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ABSTRACT
Indoor localization has become a target for many researchers due
to its vast range of applications. Due to signal fading and scatter-
ing, conventional GPS-based techniques are impractical for indoor
localization. However, state-of-the-art deep learning models have
shown promising results in this field.

The method for indoor localization presented in this research
makes use of a transformer-basedmodel and Received Signal Strength
(RSS) measurements. The proposed model will be assessed in both
regression tasks: predicting X and Y coordinates, and classification
tasks: floor classification.

The results of this research aim to contribute to the advance-
ment of indoor localization systems by providing evidence that
transformer-based models might be a good direction to follow for
enhancing localization accuracy.
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1 INTRODUCTION
The demand for accurate and efficient indoor localization systems
has grown due to their importance in numerous applications. Indoor
localization remains a significant challenge, due to the attenuation
and scattering of Global Positioning System (GPS) signals by roofs,
walls, and other obstructions. To address this issue, WiFi finger-
printing has emerged as a popular approach, as most smartphones
and IoT devices are equipped with WiFi interfaces, which leverage
the Received Signal Strength Indicator (RSSI) values from multiple
Access Points (APs) to determine the location of devices within
indoor environments [6].

Recently, deep learning-basedmethods have demonstrated promis-
ing advancements in indoor localization tasks using WiFi finger-
printing compared to traditional techniques [1, 5, 8, 11]. These
models have demonstrated their effectiveness in capturing spatial
information and learning the underlying structure of the data, re-
sulting in improved localization accuracy compared to traditional
approaches.

Transformers, first introduced in [10], have shown excellent
results in Natural Language Processing (NLP) tasks and have started
to be applied in a variety of other domains, including Computer
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Vision, due to their effectiveness at learning spatial relationships
and capturing long-range dependencies. Thus, transformers have
the potential for improving performance in a wide range of tasks,
including indoor localization.

In this research, we propose a novel indoor localization approach
using a CNN-Transformer hybrid model. The main aim of this re-
search is to combine the strengths of both CNNs and Transformer
models, to harness the local feature extraction capabilities of CNNs
and the global correlation understanding of the Transformer model,
and apply this powerful combination to the task of indoor local-
ization. We show the effectiveness of our suggested approach in
predicting the floor number in a multi-story building as well as
the (X, Y) coordinates of a device within an indoor environment.
We compare our model’s performance with state-of-the-art models,
aiming to show the potential of transformer-based models in this
domain.

This research aims to contribute to the advancement of indoor
localization systems by providing evidence that transformer-based
models might be a good direction to follow for enhancing local-
ization accuracy. We also aim to stimulate further research and
exploration of other transformer-based approaches in the context
of indoor localization.

1.1 Paper Structure
The remainder of the paper is structured as follows:

• Section 2 - Problem Statement: This section defines the
challenges associated with indoor localization. It introduces
the paper’s goal of proposing a transformer-based model,
and the research questions that will be answered.

• Section 3 - Related Work: This section provides a compre-
hensive review of the literature on indoor localization using
WiFi fingerprinting and the deep learning techniques that
have been applied to improve performance. It discusses the
potential of transformer-basedmodels for indoor localization
tasks.

• Section 4 - Methodology: This section describes the sys-
tem architecture of the proposed model and the idea behind
it. It introduces the dataset that will be used and the data
preparation process.

• Section 5 - Training Phase: This section provides a de-
tailed analysis of the model training process. It elaborates on
the model’s parameters, training parameters and techniques
used for training.

• Section 6 - Results: This chapter presents the research find-
ings. It compares the performance of the proposed model
with other state-of-the-art models, both in terms of coordi-
nate prediction and floor accuracy.
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• Section 7 - Conclusion: This section wraps up the findings
of the study. It also elaborates on a possible enhancement
that could be made to the model for a potential better per-
formance.

2 PROBLEM STATEMENT
Even with major improvements in indoor localization, such as WiFi
fingerprinting and the use of various deep learning approaches, it is
still difficult to accurately locate devices indoors. Despite the good
progress in indoor localization tasks using deep learning-based
approaches, there is still a constant need for more reliable, and
accurate models.

Therefore, this research’s primary goal is to propose a local
feature transformer-based (LF-Transformer) model that competes
in terms of accuracy with existing state-of-the-art deep learning
models. Furthermore, this research aims to stimulate interest in ex-
ploring other transformer-based approaches for indoor localization
using WiFi fingerprinting.

The performance of the proposed model will be tested based
on two main tasks: a regression task, which will assess the model
capabilities of correctly predicting the (X, Y) coordinates, and a
classification task, which will assess the model capabilities of cor-
rectly predicting the floor number. For the regression task, we will
assess the model based on the average Euclidean distance between
the predicted (X̂, Ŷ) and actual (X,Y) coordinates. Additionally, the
75th percentile and 95th percentile will be used to understand the
distribution of errors. For the classification task, we will assess
the model based on the accuracy of correctly predicting the floor
number.

2.1 Research Questions
This paper, introducing a novel LF-Transformer model, aims at
answering the following research questions:

(1) How can transformer based model be exploited to the field
of indoor localization using WiFi fingerprinting?

(2) How does the proposed transformer based model perform in
the task of predicting the X, Y coordinates and floor number
in multi-story indoor environments, and how does this new
approach compare to established deep learning methods?

3 RELATEDWORK
Extensive research has been conducted in the field of indoor lo-
calization using WiFi fingerprinting, with various deep-learning
techniques being employed to improve performance. [1] employed
local features through deep LSTM, leveraging the temporal patterns
contained inside WiFi fingerprints, and successfully addressing the
complexities of indoor situations. [5, 8] demonstrated the efficacy
of Convolutional Neural Networks (CNNs) for indoor localization.
They applied CNNs for indoor localization, highlighting the capa-
bility of CNNs to extract spatial features and enhance localization
accuracy.

Recent studies have also reviewed the state of the art in machine
learning-based indoor localization using WiFi RSSI fingerprints,
outlining various techniques, challenges, and opportunities in the
field [6]. [3] proposed a fingerprinting indoor localization algorithm

based on deep learning, showing the importance and efficacy of
deep learning models compared to state-of-the-art approaches.

However, despite these remarkable developments, there remains
vast uncharted territory in the application of transformer architec-
tures for indoor localization tasks. These architectures, introduced
by Vaswani et al. [10], have revolutionized the field of Natural Lan-
guage Processing and recently shown promise in diverse domains
such as Computer Vision [2]. In [4], the authors were the first who
developed a novel transformer-based approach to the task of in-
door localization, greatly surpassing, in terms of accuracy, other
state-of-the-art methodologies.

This paper proposes another novel LF-Transformer model. This
model combines the benefits of CNNs and Transformer-based mod-
els, efficiently comprehending both local features and global cor-
relations in data sequences, and thereby addressing the unique
challenges of indoor localization tasks. To the best of our knowl-
edge, this is the first study that investigates the combination of
CNNs and Transformers for WiFi-based indoor localization tasks.

4 METHODOLOGY
4.1 System design
4.1.1 Transformer Overview. The general transformer model uses
an encoder-decoder architecture. Each has multiple identical layers.
The encoder maps an input sequence to a continuous representation
that holds the entire input information. The decoder then generates
an output sequence from this representation. However, the original
transformer was designed for sequence-to-sequence tasks, making
it unsuitable for our requirements. Given that we aim to predict
the (X,Y) coordinates or floor number from a sequence of WiFi
signal strengths, we do not need a sequence output. Therefore, the
decoder portion of the original transformer model is excluded from
our proposed model.

In this research, we adopt a sequential approach to the problem
of indoor localization. Each sample in our dataset is a sequence
of 520 Received Signal Strength (RSS) values, with each value cor-
responding to a signal reading from a distinct Access Point (AP).
Despite the APs order not reflecting the spatial location, each AP
holds a specific and consistent position in the sequence across all
samples. This essentially means that, for example, the first value in
the sequence always represents the signal strength reading from
the same AP. This consistency in positioning is maintained for all
APs and across all samples, providing a basis for our model to learn
the relationships between individual APs’ RSS values and the corre-
sponding physical coordinates or floor numbers. The assumption is
that nearby APs might influence each other’s signal strength due to
interference or shared environmental factors (walls, floors), hence
the local dependency. On the other hand, long-range dependen-
cies could arise due to factors like signal propagation patterns or
large-scale environmental structures.

4.1.2 Transformer Block. The core of the proposed model consists
of a sequence of transformer blocks, each transformer block will
follow the general encoder principle of transformers:

(1) The first sublayer of the transformer block implements a
multi-head self-attention mechanism. The sublayer is also



Exploring Indoor Localization with Transformer-Based Models: A CNN-Transformer Hybrid Approach for WiFi Fingerprinting
39th Twente Student Conference on IT , July 7, 2023,

followed by a normalization and a dropout layer with a
dropout rate of 0.1.

(2) The second sublayer of the transformer block is a fully-
connected feed-forward networks. It is consisted of two
successive linear transformations. The Rectified Linear Unit
(ReLU) activation function is used in between these two
transformations.

Figure 1: Model Summary

4.2 Proposed LF-Transformer Model
The proposed LF-Transformer model is a hybrid model combining
Convolutional Neural Networks (CNN) and the Transformer model,
with a primary focus on the Transformer. The core of the proposed
model adapts the main transformer architecture with a few modifi-
cations to make it suitable for regression and classification tasks.
The model is composed of a convolutional layer before the trans-
former regressor (or classifier in case of predicting the floor), each
consisting of a sequence of transformer blocks. The CNN layer
of our model is proficient in identifying local features in the data,
specifically patterns across the RSS values that might indicate a
particular location. Following the ReLU activation function then
introduces non-linearity into the feature map, followed by a batch
normalization layer. The output is then passed through a positional
encoding function before being processed by a sequence of trans-
former blocks. After processing the data through these Transformer
Blocks, we extract the output for the regression and classification
tasks. For regression, the output from the last Transformer block
is passed to a Dense Layer, which generates the predicted X, Y
coordinates. For the classification task, the output from the last
Transformer block is passed to a Dense Layer , with softmax acti-
vation, to predict the floor number. The overview of the model can
be observed in Figure 1.

4.2.1 Local and Long-Range Dependencies. The idea of the model
is the following:

(1) The convolutional layer is focusing on identifying local de-
pendencies in the data. Local dependencies refer to the pat-
terns or features that can be detected within close proximity,
such as the strength of signals from a group of Access Points
(APs). This local information is important as it provides a
base understanding of the environment.

(2) The transformer layer specializes in identifying long-range
dependencies. Long-range dependencies refer to relation-
ships between elements that are not immediately adjacent
or close to each other. The self-attention mechanism in the
transformer layer helps to understand these relationships
by weighting the importance of different parts of the input.
This enables the model to highlight relevant patterns across
the entire sequence, combining them with the local patterns
learned by the convolutional layer to understand both nearby
and distant features.

This is a powerful and promising combination that allows the
model to understand both local and long-range dependencies in
the data.

4.3 Dataset and preprocessing
Throughout this research, UjiIndoorLoc, the biggest open-access
indoor localization database, will be used for testing and evaluation.
The database contains a total of 21048 fingerprint samples collected
from 520 Access Points (APs) covering 3 buildings and several floors.
The dataset will be divided into training, validation, and testing
sets, with the testing set reserved for model evaluation, ensuring
that the model’s performance is evaluated on unseen data.

4.3.1 Data normalization. Before the training process, the dataset
is normalized. In this dataset, the RSS fingerprints from APs range
from -104 dBm to 0 dBm. Also, for any AP that is not detected, it will
have a RSS value of 100. This dataset will be normalized according
to the formula below (Formula 1), we will convert the RSS values to
be in range (0,1).In [9], it was shown that this type of normalization
tends to represent RSS values with the best performance, thus it
has been also used in this paper.

𝑃𝑜𝑤𝑒𝑑 =

{
0 , 𝑅𝑆𝑆𝑖 = 100(
𝑅𝑆𝑆𝑖−min

−min

)𝑒
,otherwise

(Formula 1)

where 𝑅𝑆𝑆𝑖 represents the RSS value of the 𝑖-th AP,𝑚𝑖𝑛 represents
the lowest RSS value registered, and 𝑒 represents Euler’s number.

5 TRAINING PHASE
The training of our model involved numerous processes to en-
sure optimal performance. We incorporated K-Fold cross-validation
with a fold count of five, which served to reduce overfitting and
enhance model generalizability. For the initial convolution layer,
we set the filter count to 64 and kernel size to 2. The Transformer
model parameters were selected as follows: 6 Transformer layers,
an embedding dimension of 64 (equal to the filter count), 4 attention
heads, and a feed-forward dimension of 32. We also incorporated a
dropout rate of 0.1 after each layer in the feed-forward networks
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Parameters Value

Convolutional Filters 64
Kernel size 2

Transformer

Number of transformer layers 6
Embedding dimension 64
Number of heads 4
Feed-forward dimension 32
Dropout rate 0.1

Training
Learning rate 1e-4
Epochs 200
Early stopping patience 20

Table 1: Overview of all the parameters

to prevent overfitting. We trained our model for a maximum of 200
epochs with an early stopping mechanism to prevent overfitting.
The early stopping was configured to monitor the validation loss,
with a patience of 20 epochs. After the training, the model with the
lowest validation loss is restored. An overview of all the training
parameters can be seen in Table 1. Figure 2 shows the training loss
and the validation loss of the positioning model. Figure 3 shows
the training and validation accuracy for the classification task.

Figure 2: Training overview (X, Y) prediction (Loss/Epochs)

Figure 3: Training overview floor prediction (Accu-
racy/Epochs)

6 RESULTS
The performance of the proposed LF-Transformer was compared to
other state-of-the-art deep learning models, specifically: CNNLoc
[8], BayesCNN [7] , DNN [3], bAaT [4], and eAaT [4].

As displayed in Table 3, the LF-Transformer achieved a Mean
Absolute Error (MAE) of 9.44 meters. This result was much better
compared to the CNNLoc, BayesCNN, and DNN models, which
achieved MAEs of 11.78, 41.79, and 133.40 meters, respectively.
However, it was surpassed by the bAaT and eAaT models, which
achieved MAEs of 8.45 and 8.40 meters.

The model also demonstrated its proficiency in predicting the
floor number (Table 2). It achieved an accuracy of 95.90%, slightly
lower than the accuracy of the CNNLoc model, which achieved
the highest floor prediction accuracy of 95.92%. However, the LF-
Transformer outperformed all other models, including BayesCNN,
DNN, bAaT, and eAaT, which achieved accuracies of 90.64%, 41.58%,
94.42%, and 94.69%, respectively.

We can observe that transformer-based models, such as our
LF-Transformer, eAaT, and bAaT, outperform the non-transformer
model such as CNN and DNN, highlighting the effectiveness of
transformer models. While CNN models are able to detect local
patterns, they have difficulty identifying long-range dependencies.
On the other hand, DNNs are ineffective of detecting sequential
dependencies in the data. This outperformance can be ascribed
to the unique aspect of the transformer model, specifically self-
attention mechanisms. This self-attention capability allows the
model to assign different levels of significance to various parts
of the input sequence when making predictions. This is useful
where certain local patterns or signal strengths (RSS values) can be
more indicative of a particular location than others. Additionally,
the position at a particular location might be influenced by the
signal strengths at several other locations, this is captured by the
transformers models due to their capacity for handling long-range
data dependencies.

Model Floor Accuracy
LF-Transformer 95.90%
CNNLoc [8] 95.92%
BayesCNN [7] 90.64%
DNN [3] 41.58%
bAaT [4] 94.42%
eAaT [4] 94.69%

Table 2: Results for predicting coordinates compared to other
approaches

7 CONCLUSION
Despite the promising results, there remains room for further im-
provement. The eAaT and bAaT models still surpass our model in
average distance error, suggesting that more research can be done
to improve the performance of our model further. Future work may
also involve exploring other parameter configurations, adding more
data for training, or investigating other transformer-based models.
Despite these possibilities for future exploration, our work success-
fully demonstrates the potential of using a transformer-basedmodel
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Model Mean Absolute Error (MAE) 75th Percentile (m) 95th Percentile (m)
LF-Transformer 9.44 14.63 22.31
CNNLoc [8] 11.78 - -
BayesCNN [7] 41.79 49.28 75.25
DNN [3] 133.40 170.85 213.10
bAaT [4] 8.45 10.64 20.41
eAaT [4] 8.40 10.66 20.33

Table 3: Results for predicting coordinates compared to other approaches

for coordinate prediction and floor accuracy for indoor localization
tasks. Looking also at Table 3, we can see that transformer-based
models (LF-Transformer, eAaT, bAaT) dominate in terms of ac-
curacy compared to other deep learning models. The findings of
this research suggest that transformer models, due to their unique
properties and capabilities, present a promising avenue for future
research in indoor localization tasks.

7.1 Potential Improvements
A potential improvement of the model would be to arrange the APs
in the database in a meaningful way. As the order of the APs in the
columns’ database does not represent their physical locations, the
model might not capture the spatial correlation between nearby
APs accurately. However, if the APs were arranged according to
their physical locations (for example, in increasing order of x and y
coordinates), it could introduce a form of spatial relevance into the
data. The model could then potentially discover spatially relevant
features, which could result in enhanced performance. But because
of the dynamic nature of indoor environments (for example, APs
being added, removed, or relocated), this would require a consistent
configuration of APs across all samples, which could prove to be a
challenging task.

REFERENCES
[1] Zhenghua Chen, Han Zou, Jianfei Yang, Hao Jiang, Hao Jiang, and Lihua Xie.

2019. WiFi Fingerprinting Indoor Localization Using Local Feature-Based Deep
LSTM. IEEE Systems Journal (2019). https://doi.org/10.1109/jsyst.2019.2918678

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. International
Conference on Learning Representations (2020). https://doi.org/null

[3] Gibran Felix, Mario Siller, and Ernesto Navarro Alvarez. 2016. A fingerprinting
indoor localization algorithm based deep learning. International Conference
on Ubiquitous and Future Networks (2016). https://doi.org/10.1109/icufn.2016.
7536949

[4] SonNguyen, Duc Viet Le, and P. Havinga. 2023. Learning theworld from its words:
Anchor-agnostic Transformers for Fingerprint-based Indoor Localization. Annual
IEEE International Conference on Pervasive Computing and Communications (2023).
https://doi.org/10.1109/percom56429.2023.10099376

[5] Wafa Njima, Iness Ahriz, Rafik Zayani, Michel Terre, Ridha Bouallegue, Ridha
Bouallegue, Ridha Bouallegue, and Ridha Bouallegue. 2019. Deep CNN for Indoor
Localization in IoT-Sensor Systems. Sensors (2019). https://doi.org/10.3390/
s19143127

[6] Navneet Singh, Sangho Choe, and Rajiv Punmiya. 2021. Machine Learning Based
Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview. IEEE Access
(2021). https://doi.org/10.1109/access.2021.3111083

[7] Shreya Sinha and Duc V. Le. 2021. Completely Automated CNN Architecture
Design Based on VGG Blocks for Fingerprinting Localisation. International
Conference on Indoor Positioning and Indoor Navigation (2021). https://doi.org/10.
1109/ipin51156.2021.9662642

[8] Xudong Song, Xiaochen Fan, Xiangjian He, Chaocan Xiang, Qianwen Ye, Xi-
ang Huang, Gengfa Fang, Liming Luke Chen, Jing Qin, and Zumin Wang.

2019. CNNLoc: Deep-Learning Based Indoor Localization with WiFi Fin-
gerprinting. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Ad-
vanced Trusted Computing, Scalable Computing Communications, Cloud
Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (2019). https://doi.org/10.1109/
smartworld-uic-atc-scalcom-iop-sci.2019.00139

[9] Joaquín Torres-Sospedra, Raúl Montoliu, Sergio Trilles, Oscar Belmonte, and
Joaquín Huerta. 2015. Comprehensive analysis of distance and similarity mea-
sures for Wi-Fi fingerprinting indoor positioning systems. Expert Systems With
Applications (2015). https://doi.org/10.1016/j.eswa.2015.08.013

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[11] Wei Zhang, Kan Liu, Weidong Zhang, Youmei Zhang, and Jason Gu. 2016. Deep
Neural Networks for wireless localization in indoor and outdoor environments.
Neurocomputing (2016). https://doi.org/10.1016/j.neucom.2016.02.055

https://doi.org/10.1109/jsyst.2019.2918678
https://doi.org/null
https://doi.org/10.1109/icufn.2016.7536949
https://doi.org/10.1109/icufn.2016.7536949
https://doi.org/10.1109/percom56429.2023.10099376
https://doi.org/10.3390/s19143127
https://doi.org/10.3390/s19143127
https://doi.org/10.1109/access.2021.3111083
https://doi.org/10.1109/ipin51156.2021.9662642
https://doi.org/10.1109/ipin51156.2021.9662642
https://doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00139
https://doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00139
https://doi.org/10.1016/j.eswa.2015.08.013
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1016/j.neucom.2016.02.055

	Abstract
	1 Introduction
	1.1 Paper Structure

	2 Problem Statement
	2.1 Research Questions

	3 Related Work
	4 Methodology
	4.1 System design
	4.2 Proposed LF-Transformer Model
	4.3 Dataset and preprocessing

	5 Training Phase
	6 Results
	7 Conclusion
	7.1 Potential Improvements

	References

