseline model, we divided the dataset into train (80%
of the images) and test (20% of the images).

3.2 Superimposed train and test dataset

To evaluate the robustness of our models, we augment the standard
test dataset using image superimposition techniques. We conduct
testing on nine distinct test datasets, which consist of the original
images from the standard test datasets superimposed with additional
images. These additional images represent either one, three, or five
pictures of varying sizes (10x10 pixels, 20x20 pixels, and 40x40 pix-
els), depicting various objects such as a Christmas tree, airplane,
monkey, train, and palm tree. For a detailed view of the images that
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were utilized for superimposition, please refer to the Appendix - Ta-
ble 3. We are training the alternative model on a dataset comprising
80% standard data and 20% superimposed data. The superimposed
training data were divided into nine groups of 889 images(in total,
for training, we use 40000 images; for the superimposed data, we
use only 20% of it, so 8000 images, which split into nine groups gives
approximately 889 images), on which we superimposed either one,
three, or five pictures of varying sizes (10x10 pixels, 20x20 pixels,
and 40x40 pixels). Figures 3,4,5 depict what pictures with superim-
posed images look like and what captions our model returns. Fig 8
represents the original image from the dataset and its caption. In
the appendix, we present Word Clouds of the simple and augmented
test datasets to show the difference between the frequency of words.

Fig.4. Raw Caption: A woman
holding her face in front of a

Fig. 3. Raw Caption: A woman
standing in a room with her

hand. crowd.
Processed Caption: stand Processed Caption: face
room hand crowd

Fig. 6. Raw Caption: A woman

Fig.5. Raw Caption: A woman standing in front of a crowd of

holding a green sign in a room

Lo people.
?rocessed Caption:hold green Processed Caption: stand
sign room
crowd

Fig.3. represents the original picture from the Places365 dataset, category
- bar. Fig.4. has three images of size 20x20 added. We can notice that the
augmented objects are visible, but the caption does not notice them. Instead,
the fact that the Christmas tree was added to the woman’s face made the
model interpret it as the woman holding her face.Fig.5. has one image of
40x40 pixels added to it. The model notices the object but does not recognize
it, mentioning only its colour. In Fig.6. five images of size 10x10 pixels were
added. We can notice that even though the objects are not really visible, it
still influences the caption.
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4 RESEARCH METHODOLOGY

This section describes the methodology employed in this research
project to investigate the impact of adversarial data augmentation
on the robustness of an indoor scene recognition algorithm. We
adopt the approach proposed in the paper [5] adapting it to the task
of indoor room recognition. In figure 4 we represent the adapted
architecture for indoor room recognition.

4.1 Extraction of high-level descriptions

For the image captioning task, we are using ExpansionNet-v2, an
image captioning model based on the Swin-Transformer architecture
[8]. This model was utilized to generate captions for the images.
To enhance the quality of the captions, a refinement process was
applied to the initial raw captions. This involved the elimination of
stop words, which are commonly used words in a language (such as
articles, prepositions, and pronouns) that lack semantic significance.
Including these words in the caption would introduce unnecessary
complexity due to their frequent occurrence in the English language.
Therefore, their removal resulted in a more representative corpus. To
achieve this, we used spaCy, a publicly available library for natural
language processing.

Furthermore, we excluded common nouns such as "man,’ "woman,’,
"people”, etc. from the refined captions as these terms do not con-
tribute to the scene recognition process. Additionally, lemmatization
was applied, a linguistic technique that reduces words to their base
or root forms. The remaining words, referred to as valid words, were
employed in subsequent steps for generating data representations.

To provide a visual illustration of the captioning process, Figures
1 and 2 showcase examples of images along with their original
captions and the corresponding processed captions.

4.2 Co-occurrence mining

The second step in our methodology involves generating co-occurrence
matrices to capture patterns between the labels within the dataset,
which will be utilized for future conditional probability calculations.
After pre-processing the captions in the dataset, we store this in-
formation and count the occurrences of each indoor room scene
and the valid words within each caption. This process results in
a matrix M, € NWXR \where W represents the number of valid
words extracted from the corpus and R represents the number of
indoor rooms in the dataset. Thus, the element My, ; in this matrix
denotes the number of instances where indoor class R;j occurs in
conjunction with the valid word W;. We refer to this matrix as the
labels co-occurrence matrix.

Similarly, we generate another co-occurrence matrix based on the
co-occurrence of valid words themselves. Using a sliding window of
size 3, we capture the co-occurrence patterns among the valid words,
resulting in a matrix M,, € NWXW T this matrix, the element M,
represents the number of times the valid word W; appears together
with the valid word Wj.

To facilitate a clear understanding, we present in Fig. 7 a heatmap
illustrating the occurrence matrix of labels and some selected words.
These co-occurrence matrices provide valuable insights into the
relationships and associations between indoor scenes and valid
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Fig. 7. Heatmap of labels co-occurrence matrix for the training dataset. The
X-axis represents the indoor scene categories, and the Y-axis represents
popular words in the training dataset and their count in the captions of
each of the categories. For example, in the class movie-theatre, there are
more than 3000 captions that contain the word "room".

words, as well as the co-occurrence patterns among the valid words
themselves. They serve as essential resources for graph generation.

4.3  Graph generation

After obtaining the co-occurrence matrices, we were able to en-
capsulate the relationships between valid words and indoor scenes,
as well as among the words themselves. Recognizing the efficacy
of graphs in representing structured data, we choose to model the
representations that we have using graphs. Similar to the paper [5]
we use the Deep Graph Library, a framework-agnostic library for
generating and manipulating graphs.

We begin by constructing an empty graph G = (V, E), where V
is a set of nodes and E is a set of edges. In this case, V = E = {0}.
For each valid word W, we add a new node Vjy, to the set of nodes
V of the graph. We employ GloVe [15] to obtain the valid word
embedding, which is used as the feature X € R for node Vi, In
the event that the valid word is not present in GloVe, we randomly
sample the embedding from a uniform distribution [-0.01, 0.01].
We store this representation for future use in case the valid word
reappears.

Subsequently, we add a node V¢ for each indoor room location.
As there are seven possible rooms, we introduce seven nodes and
establish edges e = (Viy, V;) between the valid word and each class.
We define the weight w, according to the equation below:
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MCW.i

=P(Ci|W) =
we = P(CiIW) = St

Here, the edge weight w, between the valid word node V3 and
the i;, indoor category C; is denoted by P(C;|W). This value is
computed by dividing the co-occurrence between the valid word W
and the indoor category C; by the sum of the co-occurrence between
the valid word W and all possible categories C extracted from the
co-occurrence matrix M.

4.4 Deep GCN for Indoor Scene Recognition

For Indoor Scene Recognition, we employ a deep graph convolu-
tional neural network that classifies the graphs and, consequently,
the images that they represent.

Let Gy, ..., Gy represent a set of graphs and C € R” denote the
set of indoor room categories. The goal is to classify each graph
according to its corresponding indoor room category. To achieve
this, we use the adapted Graph Isomorphism Network (GIN), pro-
posed in paper [5] due to its simple architecture. In the proposed
approach, the input graph’s features are directly stored in the hid-
den representations stack as ho. Subsequently, we iterate through
a GIN convolutional block that consists of a Graph Isomorphism
Network layer (2), batch normalization (3), and Rectified Linear
Unit activation (4). This block is repeated five times, generating
representations hq to hs (5). We perform average pooling on these
hidden representations to reduce their dimensionality (6). Finally,
after passing through single-layer feed-forward networks (7) with
a selected dropout = 0.5 (8) the model outputs the classification
labels (9). The numbers in brackets represent the steps presented
in Figure 8. During training, we learn the categorical labels, and
our loss function is defined as a weighted combination of individ-
ual losses from each output. Considering a prediction gcat where
Jcat € RE, the loss for this prediction is denoted as L = Acat Leat,
where Lc,t represents the loss of each individual prediction. For Leat,
we employ a weighted Euclidean loss, defined as follows:

Lant(gcat) = 21721 Wi(gcati - ycat,-)z

where fcat; represents the prediction for the i-th category and
ycat; is the corresponding ground-truth label. The loss weights are
assigned an equal weight of 1/7.

5 EXPERIMENTS
5.1 Validation Metrics

For analyzing the performance and robustness of the classification
models we use metrics of Accuracy, Precision, Recall, F1-Score and
confusion matrices. In the appendix section, we describe in more
detail what each metric represents and present the confusion matrix
for all the tests.

5.2 Implementation details

To get the best outcome for the training, we did an empirical com-
parison of different optimizers: RMSprop [7], Adam [9], Adadelta
[17], AdaGrad [6]. Also, we experimented with several batch sizes
for the data loaders. We obtained the best results for the model
trained with the optimizer RMSprop with a learning rate of 0.001,

Andrea Onofrei

weight decay of 0.0003 and batch size set to 8. Regarding the experi-
mentation environment, we are using version 2.0.1 of the PyTorch
framework in a conda environment, and we train and test our model
on a Macbook M1 Pro with 16 GB RAM.

Dataset Accuracy Precision Recall F1-Score
Test dataset 0.88 0.883 0.88 0.88
Test dataset repeated 0.88 0.884 0.88 0.88
Test + 1x10 0.586 0.832 0.586 0.55
Test + 1x20 0.582 0.824 0.582 0.55
Test + 1x40 0.583 0.83 0.583 0.55
Test + 3x10 0.589 0.829 0.589 0.557
Test + 3x20 0.585 0.828 0.585 0.554
Test + 3x40 0.574 0.828 0.574 0.548
Test + 5x10 0.59 0.829 0.59 0.561
Test + 5x20 0.587 0.827 0.587 0.557
Test + 5x40 0.574 0.826 0.574 0.552

Table 1. Performance Metrics for the baseline model

Dataset Accuracy Precision Recall F1-Score
Test dataset 0.282 0.69 0.282 0.18
Test + 1x10 0.368 0.82 0.36 0.29
Test + 1x20 0.36 0.82 0.36 0.29
Test + 1x40 0.36 0.82 0.36 0.29
Test + 3x10 0.37 0.82 0.37 0.29
Test + 3x20 0.37 0.78 0.37 0.29
Test + 3x40 0.36 0.78 0.36 0.29
Test + 5x10 0.37 0.70 0.37 0.29
Test + 5x20 0.36 0.70 0.36 0.29
Test + 5x40 0.36 0.78 0.36 0.29

Table 2. Performance Metrics for the model trained on superimposed images

In Tables one and two, the inclusion of a "+ digit 'x’ number" indicates the
number of images that we are going to augment to the initial image(1,3
or 5 images) 'x’ the size of the image that we are going to superimpose
(10x10,20x20 or 40x40 pixels)

6 RESULTS AND DISCUSSIONS
6.1 ANSWERTORQ 1

The baseline model, trained on standard images, exhibited a good
performance on unaltered images, achieving high levels of accuracy
(0.88). The precision, recall and F1-score values are also consistently
high for the test dataset, indicating a good balance between cor-
rectly identifying positive and negative samples. The experiment
was repeated, yielding similar results(Test dataset repeated in Table
1). Due to the absence of state-of-the-art models based on image
captioning for indoor scene recognition, direct performance compar-
isons are limited. Nonetheless, we can compare the results with the
paper [18], which presents a novel model BORM (Bayesian Object
Relation Model), that utilizes meaningful object representations for
indoor scene recognition. The proposed model has an accuracy of
83.1% on a subset of 7 classes of the Places365 dataset; however, com-
bined with the PlacesCNN model, it achieves an accuracy of 90.1%.



Impact of Advertial Data Augmentation on Robust Indoor Scene Recognition: An Evaluation Study

Graph » GIN Batch
4_’— e ]
(1) (2) (@) ()

Average
Pooling
Hidden Layer

SN Average Linear
h2 Pooling (7)
h1
“-—M__‘* Average
Pooling

ho

(s)

TSclT 39, July 7, 2023, Enschede, The Netherlands

Average

Pooling

Average Linear
_,_,._»—r—"""’ Pooling (7)

\ —
Pooling

(8) [y} (8)

Categorical
Classification

(2)

Fig. 8. Adapted architecture for indoor room recognition from the paper [5].

Moreover, from this paper, we can find out the accuracies of other
state-of-the-art models on the subset of 7 classes of the Places365
dataset. According to [18], the accuracy of the PlacesCNN model
with the base architecture ResNet18 as a backbone network is 80.4%,
82.7% for ResNet50 and 87.3 for DEDUCE. Accuracy reported in the
paper [2] for a CNN-based indoor scene recognition model tested
on 24,000 indoor home scene images was 97.14%. The comparison
with state-of-the-art models indicates that our model performs on
par with them.

6.2 ANSWERTO RQ 2

The impact of augmenting the test dataset by superimposing im-
ages with objects not typically found indoors on the robustness and
accuracy of the baseline indoor scene recognition algorithm is sig-
nificant. When superimposed images are introduced during testing,
the model’s performance deteriorates notably. The accuracy drops
to around 0.58-0.59 for different configurations of superimposed
images, and the precision, recall, and F1-score values also decrease
substantially. This suggests that the model struggles to handle the
variations and complexities introduced by the superimposed images.

6.3 ANSWERTO RQ 3

The performance of the initial model, trained exclusively on stan-
dard data, is significantly better than that of an alternative model
trained on a blended dataset comprising 80% standard data and 20%
superimposed data. The alternative model trained on superimposed
images encounters challenges in accurately recognizing and clas-
sifying indoor scenes. It achieves an accuracy of 0.28% for the test
dataset and around 0.365% for the augmented test dataset.

The Appendix-C contains a comprehensive collection of confu-
sion matrices for all the combinations of datasets and models that
we considered in our research. It also contains insightful observa-
tions regarding the outcomes derived from these matrices. Notably,
the baseline model exhibits a pronounced bias towards the first

class, namely "bar," when subjected to augmented test datasets. Con-
versely, the alternative model showcases a distinctive bias towards
the "kitchen" class in its response patterns.

6.4 POSSIBLE REASONS FOR THE PERFORMANCE OF
THE BASELINE MODEL

6.4.1 Captioning model exhibits a peculiar response to data
superimposition. Upon analyzing the captions generated for the
augmented test dataset, it was observed that the presence of su-
perimposed images did not lead to substantial changes in the
frequency of appearance for objects depicted in those images
(e.g., monkey, train, airplane, palm tree, etc.). However, notable
variations were observed in the content and context of the
generated captions. For example, an image of a tree superimposed
with images of people dancing resulted in a caption such as "A
woman holding a green sign in a room" (Fig. 5). The generated cap-
tion does not explicitly acknowledge the presence of the dancing
individuals but instead responds to the superimposed objects by
associating the concept of a woman holding a sign in a room. Given
the model’s reliance on captions as the basis for co-occurrence ma-
trices and graphs, it is possible to discern a potential explanation
for the observed decline in performance metrics. In Appendix B, we
investigate the word clouds and do not notice any drastic change in
the frequency of the words; only as the pictures become larger, some
limited number of words appear. However, as we can notice in Table
1, this cannot be the reason for the drastic decrease in performance
- from 0.88 % to 0.57%, as these words, e.g. teddy, Christmas do not
appear in the Word cloud for the augmented test datasets 1x10.

6.4.2 Limited generalisation. The model trained on the base-
line dataset might not have learned robust representations that
can effectively generalize to the variations present in the superim-
posed images. This lack of generalization can result in decreased
performance when encountering new, augmented data.

6.4.3 Limited training with superimposed images. The model
might not have been exposed to sufficient training examples with
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superimposed images. Training the model on a more diverse dataset
that includes standard and superimposed data could improve its
ability to handle such variations. However, as we can see from the
results in Table 2, this does not seem to be the case.

6.5 Possible reasons for the performance of the model
trained on superimposed images

6.5.1 Lack of contextual understanding of the captioning
model. The model’s performance may be hindered by the limited
ability of the captioning model to understand the context and re-
lationships between objects in the superimposed images. Superim-
position creates complex visual scenes where objects interact or
occlude with each other, making it challenging for the model to
interpret and classify the individual components accurately. With-
out a comprehensive understanding of the context, the model may
struggle to make precise predictions.

6.5.2 Inadequate training strategy. The training strategy em-
ployed for the indoor recognition model trained on superimposed
images may not have been optimal. The model may require specific
techniques or adjustments to effectively learn from and adapt to the
complexities introduced by superimposed images. The current train-
ing approach may not have adequately addressed the challenges
posed by the combination of multiple overlapping objects.

7 CONCLUSIONS

In conclusion, this study has provided a comprehensive investigation
into the impact of superimposed images on the performance of
indoor scene recognition models. Through rigorous experimentation
and thorough analysis, we have obtained valuable insights into the
inherent challenges associated with the presence of superimposed
objects and their ramifications for model performance.

The baseline model, trained on standard images, exhibited com-
mendable performance on unaltered images, achieving high levels
of accuracy, on par with state-of-the-art models and maintaining a
well-balanced trade-off between precision and recall.

Nevertheless, when subjected to superimposed images, the base-
line model’s performance experienced a significant decline, high-
lighting its difficulty in effectively handling the intricate variations
and complexities introduced by the superimposed objects. Several
factors have been identified as possible explanations for this decline,
including the limited responsiveness of the captioning model to
superimposed data and its limited generalization capability.

Furthermore, the model trained on superimposed images encoun-
tered challenges in accurately recognizing and classifying indoor
scenes. The model’s constrained contextual understanding and defi-
ciencies in the training strategy are plausible factors contributing
to its suboptimal performance.

Several avenues for future research can be explored to further
improve the performance of indoor scene recognition models in
the context of superimposed images. In the following section, we
discuss potential directions for future work.
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8 FUTURE WORK

Although this research project provided valuable insights into the
impact of adversarial data augmentation on indoor scene recogni-
tion, there are several avenues for future exploration and refinement:
Exploration of different data augmentation techniques: While
this study focused on superimposing images with non-conventional
indoor objects, there are other data augmentation techniques that
can be investigated. Techniques such as adding noise to the im-
age(e.g salt and pepper), rotation, scaling, and translation could
be explored to introduce additional variations in the dataset and
further enhance the model’s robustness.

Investigation of different image captioning models: The imple-
mentation of indoor scene recognition based on image captioning
utilized the ExpansionNet-v2 model. However, it proved susceptible
to image superimposition. So for future work other state-of-the-art
image captioning models could be considered, such as those based
on transformer architectures [12]. Comparing the performance of
different models could provide insights into the most effective ap-
proach for this task.

Integration of other modalities: In addition to visual information,
indoor scene recognition can benefit from the integration of other
modalities, such as audio and depth data. Exploring the fusion of
multiple modalities could enhance the model’s performance and
enable more comprehensive scene understanding. By addressing
these future research directions, we can further advance the field
of indoor scene recognition and contribute to the development of
robust and practical algorithms for applications in smart homes,
robotics, and virtual/augmented reality.
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A METRICS

Accuracy: Accuracy measures the overall correctness of the model’s
predictions. It calculates the ratio of correct predictions to the to-
tal number of predictions made. This metric provides a general
assessment of the model’s performance regarding correctly classi-
fied instances. Precision: Precision focuses on the proportion of
correctly predicted positive instances out of all instances predicted
as positive. It helps evaluate the model’s ability to minimize false
positives, which is especially important in scenarios where mis-
classifying positive instances can have significant consequences.
Recall: Recall, also known as sensitivity or true positive rate, mea-
sures the proportion of correctly predicted positive instances out
of all actual positive instances. It assesses the model’s ability to
identify all relevant positive instances, without missing any. F1-
Score: The F1-Score combines precision and recall into a single
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metric, providing a balanced evaluation of the model’s performance.
It calculates the harmonic mean of precision and recall, which gives
equal weight to both metrics. The F1-Score is useful when there is an
imbalance between the number of positive and negative instances
in the dataset. By considering these metrics together, we gain a
comprehensive understanding of the model’s robustness in terms
of its overall accuracy, ability to minimize false positives, ability to
capture all relevant positives, and the trade-off between precision
and recall.

Christmas Tree

Airplane

Monkey Train
Table 3. Images used for augmentation of the standard dataset

B OBSERVATIONS ON THE WORD CLOUDS

By comparing the word clouds for the 10 test datasets we can notice
that the words and their frequency do not change dramatically in
any of the datasets. However as the augmented images become
bigger we start noticing them in the dataset: e.g in augmented
test dataset 1x40 we start noticing a small number of the word
"teddy"”, and as the number of the augmented images increases, it’s
frequency increases.Moreover in the sets with images of size 40x40
the words:"green" and "tree" appear.In the set 3x40, and 5x40 the
word "christmas" appears in a high frequency, even though it did
not appear in any of the other datasets.
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Fig. 9. Word Cloud for the initial test dataset
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Fig. 10. Word cloud for the augmented test dataset 1x10
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Fig. 11. Word cloud for the augmented test dataset 3x10
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Fig. 12. Word cloud for the augmented test dataset 5x10
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Fig. 13. Word cloud for the augmented test dataset 1x20
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Fig. 14. Word cloud for the augmented test dataset 3x20
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Fig. 15. Word cloud for the augmented test dataset 5x20
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Fig. 16. Word cloud for the augmented test dataset 1x40

Fig. 18. Word cloud for the augmented test datasets 5x40

C OBSERVATIONS ON THE CONFUSION MATRICES

As we can notice in the confusion matrices for the baseline model
with the augmented test dataset, the model is mainly misclasifying
the class living room,kitchen and classroom(majority of the images
representing living-room were classified as bar, as well as a big
number of kitchen and classroom).We can see that the model has
a predictive bias for the class bar, but only when noise is added to
the dataset. We tried to mitigate this bias for the bar class, but it
resulted in worse accuracy’s overall.The alternative model has a
bias for the kitchen class.

bar tath bathroom wa bed bedroom
black bottle bunch cabinet Cha|r child classroom
couch counter desk s fireplace o food game

gllass. green grOUp k|tChen Iarge
||V|ng mirror ... PICEUTE play red refrigerator

restaurant OO SCreen shower Smk S|t

Standstovetableteqdytelevisiontoilettree
tub video wall watch White W ndow wine v WOOdeEN

Fig. 17. Word cloud for the augmented test dataset 3x40
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Fig. 23. Confusion matrix for the baseline model with the augmented test dataset 5x10
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Fig. 24. Confusion matrix for the baseline model with the augmented test dataset 1x20
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Fig. 25. Confusion matrix for the baseline model with the augmented test dataset 3x20
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Fig. 26. Confusion matrix for the baseline model with the augmented test dataset 5x20
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Fig. 27. Confusion matrix for the baseline model with the augmented test dataset 1x40
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Fig. 28. Confusion matrix for the baseline model with the augmented test dataset 3x40
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Fig. 29. Confusion matrix for the baseline model with the augmented test dataset 5x40

20

Andrea Onofrei

400

300

- 200

- 100



Impact of Advertial Data Augmentation on Robust Indoor Scene Recognition: An Evaluation Study TSclT 39, July 7, 2023, Enschede, The Netherlands

Confusion Matrix

S - 15 0 2 0 0 0
o
g 400
Q- 0 0 27 0 0 0
=
S
©
o
IS
o
o - 0 0 0 0 0
2
o 300
wn
55
G 2- 0 0 2 0 0 0
v 0
3 @©
= O
-200
C
[
§ - 0 0 3 0 0 0
&
£
o
&
- 0 0 11 0 0 0
o -100
2
-
g
©
[
£ - 0 0 4 0 0 0
[
>
[=}
= g g : ' : \ -0
Bar Bathroom Bedroom Classroom Kitchen Living Room Movie Theater

Predicted Class

Fig. 30. Confusion matrix for the alternative model with the initial test dataset
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Fig. 31. Confusion matrix for the alternative model with the augmented test dataset 1x10
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Fig. 32. Confusion matrix for the alternative model with the augmented test dataset 3x10

23



TScIT 39, July 7, 2023, Enschede, The Netherlands Andrea Onofrei

Confusion Matrix

500
5 - 0 0 0 0 500 0 0
o
§
S 0 0 55 0 0 400
<
r=}
©
o
£
o
Q- 0 0 130 0 0
el
Q
@ 300
% E
&s
O - 0 0 0 0 0 0
v 0
3 @©
= O
-200
c
[
§ - 0 8 1 0 0 0
¥4
£
o
&
- 0 1 9 0 0 0
@ -100
2
-
g
©
[
E- 0 0 2 0 0 0
(]
>
(=}
= . | | . . | -0
Bar Bathroom Bedroom Classroom Kitchen Living Room Movie Theater

Predicted Class

Fig. 33. Confusion matrix for the alternative model with the augmented test dataset 5x10
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Fig. 34. Confusion matrix for the alternative model with the augmented test dataset 1x20
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Fig. 35. Confusion matrix for the alternative model with the augmented test dataset 3x20
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Fig. 36. Confusion matrix for the alternative model with the augmented test dataset 5x20
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Fig. 37. Confusion matrix for the alternative model with the augmented test dataset 1x40
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Fig. 38. Confusion matrix for the alternative model with the augmented test dataset 3x40
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Fig. 39. Confusion matrix for the alternative model with the augmented test dataset 5x40
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