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Fig. 1. A labeled point-cloud scene from LiDAR scans of the Dutch Railways

Supervised learning approaches require the creation of big datasets with-
out upfront knowledge of the performance on these datasets. The high
cost associated with such datasets highlights importance of being able to
make performance estimates for full datasets through the analysis of learn-
ing behaviour on smaller datasets. This work analyzes learning behaviour
with respect to variations in dataset size through a comparison of per-class
intersection-over-union (IoU) against point- and scene-count in training
data. In total, SPVConv models are trained for semantic segmentation of
railways on various dataset-sizes. Linear regressions are extrapolated for the
upward-trending performance on test data against the downward-trending
performance on training data for both scene- and point-count, resulting
in per-class predictions of IoU at their intersections. This work shows that
some of the seen variations in IoU between the classes is very likely caused
by a big class-imbalance in the dataset; this correlation is seen on limited
data but also holds as the amount of data increases. In addition to the class
imbalance, there are additional class-intrinsic factors that impact learning
rate and IoU, shown through differences in slope for the various classes.

Additional Key Words and Phrases: Point cloud, railway, semantic segmen-
tation, learning curve, class imbalance

1 INTRODUCTION
With the advent of PointNet by Qi et al. in 2017 [13], research on
neural networks (NNs) for object recognition and semantic segmen-
tation of point-clouds has seen tremendous progress [20]. These NNs
can take an unstructured point-cloud as input and segment points
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or classify objects in a scene by using various localized feature-
extraction techniques [4]. Supervised learning, the prevailing ap-
proach for training these models, necessitates the creation of sub-
stantial datasets in the form of labeled point-clouds. However, the
creation of these large datasets is an onerous and costly task, and
more importantly, it is undertaken without prior knowledge about
the performance outcomes of fully trained models [3]. Given these
constraints, it is paramount to be able to analyze the learning be-
havior of NNs on smaller, more manageable datasets. This would
allow the creation of predictions about the potential performance
on a full dataset, thereby circumventing the immediate need for the
sizable investment involved in creating a comprehensive dataset.

Generally, as the volume of training data grows, performance on
unseen data tends to improve, with an accompanying reduction in
performance and overfitting on training data [12]. However, the
performance improvements begin to diminish as the dataset size
grows, approaching a limit when the model reaches its maximum
performance. When provided with infinite training data, perfor-
mance on training and testing data converges towards this upper
limit. This relation of model-performance to data-availability is
commonly known as the learning curve (with respect to data size)
of a model, and is a metric frequently employed in performance
analysis of machine learning models [10]. In this study, we focus on
learning curves associated with data size, but extend the analysis to
differentiate between the number of scenes (scene-count) and the
number of class-specific data points (point-count) in training data.
Semantic segmentation and object recognition of railways have

many important applications, predominantly in aiding the detection
and assessment of railway infrastructure for inspection purposes
[11, 15, 17, 18]. As part of a project commissioned by Strukton
Rail, the Ambient Intelligence Lectorate (AMI) at Saxion University
of Applied Sciences has annotated a LiDAR dataset of the Dutch
railways. An exemplary scene from this dataset is depicted in Figure
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1, where unlabeled points are illustrated in blue, poles in yellow, and
tension rods in red. The dataset employed in this research comprises
124 such scenes from two distinct railway lines in The Netherlands.
Given its limited data volume, this dataset offers an ideal opportunity
for the analysis and extrapolation of learning behavior.

In this study, we examine the response of the SPVConv [16] NN
to variations in training data, through a comparison of each class’s
intersection-over-union (IoU) against the scene- and point-count
of randomly-sampled subsets from the aforementioned dataset. A
total of 38 SPVConv models are systematically trained for the task
of semantic segmentation of railways, and each of these models
is subsequently tested on two distinct test sets to determine class-
specific IoU metrics. Through this investigation, we aim to answer
the following research questions about the dataset and NN:

RQ1 What is the impact of scene- and point-count in training data
on the performance of semantic segmentation?

RQ2 How can learning curves relative to scene- and point-count be
used to extrapolate class-specific IoU metrics to bigger datasets?

2 RELATED WORK
The subsequent sections will cover some key topics related to the
study of learning behavior in point-cloud semantic segmentation.
We initially explore the landscape of neural network architectures,
looking at various types of NNs used in semantic segmentation and
their unique characteristics. Then, we’ll give a brief rundown of es-
tablished learning curve theory, to provide a theoretical background
for our analysis. Lastly, we’ll talk about class imbalances, which
are especially important in our dataset, highlight some issues they
might cause, and present some possible mitigations for these issues.
This overview will help set the stage for the research that follows.

2.1 Semantic Segmentation of Point Clouds
Achieving state-of-the-art results for semantic segmentation and
object detection of point clouds with NNs that directly targeted
higher-dimensional data proved challenging prior to 2017 [4, 20].
However, the landscape was significantly transformed following the
introduction of Qi et al.’s research [13] with their architecture, Point-
Net, designed to work directly with unstructured point-cloud data.
Subsequent research has incorporated and improved techniques
such as voxelization, point ordering, and feature fusion, enhanc-
ing training speed, improving scaling with larger point clouds, and
reducing error rates [20].
One such recent advancement is the SPVConv neural network

introduced in 2020, which applies voxelization and demonstrates
"8x computation reduction and 3x measured speedup with higher
accuracy" [16] compared to its predecessor, MinkowskiNet [2], on
the widely recognized SemanticKITTI dataset [1]. At the time of
writing, SPVConv ranks 7th on the SemanticKITTI leaderboard with
a mean IoU (mIoU) of 66.4%. The top-performing model has an mIoU
of 74.8%.
Neural networks of this type spatially partition the point-cloud

into volumetric voxels, extracting features from these voxels to seg-
ment and classify the entire space. This method can pose challenges
when objects within the scene exhibit significant size variation, as

it requires the selection of a single voxel size as a model parame-
ter. The SPVConv architecture addresses some of these challenges
through its use of sparse point-voxel convolution, enabling more
effective classification of both small and large objects within the
same scene [16].

2.2 Learning Curve
Learning curves, which plot performance against an independent
variable, provide insights into learning behavior. In the field of ma-
chine learning, data size, learning iterations, and neural network
(NN) size care commonly used as the independent variable. However,
theoretical exploration of learning curves with respect to data size
remains relatively uncharted territory, still lacking a comprehen-
sive mathematical foundation [7]. Recent years have seen increased
efforts to establish this mathematical basis, with significant contri-
butions from OpenAI [5] and Baidu [6].

These studies examine model performance as a function of vary-
ing data size, 𝑛, and propose a power-law relationship, 𝜖 (𝑛) ∝ 𝛼𝑚𝛽𝑔 ,
between data size 𝑛 and generalization error 𝜖 , where 𝛼 is a con-
stant property of the problem. The scaling exponent 𝛽𝑔 , which lies
between 0 and -1, determines the learning curve’s steepness, i.e.
the rate at which a model family learns from additional training
samples. For larger neural networks, values of 𝛽𝑔 typically range
from -0.07 to -0.35 [5, 6, 10].

The data size 𝑛 is obtained as independent variable by randomly
sampling subsets (scenes) of size 𝑛 from the full dataset. This paper
further differentiates data size into scene-count and point-count,
to allow a more nuanced analysis of learning curves on a class-by-
class basis. Scene-count in this work corresponds to data size in
existing literature, whereas, to the best of our knowledge, no work
has been done on learning curves specific to point-count. The point-
count for a class is defined as the amount of that class’s points in
the training data and offers an alternative approximation of model
performance relative to data size than scene-count, which does not
consider variations in class balance within the training data.

2.3 Class Imbalances
Machine learning methods often rely on labeled datasets for train-
ing, and these datasets frequently exhibit unequal class distributions.
A class imbalance occurs when one class significantly outnumbers
another, leading to majority and minority classes [9]. Such imbal-
ances can result in an overclassification of majority classes and an
underclassification of minority classes - a problem particularly im-
pactful when minority classes are of greater relevance than majority
classes [8].
In their meta-study, Johnson et al. identify three strategies for

addressing class imbalances: data-level methods, algorithm-level
methods, and hybrid methods [9]. Data-level methods focus on
modifying training data prior to feeding it into themodel, employing
techniques that oversample minority classes or interpolate different
scenes to mitigate the imbalance. Algorithm-level methods, on the
other hand, are applied after the data has been introduced to the
model and include balanced loss functions, cost-sensitive learning
techniques, and threshold adjustments. Hybrid methods combine
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Label Description Occurence

0 Unlabeled 97.40%

1 Pole 2.24%

2 Tension rod 0.13%

3 Signal 0.15%

4 Relay cabinet 0.08%
Table 1. Class distribution

data-level and algorithm-level approaches into a comprehensive
solution.

3 METHODOLOGY
The following section outlines the methodology followed during
our research to ensure the reproducibility of our findings. We begin
by detailing the steps involved in pre-processing of the dataset to
prepare it for semantic segmentation. This is followed by an explana-
tion of our data partitioning strategy, outlining how we segmented
our data into training sets for the various models. Subsequently,
we delve into the specifics of our training process, focusing on our
use of the SPVConv architecture and the specific parameters used.
Lastly, we outline our systematic testing approach, explaining how
we evaluated each model’s performance across multiple test sets.

3.1 Data pre-processing
The AMI from the Saxion University of Applied Sciences created a
high-resolution LiDAR dataset of railway tracks in The Netherlands,
provided by Strukton Rail. This dataset covers two locations: one
in The Veluwe and the other near Dronten. The AMI labeled the
points within these datasets into five categories, as detailed in Table
1. The ground was then removed using the ground-removal method
specified by Zermas et al. [19]. Following this, each location was
broken down into scenes, each 75 meters long and 30 meters across.

The pre-processed dataset comprises 86 scenes from The Veluwe
and 38 scenes fromDronten, totaling 124 scenes. Each scene contains
approximately 100,000 to 300,000 points. An example of one of these
scenes is shown in Figure 1. Table 1 illustrates a significant class
imbalance in the dataset, even after ground removal. Over 97% of
the data is composed of unlabeled points, while poles constitute just
over 2%. The remaining three classes collectively make up less than
0.5% of the data.

3.2 Data partitioning
Before training any models, we split all scenes into training, testing,
and validation sets according to the ratios outlined in Table 2. The
exact division was created by manually examining each scene and
selecting samples with representative class-distributions for the test
and validation sets. However, due to the limited number of scenes
and the significant class imbalance, it was not possible to evenly
split the Dronten data into all three sets. As a result, Dronten was
excluded from the validation set.

We designed the partitioning to follow a linear increase in scene-
count, ranging from 20 to 100 scenes. For this process, we randomly

Set Train Test Validation

The Veluwe 70 (81.4%) 8 (9.3%) 8 (9.3%)

Dronten 32 (84.2%) 6 (15.8%) 0 (0.0%)
Table 2. Train, test and validation splits

Size (scenes) 20 30 40 50 60 70 80 90 100

Repititions 10x 6x 5x 4x 3x 3x 3x 2x 2x
Table 3. Sizes and repititions of train partitions

sampled without replacement from the full train set. To determine
the number of partitions for a given scene-count, we applied the
formula 2 · 100/𝑠𝑐𝑒𝑛𝑒_𝑐𝑜𝑢𝑛𝑡 . This approach ensures a linear rela-
tionship between scene-count and the number of partitions with
that scene-count, mitigating the impact of smaller sample sizes on
dataset variability. Table 3 outlines the resulting partitions.

3.3 Model Training and Tuning
Initially, we attempted to train models using the PointNet++ [14]
architecture. However, despite numerous attempts, we were unable
to surpass an mIoU of approximately 0.2 on the validation set. Given
the unsatisfactory performance, we pivoted to the SPVConv [16] ar-
chitecture. This change yielded immediate improvements in results,
and consequently, we selected SPVConv as the NN architecture for
our experiments. Moreover, training new models with SPVConv
proved significantly faster than with the PointNet++ model.
We based the initial hyperparameters of the network on SPV-

Conv’s results from the SemanticKITTI [1] dataset, subsequently
fine-tuning them on our validation set. The parameters can be
found in Table 4. Class weights were determined by each class’s
point distribution within the entire dataset, resulting in the weights
(0.020, 1.25, 20, 16, 23) for the respective classes. We chose a batch
size of 10, providing a divisor across all partition sizes. The learning
rate employed in the final model follows a cosine annealing pattern,
starting at 0.2 and ending at 0.001.

We then utilized these same parameters to train models across all
partitions, yielding 38 unique models. Through our experimentation,
we discovered that smaller partition sizes required more epochs for
effective learning from their data. This makes sense due to usage
of the same learning rate for all parition sizes. To accommodate
this, we scaled the number of epochs linearly based on the size of a
partition, applying the formula 3000/𝑠𝑐𝑒𝑛𝑒_𝑐𝑜𝑢𝑛𝑡 .

3.4 Model testing
We conducted standardized testing on each of the 38 models by
measuring the class IoU’s across two datasets: The test set as outlined
in Table 2, and the training partition. Consequently, this testing
process yielded 38 · 2 · 5 = 380 data points, with mIoU calculated as
the mean of the five class IoU’s.
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Parameter Value

Learning rate Cosine-annealing: 0.2 → 0.001

Weights (0.020, 1.25, 20, 16, 23)
Epochs 𝑒𝑝𝑜𝑐ℎ𝑠 (𝑠𝑖𝑧𝑒) B 3000/𝑠𝑖𝑧𝑒
Batch size 10

Voxel-size (m) 𝑥 = 0.2, 𝑦 = 0.2, 𝑧 = 1

Range (m) 𝑥 = (−50, 50), 𝑦 = (−50, 50), 𝑧 = (−1, 10)
Input channels (𝑥,𝑦, 𝑧, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)
Encoder channels (32, 64, 128, 256)
Decoder channels (256, 128, 96, 96)

Table 4. SPVConv model parameters

4 RESULTS
This chapter presents and analyzes the results obtained using the
methodology from Section 3. We start by developing best-fit lines
for each class, contrasting the IoU when tested on the train and
test set with their corresponding scene- and point-count in training
data. We employ the Shapiro-Wilk test to assess the normality of
the distribution surrounding these fits, and calculate the standard
deviations related to the linear regressions. After establishing these
regressions, we extrapolate them to the point where the upward
trend for test data performance intersects with the downward trend
for training data performance. This provides rough estimates of the
eventual class-IoU, presuming unlimited training data availability.

4.1 Linear regression fits
Figures 2 and 3 both show class-IoU measurements as a function
of the amount of training data, where Figure 2 uses scene-count
and Figure 3 uses point-count to represent the amount of data. In
both instances, we utilized the complete test-set for training the
models as outlined in Section 3.4. Applying Ordinary Least Squares
(OLS) methodology, we plotted linear regression lines for each class
and observed upward trends, indicating improved performance as
more data became accessible. Despite the power-law relationship
discussed in Section 2.2, we opted for linear regressions as a best-fit
due to the limited amount of available data and measurements.

To examine the quality of the linear regression fits, we calculated
the standard deviation and the Shapiro-Wik p-value for each class,
considering both test and training data. These results can be seen
in Tables Tables 5 and 6. Overall, more than half the distributions
for the test set show 𝑝 < 0.05, while only two distributions for the
train set show this, indicating a stronger normality-distribution for
IoU measured on training data. Looking at the standard deviations
of these distributions, we see similar values for the same class,
irregardless of scene-count vs. point-count or test set vs. train set.

4.2 Intersections of Learning Curves
Figures 4 and 5 show the intersections between the upward trend
of test data performance and the downward trend of training data
performance for respectively the scene- and point-count.We observe
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Fig. 2. Performance on test set for various scene-counts in training data
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Fig. 3. Performance on test set for various point-counts in training data

considerable differences in the gradient of ascent and descent across
the classes; the unlabeled class shows almost no change in IoU,
while the gradients for the tension rod are comparatively extremely
steep. The charts relating to scene-count and point-count broadly
agree regarding the IoU at the intersection points of all classes,
with a maximum difference in IoU of 0.11 for the Signal. The mean
intersection for point-count shows an IoU of 0.04 higher than the
mean intersection for scene-count.

Tables 7 and 8 present the gradients of all linear regressions. The
first column represents the ascending gradient on test data, the
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Class
Standard deviation Shapiro-Wik p-val

Scenes Points Scenes Points

Unlabeled 1.08E-03 1.08E-03 0.000 0.000

Pole 2.94E-02 2.94E-02 0.001 0.001

Tension rod 3.92E-02 4.50E-02 0.110 0.131

Signal 4.42E-02 5.44E-02 0.199 0.621

Cabinet 2.58E-02 2.64E-02 0.002 0.001
Table 5. Linear regression analysis for test set (grey is better)

Class
Standard deviation Shapiro-Wik p-val

Scenes Points Scenes Points

Unlabeled 1.79E-04 1.80E-04 0.719 0.619

Pole 3.20E-03 3.14E-03 0.116 0.012

Tension rod 3.07E-02 3.74E-02 0.006 0.008

Signal 3.54E-02 3.28E-02 0.143 0.419

Cabinet 2.52E-02 2.82E-02 0.476 0.272
Table 6. Linear regression analysis for train set (grey is better)

Class Test set Train set Ratio

Unlabeled 8.85e-07 -1.87e-05 0.05

Pole 1.56e-04 -4.31e-04 0.36

Tension rod 3.34e-03 -2.28e-03 1.47

Signal 4.43e-03 -5.59e-04 7.92

Cabinet 1.07e-03 -2.29e-03 0.47
Table 7. Linear regression gradients with respect to scene-count

second column represents the descending gradient on training data,
and the third column provides the ratio between the two. A ratio
greater than one indicates that increases in test performance outpace
decreases in training performance. Conversely, a value between zero
and one means that training performance decreases more rapidly
than test performance increases. A negative value implies that both
training and testing performance trends are either both positive or
both negative.
In the context of scene-count, a steep upward gradient implies

that each additional scene considerably enhances the performance
of that class. The steepest upward gradients for scene-count belong
to the Tension Rod, Signal, and Cabinet classes; the Pole class is
somewhere in the middle, while the Unlabeled class shows very
minimal improvement as more scenes are included. Alternatively,
when we consider point-count, a sharp upward gradient implies that
the performance of that class improves strongly as new points of that
class are added to the training set. The findings from point-count
are similar to those from scene-count, but more pronounced: the
difference in gradients between the Cabinet and Unlabeled classes
is approximately 20 times larger.
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Fig. 4. Performance intersections for various scene-counts in training data
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Fig. 5. Performance intersections for various point-counts in training data

Class Test-data Train-data Ratio

Unlabeled 2.30e-11 -2.07e-10 0.11

Pole 6.97e-08 -2.01e-07 0.35

Tension rod 3.66e-05 -1.94e-05 1.89

Signal 4.41e-05 1.85e-06 -23.78

Cabinet 1.03e-05 -2.14e-05 0.48
Table 8. Linear regression gradients with respect to point-count
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5 DISCUSSION
In this discussion, we will take a closer look at the results obtained
from our experiments, as detailed in Section 4. We start by analyzing
the predicted IoU’s for each class, focusing on variations related to
point-count and scene-count. The purpose of this step is to show the
differences in IoU per class and to identify potential methodological
issues that may influence the significance of the predictions. After-
wards, we consider the class imbalance as a possible cause for the
observed differences in IoU. Lastly, we aim to minimize the impact
of this class imbalance on the results, thus allowing us to identify
intrinsic difficulties associated to the classes.

5.1 Predicted IoU’s
The intersection of learning-curves in Figures 4 and 5 provides
estimates for per-class IoU when given infinite training-data. These
estimates follow the approach outlined in Section 2.2, fitting linear
lines instead of logarithmic lines due to a lack of data. The linear
regressions fit relatively well, however (I) not all regressions provide
enough evidence for normality around it and (II) the regressions do
not extrapolate into infinity. As Hestness et al. outline [6], when
the sample-size approaches 0, or as the learning-curves approach
another, linear approximations becomes worse. The intersection is
therefore indicative of a broad estimate for final IoU given infinite
training-data of similar variety and quality present in the current
dataset.

What can be concluded from the current dataset is that there is a
clear difference in IoU between the classes. This difference is present
in the current dataset and remains present when extrapolated to
more training-data. Looking at Figure 4 and Table 5, as the the scene-
count increases, classes with lower IoU’s (Tension Rod, Signal and
Cabinet) benefit more than those with higher IoU’s (Pole, Unlabeled).
This indicates that inter-class variations in IoU will lessen as the
sample-size increases, but never dissapearing entirely.
The Signal class is the one outlier regarding the regression gra-

dients, showing ratios for the Signal of 7.92 for scene-count and
-23.78 for point-count. These extreme values are due to a very low
downward, or even slight upward, gradient when tested on the train
partition. The Signal also has high p-values for the Shapiro-Wilk test
of normality, indicating skew and kurtosis. It is our expectation that
with more data and a better fit, the Signal class would follow the
trends of the other classes with a (stronger) downward performance
gradient on training data.

5.2 Class imbalance
The significant class-imbalance, as illustrated in Table 1, is a possible
cause for the inter-class variations in IoU. From Figure 3 we conclude
a positive correlation betwen point-count and IoU, indicating that
a higher class-occurence is cause for a higher IoU: The Tension
Rod, Signal and Cabinet classes all have a low point-count and
comparable IoU’s, the Unlabeled class has a high point-count and
high IoU and the Pole class is somewhere in the middle for both.
An asymptotic relation is apparent, however data is too sparse to
properly plot such a line here.
The difference in IoU seems therefore to be caused, at least par-

tially, by the big class-imbalance. This reflects literature on the topic,

stating that a significant class-imbalance is often cause for difficul-
ties with learning minority classes [8, 9]. In this case, it appears that
even given infinite training-data, the class-imbalance would still
cause inter-class variations in IoU.

5.3 Intrinsic difficulty
There are other aspects that may cause difficulties with learning, in
addition to the class-imbalance. However, isolating these aspects is
difficult due to the influence of the imbalance on learning behaviour
of the various classes. When the classes are way out of proportion
with respect to point-count, the model has been able to analyze
many more features of the majority classes than of the minority
classes. Figure 3 shows the difficulty of isolation by comparing
performance against point-count instead of scene-count.
A simple way to compare classes without the influence of class-

imbalance, is by only comparing those classes with a similar amount
of points in the training data. In our case, this allows us to compare
the Tension Rod, Signal and Cabinet with another, each having
between 0.08% and 0.15% of the data. Between these three classes,
the Tension Rod and Signal have very similar learning-gradients.
The Cabinet, however, has a gradient around 4 times shallower,
meaning that themodel hasmuchmore difficulty to classify Cabinets
correctly than Tension Rods or Signals when trained on the same
amount of data. This is also visible in the absolute IoU’s of each class
when trained on 5 · 102 points, resulting in an absolute difference of
about 4 times.
One can also look at the downward gradient of performance on

the train partition; the steepness of this gradient tells us about the
maximum achievable IoU instead of the learning-rate. The linear-
regression fits for these samples may not be accurate enough to
provide strong conclusions, with Table 6 showing high Shapiro-Wik
p-values to prove normal-distribution. What is interesting is that,
while the Tension Rod and Signal have a steeper upward gradients
than the Cabinet, the downward gradients of the Tension Rod and
Cabinet are actually very similar, while the gradient of the Signal is
much shallower. This indicates that the model actually overfits less
for the Signal, therefore predicting a higher final IoU.

6 CONCLUSION
Given the high cost associated with the creation of big datasets, it
is paramount to be able to analyze the learning behavior of NNs on
smaller datasets. This circumvents the immediate need of creating a
comprehensive dataset, while still allowing us to make predictions
about the performance on a comprehensive dataset. Through an
analysis of the learning behaviour of the SPVConv NN on a small
railway dataset, we analyze semantic segmentation performance
with respect to point- and scene-count. This allows us to extrapolate
class-IoU’s to bigger datasets and analyze the causes of identified
differences in IoU between the classes.

Our findings suggest that the variations in IoU between the classes
is partly caused by the big class-imbalance in the dataset; this ap-
pears to be an asymptotic relation between point-count and IoU.
This relation does not just hold for the limited dataset, but also
appears to hold as the amount of available data increases. In addi-
tion to the observed class-imbalance, we identify additional factors
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impacting learning rates and IoU: With an equal amount of training
data, the Cabinet class is comparatively much harder to learn than
both the Signal and Tension Rod classes. In contrast, overfitting
presents less of a problem for the Signal class, as evidenced by the
shallower downward gradients on training data compared to the
Tension Rod and Cabinet classes.

Though this research offers a novel approach and presents some
interesting findings related to learning behaviour, the predictive
power of the learning curves could be improved dramatically with
increased amounts of data: more models trained on the current
dataset and on bigger datasets would be very useful for this analysis.
Validating the findings in this research through measurements on
big, publically available datasets like SemanticKITTI is a good idea. It
would also also be worth applying our methodology to various state-
of-the-art NN-architectures and change network parameters like
encoder/decoder channels or voxel-size. PointNet++ was initially
tried out for our analysis but did not deliver good results; other
models that test better on the SemanticKITTI dataset could provide
valueable insights. An additional area of interest is to identify object-
count instead of point-count as a measure of data availability, which
may show clearer correlations to IoU.
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