
SPINCOPTER: MODELING AND CONTROL

 P.H.P.T.M. (Philippe) Damoiseaux

BSC ASSIGNMENT

Committee:
prof. dr. ir. A. Franchi

dr. S. Sun
Y. Shen

dr. ing. A. Lavrenko

July, 2023

030RaM2023
Robotics and Mechatronics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

1 Introduction 2

Abstract

This paper explores the control strategy for a unique sin-
gle rotor drone equipped with a fixed wing that incorpo-
rates a controllable control surface. It details the drone’s
modeling, the development of a Linear Quadratic Regula-
tor (LQR) controller, and its implementation. The effec-
tiveness of the control strategy is validated numerically,
providing insights for future research in this field.

1 Introduction

Drones with multiple rotors, like quadcopters or oc-
tocopters, suffer from a significant constraint due
to their limited power reserves, which restricts their
flight duration and operational distance. The mo-
mentum theory provides a theoretical framework for
understanding this limitation, suggesting that a ve-
hicle achieves greater aerodynamic efficiency when a
larger volume of airflow is used for propulsion. The
SpinCopter serves as a practical solution to this prob-
lem.

This drone tests the theory of sustaining its own
weight through an upward force generated not only
by its motor but also by a wing, which exerts the same
effort as a motor propeller. It is built in a way so that
it only consists of two controllable inputs, making
it mechanically very simple. The two controllable
inputs are the speed of the motor and the angle of the
control surface. Figure 1 and 11 provide an overview
of the drone. The figure shows a wing attached to
a beam, with a motor fixed at its end, eventually
creating a center of gravity between the motor and
the wing.

This thesis is structured as follows: The first sec-
tion provides an introduction and overview of the
study. The second section describes the modeling
process of the drone. The third section presents the
control strategy. This is followed by a numerical anal-
ysis and a final section concluding the paper and sug-
gesting areas for future research.

2 Modeling

The modeling process employs two types of coordi-
nate systems: an inertial coordinate system known

Fig. 1: System illustration of the Spincopter

as E, which is fixed to the ground, and a body-fixed
coordinate system is referred to as B [1]. These two
frames will be differently noted by superscripts. For
example the gravitational force gE expresses g with
respect to the inertial frame. For simplicity the su-
perscript for the body frame are be omitted as most
equations (unless specified) are in the body frame.

2.1 Forces on the drone
There are several forces acting on the drone. The
main forces can be expressed in 4 equations. There
are two components of the drone that create both
drag and lift. For the purpose of this paper, the
equations of these functions are simplified and given
in equations 1,2, 3, 4.

fw = clΩ
2
zδe (1)

dw = cdΩ
2
z (2)

fr = crω
2
R (3)

dr = ctΩzω
2
R (4)

These 4 equations resemble the upwards force of
the wing (fw), drag of the wing (dw), upwards force
of the propeller (fr) and drag of the propeller (dr).
All equations have their respective coefficient of lift
and drag which is unique to the wing (cl and cd)
and propeller (cr and ct). The motor generates a
rotational force, ωR, by rotating the propeller, which
in turn initiates a rotational velocity of the drone, Ωz.
This rotational velocity affects all equations besides
the equation initiating it. Furthermore, the lift of
the wing can be controlled by altering the angle of

2 Modeling 3

the control surface which is given in radians by δe.
These two control inputs will allow the drone to hover
and fly where desired. These equations, along with
the equation of gravity, form the basis of this paper.

To properly model this, we examine both the dy-
namic and kinematic models. These are then further
distinguished by identifying both the translational
and rotational forces.

2.2 Translational
In the process of modeling, it’s crucial to pinpoint the
drone’s location within the translational domain (x,
y, z). To achieve this, we analyze the translational
dynamics and kinematics using equations 5 and 6,
derived from [2].

ṗE = Rv (5)

v̇ = (ω × v) +
1

mass
F − g (6)

Equation 6 allows us to calculate the drone’s ve-
locity and acceleration in all directions. The angular
acceleration is computed by taking the cross product
of the angular velocity and the translational velocity,
and then adding the impact of the external forces.
The cross product between the angular velocity and
the velocity results in an acceleration. Dividing the
force by the mass, according to Newton’s second law,
also yields an acceleration.

Once the angular acceleration is obtained in the
body frame, it needs to be represented this in the
inertial frame, as it is the drones operational frame.
To transform the velocities, we employ the Rotation
matrix (Z, X, Y), a standard rotation matrix in the
field of drone dynamics. However, there are other
options that can be chosen. This one is specifically
chosen because it is conventional and the ease of con-
version. The Rotation matrix is a matrix that, when
multiplied with a vector, results in the rotation of the
vector without altering its magnitude [3].

Within the world of modeling and control this ma-
trix is used to convert forces acting on the body frame
into the inertial frame. For this assignment we used
the Z-X-Y Euler angles. This means that the conver-
sion from body frame to inertial frame is in a certain

order of turns/ operations. The inertial frame is first
rotated about its z axis in the rotated frame through
the yaw angle, ψ, which is followed by a rotation
about its X axis in the rotated frame through the
roll angle, ϕ, and a rotation about its X axis in the
rotated frame through the pitch angle, θ [4].

2.3 Rotational
As the drone will be rotating constantly, the rota-
tional dynamics and kinematics will be the most im-
portant to model. By considering the forces previ-
ously described, we can deduce their influence on
rotational velocities and accelerations. The drone’s
rigid body equations of rotational motion [5] are rep-
resented in equations 7 and 8. We assume the body
to be rigid, as it neither bends nor deforms in air.

Ṙ
E
= RTω (7)

Iω̇ = −ω × Iω + τ (8)

Equation 8 shows the rotational velocity in the
body frame for all axes. This formula is derived by
identifying the velocity in a certain direction and sub-
tracting it from the torques that are acting on the
frame. Thereafter equation 7 represents the change
in angles with respect to the inertial frame. This is
done by multiplying it with the Euler Angle rates
represented by RT .

The rate of change over time of the Euler angle vec-
tor equates to the vector of Euler angle speeds. The
connection between these Euler angle speeds and the
body’s angular velocity is captured within the Euler
angle rates matrix. When this matrix is multiplied by
the vector of Euler angle speeds, it yields the angular
velocity in the global coordinate system [3]. Thus,
R is simply calculated using equation 9 and given in
equation 10.

Eijk(ϕ, θ, ψ) := [ei, Ri(ϕ)
T ej , Ri(ϕ)

TRj(θ)
T ek] (9)

RT =

1 0 −sin(θ)
0 cos(ϕ) sin(ϕ)cos(θ)
0 −sin(ϕ) cos(ϕ)cos(θ)

 (10)

The forces that contribute to the system’s torque
originate from both the rotor and the wing. Because

2 Modeling 4

the motor is at an angle θ in between the x and z
axis, the direct forces will only have an effect in the
x and z directions. However, in the case of rotational
dynamics, the torque is being considered which origi-
nates from the forces but has different properties due
to its distance from the cg. Therefore, the forces in
the z and x direction will result in a rotational force
around the y axis. The system’s torque in all axes
is given in equations 11,12,13. These equations were
derived by identifying all the forces in all directions
and cross multiplying them with the distance from
the center of gravity. This way the torque is repre-
sented accurately according to the model.

τx = Crlrcos(θR)ω
2
R − Clδelwr

2 (11)

τy = Crω
2
Rhrcos(θR)sin(θR)− hrcos(θR)

(Crω
2
Rsin(θR) + Ctω

2
Rr)

(12)

τz = lr(Crω
2
Rsin(θR) + Ctω

2
Rr)− Cdlwr

2 (13)

To further ascertain the drone’s angular velocity,
a CAD model was constructed (appendix 7.3) to ac-
curately determine a possible inertia matrix. This is
determined to be the an identity matrix with the di-
agonals having different values. These values being
Ixx = 0.02, Iyy = 0.001, Izz = 0.02. Substituting all
this information into equations 8 and 7, an effective
model of the rotational dynamics and kinematics was
derived.
The final state space equations for all states deter-
mined are given in Appendix 7.1.

2.4 Equilibrium
Having determined the equations for both the trans-
lational and rotational dynamics and kinematics, a
hovering solution has to be determined. For simplic-
ity of the assignment, a special equilibrium at which
the drone will be hovering perfectly flat has been cho-
sen to be pursued. In this case the desired values of
all states besides the angular velocity r and the angle
ψ should equal to 0. The drone will be constantly
turning around its z axis as that is how the wing will

be able to create lift and further approach the goal of
the thesis which is to achieve a higher aerodynamic
efficiency. In this case r will be a constant and the
angle ψ is changing constantly as it depends on the
velocity r.

When all states are 0 besides the ones mentioned
above, the drone will be flying in a equilibrium which
can also be identified as a hovering position where
the position will remain constant. The parameters
of this drone are therefore determined according to
these requirements. When equaling the states and
their respective integrals to 0 there are 6 state space
equations which do not equal 0 without parameter
optimization. These respective equations are for the
states ṗ, q̇, ṙ, ψ̇, u̇ v̇ and ẇ. These equations are given
in section 7.2.

To further simplify things, we make hr 0 because
else it would create problems for this specific hovering
solution. by doing this we prevent a force in angu-
lar velocity around the y axis which would not be
counteracted by other forces or would incur an angle
change in other angles. This would have made the
problem more complex.

2.5 Hovering solution
To identify the values of the parameters which will
make this drone fly, initial guesses according to some
quick online searches are made. These initial guesses
with reasonable boundaries are plugged into a Mat-
lab simulation which optimizes the values according
to the functions equating to 0. The issue is that there
are endless possibilities. This means that there are
multiple local minima and Matlab usually focuses on
one and further optimizes that one. Therefore, the
simulations are very sensitive to initial guesses. To
prevent this, a global function (Matlab’s global search
in combination with fmincon) is created which iden-
tifies multiple minima and further optimizes these to
eventually find the most optimal one. The cost func-
tion analyzed with this script is given in equation 14.

cost =
√
q̇2 + ṙ2 + u̇2 + ẇ2 (14)

The final values obtained from the simulations are

3 Control strategy 5

given in table 1

ωR 596.20rads/s−1

δe 0.0916rads
θR 0.1052rads
r0 10.5015rads/s−1

Cl 0.6208
CR 1e−5

Cd 1e−7

Ct −1e−7

lw 0.1263m
lr 0.2243m

Tab. 1: Final parameter list

3 Control strategy

To be sure that the drone can hover and be controlled
into different directions, a controller has to be created
and simulated. For this controller there are multiple
strategies. A cascade controller is the optimal design
since not all states of the drone are fully controllable.
It also allows for the problem to be broken into two
or three parts for ease of analysis [6]. This would
be done through the use of an inner and outer loop
which are both determined by an LQR function in
Matlab.

The observability matrix of the drone does not
need to be determined/calculated because all the
states are fully observable.

3.1 Controllability
The drone’s dynamics were initially modeled as a
nonlinear system, which was then linearized around
the equilibrium point (determined in section 2.5) cor-
responding to the hovering condition. This was done
through calculating the jacobian of each equation
with respect to their respective variable [7]. This
gives a clear state space equation in the form of equa-
tion 15.

In this equation the variable "e" stands for error. It
is the difference between the desired output and the
actual output of the system. The goal of a control
system is to minimize this error.

ė represents the derivative of the error. Further-
more matrix A and B are constant coefficients of the
states and coefficients that weight the inputs respec-
tively [8]. The control input "u" is chosen to try to
minimize the error "e" and its derivative ė.

˙⃗e = Ae⃗+Bu⃗ (15)

The controllability of the drone’s states was a cru-
cial aspect of the control design process. Controlla-
bility refers to the ability to drive the system from
any initial state to any desired final state in finite
time, using the system inputs. The controllability of
the system was analyzed by constructing a control-
lability matrix which is given in equation 16. This
is a matrix that combines the effects of the system
dynamics (A) and the control inputs (B) [9]. In this
equation n represents the amount of states.

cc = [B,AB,A2B,A3B, ..., An−1B] (16)

The controllability matrix was calculated using the
state-space representation of the linearized drone dy-
namics. The rank of this matrix provides a measure
of the number of controllable states [9]. In this case
the matrix had rank 9 which means that there are 9
controllable states. The other states are not directly
controllable through the 2 given inputs. However,
this does not mean that they will not be able to be
controlled at the end.

3.2 Full Controller
The stabilization of the drone during hovering flight
was achieved by implementing a Linear Quadratic
Regulator (LQR) controller (a control strategy that
optimizes system performance by minimizing a
quadratic cost function. It represents the deviation
of system states and inputs from their desired val-
ues [10]). With the use of both the A and B ma-
trix obtained in the previous paragraph, the LQR
controller can be designed. The LQR design process
involved defining a cost function that penalizes devi-
ations from the desired state and control effort. The
weights described in the Q matrix in the cost function
were chosen to balance the trade-off between tracking
performance and control effort.

3 Control strategy 6

Originally the linearized system was able to con-
trol 9 out of the 12 states namely the roll rate (p),
yaw rate (r), roll angle (ϕ), pitch angle (θ), the body
frame velocities (u, v, w) and the longitudinal po-
sitions (y,z). However, the remaining three states,
namely the pitch rate (q), yaw angle (ψ) and lon-
gitudinal position (x), were not directly controllable
through the two controllable inputs. To address this,
natural damping in the pitch and roll rate are intro-
duced and to control the longitudinal directions and
a cascade controller is implemented to control the
longitudinal state.

3.2.1 Cascade controller

To fully control the drone the full controller has to be
a cascade controller which means that there is an in-
ner and outer loop. However, for it to work properly,
the inner loop in this case has to be the most sen-
sitive to disturbances, work less fast than the outer
loop and have less influence than the outer loop [11].
Because of these reasons, the inner loop for this drone
will control the controllable angles and angular veloc-
ities while the outer loop will control the vector veloc-
ities. The angles and angular velocities are the most
sensitive to disturbances and can be pushed out of
equilibrium more easily than the longitudinal speeds.
The composition of this controller can be seen in fig-
ure 2.

Fig. 2: Cascade Control diagram of Drone controller

To achieve this, the LQR controller gain of the in-
ner loop is determined first before the outer loop gain.
Considering that the inner loop is more sensitive to
disturbances, the inner loop has to be stabilized be-
fore creating the outer loop. With the use of Matlab,
a gain matrix (K) can be calculated for the inner loop.
This is later applied to the outer loop.

3.2.2 LQR controller inner loop

The LQR controller in the inner loop controls the an-
gles ϕ, θ and the angular velocities p and r. For this
LQR controller a Q and R matrix are constructed
to put priority on certain states. The Q matrix af-
fects the controllable states and the R matrix affects
the control inputs. Therefore we can determine some
characteristics. The most important characteristics
here were to ensure that the control surface δe does
not exceed 0.7 or -0.7 radians (45◦) as that is phys-
ically impossible and that the rotor speed does not
change instantly or go negative as a motor can not
spin that fast nor turn the in the other direction.
Therefore the values in the R matrix are consider-
ably bigger than the values in the Q matrix.

Furthermore, the rotation matrix has been deter-
mined by Z-X-Y and therefore the angle ϕ is the
most influential. This means that the angle has to
be brought to equilibrium as fast as possible. Lastly,
the angular velocity around z (r) is also an important
factor as that ensures the the drone creates lift and
hovers. The values of both R an Q for the inner loop
can be seen below.

Q =

20 0 0 0
0 100 0 0
0 0 5000 0
0 0 0 10

 R =
[
90000 0

0 2000

]

3.2.3 LQR controller outer loop

The calculation of the outer loop gain matrix is done
in the same way as the inner loop. However, for the
outer loop, the A and B matrix are affected by and
affect other states than that of the inner loop. In this
case, the B matrix is constructed through the states
controlled by the inner loop (p, r, ϕ and θ) and the
A matrix is constructed through the states that still
have to be controlled (u,v,w). Therefore the control-
lability has to be checked again and a new Q and R
matrix have to be determined and evaluated.

For the Q matrix, three parameters are influenced.
These parameters are u, v and w. From the formulas
we can determine that the parameter w is the most
sensitive compared to the other parameters. Further-

4 Numerical validation 7

more the velocity v is very dependent on angles θ and
ϕ. Because of this, the cost function also needs to be
larger but because it is not influenced by the rotor it
is less important than w.

With regards to the R matrix, the states being af-
fected by it are the p, r, ϕ and θ. Because the states
p and r are less sensitive, it does not need to be large
compared to the cost of the other states. The angles
need to be stabilized earlier than the angular veloci-
ties.

Q =

1 0 0
0 10 0
0 0 30

 R =

0.1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 10

To properly control the location of the drone in

the translational domain, it is possible to add an-
other loop which controls the position the same way
that the acceleration is controlled. Because only the
altitude is not stable with the velocity loop, only a
controller for the z domain has to be built. This is
done through the following Q and R matrix. It still
takes into account the x and y positions but those are
not connected as can be seen in figure 3. The value
of Q needs to be minimal else it will push everything
out of equilibrium.

Q =

0.001 0 0
0 0.001 0
0 0 0.001

 R =

1 0 0
0 1 0
0 0 1

3.3 Simulink implementation
The cascaded control architecture was implemented
using Simulink. The LQR controller was depicted as
a gain block positioned ahead of the system, with a
feedback loop supplying the control input. This feed-
back is subtracted from the mean and then fed into
the gain matrix, transforming it into the suggested
system input.

The outer loop controller was also portrayed as a
gain block, with its output directed into the reference
input of the LQR controller. The simulation results
underscored the efficacy of the proposed control ar-

chitecture in stabilizing the drone during hovering
flight.

The complete architecture is illustrated in figure 3.
This figure displays all three loops each followed by
a different K gain component. These gain matrices
generate an input for the rotor speed (ωR) and control
surface angle (δe), which are then fed into the non-
linear system. The non-linear system outputs the
states, which are subsequently integrated to derive
the values for the speeds and angles.

Fig. 3: Simulink controller setup

4 Numerical validation

Having obtained the full dynamic model and built a
cascade LQR controller, the drone has to be properly
simulated to observe the behaviour of the whole sys-
tem. To analyse whether the system works accord-
ingly, different tests are implemented. These tests
consist out of testing the inner controller, the full con-
troller (including all feedback loops) going to equilib-
rium and the full controller with minor disturbances.
The goal with these tests is to see whether the drone
will equalize and whether the drone will be able to
recover from disturbances.

4.1 Control of innerloop
After establishing a gain matrix for the inner loop,
simulations can only be run by setting the transla-
tional domain to zero. This is a temporary measure,
as the full controller implementation will address this
later. However, from the initial tests with only the
inner controller, figures 4 and 5 demonstrate that
the necessary states converge to equilibrium, with

4 Numerical validation 8

Fig. 4: Inner loop response of the angles

Fig. 5: Inner loop response of angular velocities

the yaw increasing at a steady rate. However, it
is notable that the angular velocity p does not con-
verge at 0 which is not what was expected. However,
this has no effect on the final result as the angle ϕ is
dependent on other parameters too and will still sta-
bilize around a different value. These values are then
implemented into the simulation so that it can con-
verge more easily and reduce the error coming from
the gain matrix.

Additionally, the results from figure 6 show that
the inputs into the non-linear system are close to
equilibrium and actively counteract any undesired ac-
tivity. These three graphs demonstrate that, when
not controlling the translational domain, the drone
can hover and reach equilibrium. This shows that
the controller built to control these states will force
it back to equilibrium.

4.2 Control of full system
The implementation of the outer loops in the drone
control system is an important aspect that en-
ables precise position stabilization. Upon initiating

Fig. 6: Rotor speed (m/s) and δe (rad)

Fig. 7: X,Y and Z stabilization response

the simulation, the drone does not instantaneously
achieve stability. However, it starts from a state of
rest and stabilizes over time, a process governed by
the outer loops. These loops interact with the in-
ner loop controls, thereby influencing the x, y, and z
states of the drone.

The LQR system has been fine-tuned based on the
results of the simulations, leading to the determina-
tion of the Q and R matrices, as detailed in section
3.2.3. These matrices play a role in modulating the
input of the inner loop, thereby ensuring the x, y,
and z states are stabilized. This is evident in figure
7, where it can be observed that the system eventu-
ally reaches a state of equilibrium.

One noteworthy observation is that the drone must
first attain a certain altitude before the system sta-
bilizes. This fails to be a problem simply because
this can be pre-set in the drone’s GPS, allowing it to
operate at a normal altitude.

Upon examining figures 7 and 8, it is apparent that
the values exhibit significant fluctuations. This is
a consequence of the inner loop’s sensitivity, which
makes it challenging to control when the translational
domain also requires stabilization. Despite these os-

5 Conclusion 9

Fig. 8: X,Y and Z stabilization response

Fig. 9: displacement of the drone in x,y,z over time

cillations, the velocities do converge around zero, in-
dicating that the system is stable around a specific
point, despite this not being on the drone’s body.

These oscillations and deviations from equilibrium
enable the drone to maintain a unique equilibrium
state, where it operates around a specific point. This
behavior is depicted in figure 9. Over a duration of
100 seconds post-stabilization, the drone exhibits a
pattern that is both self-sufficient and reliable. This
pattern does not change over time showing that it
is in a stable state. This is not a "real equilibrium"
but could have been obtained because the model used
to calculate the equilibrium is slightly different from
the nonlinear simulation one. However, this is very
normal in the real world because there will always be
model mismatches.

4.3 Reaction to disturbances
A critical aspect of the drone control system is its
ability to maintain stability under different kinds of
disturbances. To evaluate this, we introduced various
disturbances (sudden changes in x, y, z, ϕ, θ and
ψ) into the simulation environment and observe the
drone’s response.

When a slight disturbance is brought to the x, y
and z parameters the drone remains stable. However,
the altitude (z) of the drone changes significantly but
stabilizes at a new value. This means that the drone
has multiple equilibrium’s. Through further investi-
gation and derivation it is possible to design a con-
troller so that input controlling the altitude results in
changes in multiple states but essentially controlling
the z position.

5 Conclusion

To conclude, this paper presents the development
and validation of a drone design with two control in-
puts, the SpinCopter, which leverages the principles
of momentum theory to achieve greater aerodynamic
efficiency. The drone’s dynamics are modeled, and
a cascade Linear Quadratic Regulator (LQR) con-
troller is designed and implemented to stabilize the
drone during hovering flight. The controller’s per-
formance is validated through numerical simulations,
demonstrating the drone’s ability to maintain stabil-
ity under various disturbances. Despite the results
suggesting that the SpinCopter holds promise for en-
hancing the capabilities of drone technology, it only
withholds this in simulations. It is possible to deter-
mine from the data obtained in this paper that there
is more research to be done into better modeling and
control of the drone. However, this paper serves as
a good start to any future research. Future work
should focus on further refining the control strategy
and exploring the drone’s performance under a wider
range of operational conditions.

6 Bibliography 10

6 Bibliography

References

[1] W. Zhang, M. W. Mueller, and R. D’Andrea,
“A controllable flying vehicle with a single mov-
ing part,” IEEE International Conference on
Robotics and Automation, 2016.

[2] T. M. Randy Beard, Small Unmanned Aircraft:
Theory and Practice.

[3] J. Diebel, “Representing attitude : Euler angles
, unit quaternions , and rotation vectors,” 2006.

[4] R. Mahony, V. Kumar, and P. Corke, “Multi-
rotor aerial vehicles: Modeling, estimation, and
control of quadrotor,” IEEE Robotics Automa-
tion Magazine, vol. 19, no. 3, pp. 20–32, 2012.

[5] S. Bouabdallah, P. Murrieri, and R. Sieg-
wart, “Design and control of an indoor micro
quadrotor,” in IEEE International Conference
on Robotics and Automation, 2004. Proceedings.
ICRA ’04. 2004, vol. 5, 2004, pp. 4393–4398
Vol.5.

[6] M. W. Müller and R. D’Andrea, “Relaxed
hover solutions for multicopters: Application
to algorithmic redundancy and novel vehicles,”
The International Journal of Robotics Research,
vol. 35, pp. 873 – 889, 2016.

[7] A. D. Lewis and D. R. Tyner, “Geometric ja-
cobian linearization and lqr theory,” The Jour-
nal of Geometric Mechanics, vol. 2, pp. 397–440,
2011.

[8] D. Rowell, “2 . 14 analysis and design of feedback
control systems state-space representation of lti
systems,” 2002.

[9] B. GOVIND, “Controllability and observability,”
2016, unpublished lecture notes.

[10] S. Musa, “Techniques for quadcopter modelling
design: A review,” vol. 5, 05 2018.

[11] W. E. M. Company, “The benefits of cascade
control,” Tech. Rep.

7 Appendix

7.1 State space equations

ṗ =
Iyyqr − IZZqr − cl∆e ∗ lwr2CrωRLrcos(θR)

Ixx
−cpp
(17)

q̇ = −cqq −
r(Cthrcos(θR)ω

2
R + Ixxp− Izz)

Iyy
(18)

ṙ =
lr(Crω

2
Rsin(θR) + Ctω

2
Rr) + Ixxpq − Iyypq − Cdlwr

2)

Izz
(19)

ϕ̇E = p− rsin(θ) (20)

θ̇E = qcos(ϕ) + rcos(θ)sin(ϕ) (21)

ψ̇E = rcos(θ)cos(ϕ)− qsin(ϕ) (22)

u̇ = 9.81sin(θ)− Ct ∗ ω2
Rr + Crsin(θR)ω

2
R + Cdr

2

mass
−

qw + rv

(23)

v̇ = pw − ru− 9.81cos(θ)sin(ϕ) (24)

ẇ = qu− pv +
Crcos(θR) ∗ ω2

R + Clδer
2

mass
−

9.81cos(θ)cos(ϕ)

(25)

ẋE = w(sin(ϕ)sin(ψ) + sin(θ)cos(ϕ)cos(ψ))+

ucos(θ)cos(ψ) + vsin(θ)cos(ψ)sin(ϕ)
(26)

ẏE = v(cos(θ)cos(ψ) + sin(θ)sin(ϕ)sin(ψ))

−w(sin(θ)cos(ψ)− sin(θ)cos(ϕ)sin(ψ))+

ucos(θ)sin(ψ)

(27)

żE = wcos(θ)cos(ϕ)− usin(θ) + vcos(θ)sin(ϕ)

(28)

7 Appendix 11

7.2 Equilibrium equations

q̇ = −−Crlrcos(θR)ω
2
R + Clδelwr

2

Ixx
(29)

ṗ =
Ctω

2
Rhrrcos(θR)

Iyy
(30)

ṙ =
lr(Crω

2
Rsin(θR) + Ctω

2
Rr)− Cdlwr

2

Izz
(31)

ψ̇ = r (32)

u̇ = −Ctω
2
Rr + Crsin(θR)ω

2
R + Cdr

2

mass
(33)

ẇ =
Crcos(θR)ω

2
R + Clδer

2

mass
− 9.81 (34)

7.3 CAD model

Fig. 10: Solidworks model

7.4 Model drawing

Fig. 11: Caption

