
Support New Programming Language in RefDetect
Sandu-Victor Mintus,

s.mintus@student.utwente.nl
University of Twente

Enschede, The Netherlands

ABSTRACT
Refactoring plays a crucial role in software development. It repre-
sents the process of modifying and improving the structure of the
code, without changing the behaviour of the software itself. There
exist a large number of tools that can detect code refactorings, how-
ever, one major drawback of them is that they are language specific.
RefDetect is a language-agnostic tool that uses a string-alignment
algorithm to detect code refactoring which currently supports Java
and C++ but can be extended to support any class-based, object-
oriented programming language. The paper aims to describe such
an extension for Kotlin and argue about the performance of this
approach compared to the current state-of-the-art tool, namely
KotlinRMiner.
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1 INTRODUCTION
Developers have widely used refactoring to improve the quality of
software. It improves maintainability and scalability by removing
duplicate code and reducing complexity. [14] presents a study on
the impact of refactorings on software quality. The study has used
a series of metrics to express the quality of the software, such as
bad smells, cyclomatic complexity and depth of inheritance tree. It
showed that, according to these metrics, refactorings significantly
improve the quality of the software. Furthermore, software quality
has an impact on the productivity of developers. A study from [5]
states that higher software quality leads to fewer bugs, consequently
reducing the time spent on troubleshooting and fixing errors, which
developers can use to implement new features.

Detecting code refactorings has also become an important topic.
It provides a good overview of how the software has evolved [17].
Likewise, it gives an insight into the developer’s thought process
and understands the reasoning behind certain decisions. Despite
their benefits, refactorings can also create potential problems in the
development process. For instance, they can introduce merge con-
flicts between different development branches [16] or erroneously
trigger algorithms that check for induced bugs [9]. Tomitigate these
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issues, several refactoring-aware tools have been developed, such
as [21] for branch merging and [19] for detection of bugs induced
in code. These tools rely on the identified performed refactorings,
therefore there needs to be a good support in this regard. Further-
more, researchers who study code refactorings, like [8], need a
reliable tool for extracting them so that they obtain significant
results in their research.

There have been several proposed approaches to detect code
refactorings. One of these tools is RefDetect[17]. This language-
agnostic tool provides a novel approach to refactoring detection
using a string alignment algorithm to determine changes between
two program versions. It matches entities between the programs
using their signature and relationship with other entities. This tool
has proven to be effective for both Java and C++ programs.

Kotlin is a popular object-oriented programming language de-
signed to be a less verbose version of Java. While Java remains the
industry standard, Kotlin has grown considerably in the last few
years, so in 2019, google announced it as the preferred language for
Android development [2]. In a survey by JetBrains, 18 % of partici-
pants stated that they used Kotlin in the past year. Moreover, 8 %
of participants stated there is a high chance they will learn Kotlin
in 2023, the third most after Go and Rust.[13].

Considering the increasing popularity of the language, more
research needs to be performed on detecting code refactorings in
Kotlin. Currently, only one tool exists, namely, KotlinRMiner[1],
based on RMiner 2.0. [24]. The tool has yet to be evaluated, as the
authors are still working on creating a representative dataset of
Kotlin refactorings. Therefore, there is no information about the
performance of KotlinRMiner.

Since RefDetect can be extended to support any object-oriented
language, we have decided to implement it for Kotlin, given its
popularity, relevance and the lack of research in the area. Therefore,
this paper aims to present a new tool for detecting refactorings in
Kotlin by extending RefDetect and then comparing its performance
to KotlinRMiner.

2 RESEARCH QUESTION
We have formulated two research questions to achieve the goal of
the project.

(1) How can RefDetect be extended so that it also supports
Kotlin?

(2) Does RefDetect perform better on Kotlin code refactorings
than KotlinRMiner?

3 RELATEDWORK
This section will cover research that has been performed in detect-
ing code refactorings. Since this is not an innovative approach to
this problem, we will mention existing tools that have developed
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over the years, but focus on the main relevant tools, RefDetect,
RMiner 2.0, and KotlinRMiner.

Over the years there have been several tools developed to de-
tect code refactorings. They have used different approaches, such
as low-code metrics defined as heuristics [10], a signature-based
technique based on token-based code clone detection [26], text-
based similarity metric [12], representing the code as UML models
and then detecting differences between these models [27] or repre-
senting the code entities and their relations as predicate logic [20].
While all these approaches are valid and have their benefits, they
have several drawbacks such as using commit logs, failing to detect
edge cases and relying too much on user-provided code similarity
thresholds.

RMiner 2.0 [24] is an improved version of RMiner [25]. It uses
the Git unified diff format to detect lines that have been added or
removed and uses a set of heuristics and rules to determine if these
changes represent code refactorings. Therefore, it does not rely on
user-provided code similarity thresholds which increases the tool’s
accuracy. Moreover, it has a fallback mechanism that allows it to
handle unparsable programs, a feature lacking from other tools. The
authors have reported a 99.6% accuracy and a 94% recall, which is a
good indicator of the tool’s performance. RMiner 2.0 has also served
as a basis for other tools, such as JsDiffer [22] and PYREF [4] which
can detect refactorings in Javascript and Python respectively, thus
showcasing its widespread usage and influence. However, there
are some drawbacks to the approach used RMiner 2.0 that affect
the refactoring process. For instance, the tool only analyzes files
modified between 2 commits, so it lacks additional context for the
project it analyzes. This can cause a mislabeling of the type of the
refactoring. For instance, pull-up refactorings can be labelled as a
move, if the entity is pulled multiple levels up [24]. Moreover, the
tool relies heavily on matching entities based on their name and
type but does not consider the relationships between them. [17]
shows that this causes RMiner 2.0 to detect incorrectly a Move Field
refactoring when a field is deleted from a class, and a new similar
field is created in another class. Finally, a drawback is that the tool
is language-specific for Java, so it has limited applicability to the
field.

KotlinRMiner [1] is an extension of [24] for detecting code refac-
torings in Kotlin developed by JetBrains research. The sole mention
of KolinRMiner is in [15], a paper that describes an Intellij plugin
for detecting and representing code changes for Java and Kotlin.
It relies on KotlinRMiner for detecting the refactorings in Kotlin,
however, it does not state any results about the performance of
KotlinRMiner in terms of precision and recall, and the authors do
not describe how they implemented the tool. However, since Kotlin-
RMiner is an extension [24], we can assume that the algorithm used
for detecting refactorings is the same.

RefDetect [17] is code refactoring detecting that uses a differen-
tial algorithm to determine changes between two program versions.
For this, it transforms the code into a string representation based
on the following entities: Class (C), interface (I), generalisation
relationship (G), attribute (A), method (M), method parameter (P),
and a call connection between two classes as (R) and uses a string
alignment algorithm called FOGSAA [7] to compare the strings and
detect the changes. Then, it uses the signature and relationships of
different entities to match them between the versions. While it still

uses similarity thresholds to determine possible matches between
the entities, RefDetect uses a two-step algorithm to determine the
refactorings. In the first round, the algorithm detects refactorings
primarily based on the similarity of names. Therefore it mainly
detects classes, methods, or fields that have been renamed, but
whose relationships were barely changed. In the second step, the
algorithm focuses on relationships between entities rather than on
name similarity. Moreover, refactorings detected in the first step
are also used in the detection process and the threshold value is
also increased. This step reduces the number of false negatives and
false positives detected by the algorithm. A visual representation
of the algorithm can be seen in figure 1. RefDetect addresses some
of the limitations encountered RMiner 2.0. First of all, RefDetect is
designed to be language-agnostic, which increases its applicability
to other languages. Moreover, it uses relationships between entities
during the refactoring process, which increases the reliability of
the detected refactorings.

Figure 1: RefDetect algorithm

4 METHODOLOGIES
Since RefDetect is language-specific only in the parsing phase, the
only step required to support Kotlin is to find a parser for Kotlin
code and use it to extract relevant information from the source
code.

4.1 Parsing of Kotlin Code
The first step of this research was to find a suitable parser for Kotlin
to generate the AST(Abstract Syntax Tree). We have considered
several tools for this, such as kotlinx.ast [11], Kastree [6] or even us-
ing Antlr4 [23] to generate the parse tree from the Kotlin grammar.
The first one turned out to be still at an early stage of development,
so it is not reliable enough. Likewise, Kastree has not been updated
for 4 years and is no longer maintained. Finally, using the Antlr4-
generated parser is a cumbersome process since it is necessary to
traverse the tree manually to perform operations on the nodes. Ul-
timately, we have decided to use PSI (Program Structure Interface),
the layer in IntelliJ responsible for parsing files. The PSI can parse
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the Kotlin files and manipulate the entities. Moreover, it is also used
by KotlinRMiner, so its efficiency has been verified in practice.

To generate the PSI representation of the Kotlin files, we have
used the Kotlin Compiler Embedabble dependency. It allowed us
to access the Kotlin Compiler API, which contained the necessary
tools for creating and accessing the PSI files.

4.2 Generation of Source Information
RefDetect uses a particular data structure called Source Information
which contains all relevant information about the source code. This
data structure includes all the classes of the projects as well as the
relationship among these classes. This source information serves as
input for the String alignment algorithm, which is the next step of
the detection process used by RefDetect. Therefore, the end goal of
the parsing step is to generate the Source Information for the Kotlin
classes. PSI was a good tool for processing basic information about
the Kotlin classes. However, we encountered two significant limi-
tations of the PSI that slowed down the parsing part considerably.
First, PSI does not contain information about the inferred types of
variables. Since type inference is a widespread practice in Kotlin,
finding a workaround to this problem was crucial. Likewise, PSI
does not provide the binding context for name references used in
the project. Binding context is essential because Source Information
requires precise information about the parsed code. In the following
two subsections, we describe how we overcome these difficulties.
4.2.1 Type Inference.

Type inference is a feature of the Kotlin compiler that allows
for types to be deduced at compile time so that they need not be
explicitly declared in the code. PSI does not have any information
about inferred types since compilation happens after the PSI rep-
resentation of the file is generated. To tackle the issue, we have
considered several possibilities.

First, we considered ignoring type inference as a feature alto-
gether and assuming for the scope of this research to work with
Kotlin which uses explicit type systems. This was the easiest option
for us to choose; however, it would have diminished the relevance
of this research because type inference is one of the main features
of Kotlin.

Likewise, we thought of using a particular type called "Untyped".
This is the approach that is being used by KotlinRMiner when deal-
ing with type inference. Ultimately, we decided against it because
the string alignment algorithm relies heavily on the types of enti-
ties when it compares the different versions of the program. Thus,
setting the type of different entities to "Untyped" would make the
algorithm less reliable, so the tool’s accuracy would suffer.

We have also tried manually creating the binding context of the
entire project. If the binding context is set correctly, then it can be
used to infer the types of the variable manually. The main problem
that we encountered with this approach is that there needs to be
more online support that we could find that would help us with
this approach. Moreover, even though the Kotlin compiler is open
source, it does not have any documentation that states how it can
be used. We have also researched the source code but have yet to
find any valuable information for us in this regard.

In the end, we have decided to make our implementation of type
inference. This was the most reliable way to handle this problem,

even if it required considerably more effort from our side. First,
we implemented type inference for fields by evaluating the expres-
sions used to initialize them. We have identified the possible kinds
of expressions that can be used. These include name references,
method calls, constructors, constants and binary expressions. For
name references, we simply return the type of that reference. We
perform the type inference process on this name reference if the
type is not assigned. For method calls, we return the type of the
method or perform type inference on the method. We use the Jexl3
library from org.apache to evaluate constants and binary expres-
sions.commons [3]. This library evaluates expressions written as
strings and returns the evaluation result. We extract the class of the
result and return it as the inferred type of the expression. A limita-
tion of this library is that it requires the expression to have defined
values. However, a binary expression may contain a reference to
a name. In that case, we substitute that referenced name with a
concrete value of that type. We have implemented this for the basic
types of Kotlin. Next, we implemented type inference for the return
type methods. For this, we evaluate the return expression of the
method using the same approach described above. If the method
does not contain an explicit return expression, we infer that the
type of the method is void.

To illustrate the process, we will present the inference process
based on the example from figure 2. In the method main of class A,
we have two fields, c and r. Field c is initialized using a constructor;
therefore the inferred type will be the constructor’s class, in this
case, Calculator. Next, field r is initialized using field c, which calls
method sum.We had already inferred that the type of c is Calculator;
therefore the type of field r is the return type of the method sum
from the class Calculator. The problem is that the class Calculator
can have multiple methods with the name sum but with different
signatures. To mitigate this, we also infer the type of arguments
used to call sum and use the entire signature to find the correct
function. In this case, the first argument is a call from field c to
method min. The call’s arguments are constants, so using the type
inference mechanism described above, we infer that the type of both
arguments is Double. Now, we can deduce the method’s signature
and use it to find the correct method in the class Calculator and
return its type. In this case, the return type of method min(Double,
Double) from the class calculator is Double, so we infer that the
type of the first argument of the method sum is Double. The second
argument is a Double constant, so we return its type. Using the same
approach for method min(Double, Double), we infer that the type of
field r is the type of the return type of method sum(Double, Double)
from the class Calculator. We can notice that method sum does not
have an explicit return type. In this case, the return expression of
the method needs to be evaluated. The return expression of method
sum is the binary expression "x+y", where x and y are both fields of
type double. To evaluate this expression, both name references will
be replaced by a concrete instance of that type. Name references of
type Double are replaced by "1.0", so the evaluated expression is "1.0
+ 1.0". The result of the evaluation is "2.0", which has type Double;
therefore the return expression has type Double. Since the return
expression has the type Double, we can conclude that the method
sum(Double, Double) has the return type Double. Subsequently,
field r also has type Double.
4.2.2 Binding Context.
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(a) Property Type Inference (b) Method Type Inference

Figure 2: Example of Type Inference

(a) Class D (b) Class B

(c) Class A

Figure 3: Example of Inheritance

We have mentioned binding context in the previous section as a
possible solution to the problem of type inference. However, binding
context was essential for other aspects of the project as well. One
of the most important features of object-oriented programming
languages is inheritance. Without a binding context, it is not clear
where a particular entity has been declared. In the example of figure
3 we have field f1 declared in class A and entity ob of type B which
accesses this field. Without looking at classes A and B, it would
seem that f1 is declared in class B; however, class B inherits this
field from A. To solve this issue, we check all possible classes from
where a class could have inherited an entity until we get a match.
This includes outer classes, parent classes, and parent interfaces
(in this order of search). We performed the matching of entities
based on their signature. In case the entity is missing the type, we
perform type inference as described above

4.3 Experiment
To test the tool we used a set of small Java projects previously used
to test RefDetect. These projects contain a set of 390 true applied
refactorings that have already been extracted. We had considered
using the set of projects from [18], however, we have decided against
it because of time limitations.

For answering RQ1, we have designed JUnit test cases that com-
pared the generated source information of the two parsers. If these
data structures turn out to be the same, then it is safe to say that
the Kotlin parser can be used by the RefDetect algorithm. This is
because the parsing phase is the only language-specific part of the
algorithm. Therefore, if the algorithm receives the same source
information as the input, it will yield the same results for the refac-
toring detection.

For answering RQ2 we executed RefDetect and KotlinRMiner
on the projects mentioned above and compared their performance.
Since the datasets are relatively small, this validation of the results
was done manually. For detecting refactorings, KotlinRMiner re-
quires the project to be linked to a remote repository. For this, we
have created a repository and we pushed each project to a sepa-
rate branch in this repository. Then, we executed the tool on each
branch and documented the results. We decided to use precision,
recall and f-score as metrics for evaluation. The formulae for these
metrics can be seen below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# of correct refactorings

# of recommended refactorings
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
# of correct refactorings
# of true refactorings

(2)

f-score =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

5 RESULTS
5.1 RQ1
The JUnit tests showed that the Java and Kotlin parsers generate
almost identical data structures of Source Information. Both parsers
yield the same result for generalization relationships, association
relationships of classes defined within the project, and the string
representation of the classes. The differences occur when entities
have relationships with classes defined outside the project’s scope.
In the scope of this research, these differences were minimal and
not critical to the refactoring process, so in the end, we considered
the generated Source Information to be the same for both parsers.

5.2 RQ2
The results for RQ2 can be seen in the table 1. We can see that
RefDetect achieved high results in terms of both Precision (98%)
and Recall (95%). On the other hand, KotlinRMiner achieved good
results for Precision(96%) but mediocre results for Recall (56%). The
f-score of RefDetect is also considerably higher than that of Kotlin-
RMiner(0.95 and 0.72). The poor performance of KotlinRMiner was
surprising, considering that RMiner2.0 achieved very high results
for both Precision(99.6 %) and Recall(94Z%). Moreover, KotlinR-
Miner has failed to detect certain types of refactorings altogether,
such as Rename Field refactorings, even though the authors claim
that these refactorings can be detected. Thus, on this set of projects,
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Table 1: Performance Metrics

Method Precision Recall F1-score

RefDetect 0.98 0.93 0.95
KotlinRMiner 0.96 0.56 0.72

KotlinRMiner has performed better than KotlinRMiner in precision,
Recall and f-score.

6 LIMITATIONS
As mentioned, we used PSI to extract information about the source
code. We have already discussed how we tackled several limitations
of PSI. However, these turned out to be very time-consuming. We
had to consider many edge cases without reliable access to the
project’s binding context. This has caused a considerable delay in
the research process, as most of these limitations were discovered
at a late stage of the parsing phase. Moreover, considering the
duration of the research, which is nine weeks (including two weeks
for the proposal), we have yet to solve all the existing issues. One
crucial problem that persists concerns classes defined outside the
project’s scope. Without a binding context, it is impossible to obtain
additional information about these classes, information which is
necessary for the generation of the Source Information. For the set
of small projects we have used, this did not significantly affect the
tool’s performance. However, for larger projects with more complex
statements, this can lead to potential problems in the detection
process. Therefore, we cannot give a definite answer regarding the
tool’s scalability for large projects.

7 CONCLUSION
In this paper, we have described a Kotlin extension for the code
refactoring detection tool RefDetect. We have shown that we can
use PSI to extract source information from Kotlin code and that
for the small set of projects that we used, the Source Information
extracted by both Java and Kotlin parsers is almost the same, with
minor differences related to the limitations of PSI.

We have also identified several limitations of using PSI as the
parsing tool for the Kotlin code. These limitations include a lack of
type inference and support for Binding Context, which affect the
scalability of this tool for larger projects.

Likewise, we have shown that RefDetect performs better than
KotlinR in terms of precision(98% and 96%), recall (93% and 56%)
and f-score(0.95 and 0.92). Moreover, KolinRMiner failed to detect
certain types of refactorings that it claimed, so it needs further
validation of its performance.

8 FUTUREWORK
A possible direction for further research is to try other tools for
generating the source information of the code. PSI turned out to
be too limited for extracting complex information about the source
code, thus other tools could provide more reliable information in
this regard.

Furthermore, it is essential to check at an early stage of the
parsing process that the tool used for extracting source code infor-
mation can support type inference and binding context. They are

essential for correctly analyzing Kotlin source code. If this is not
the case, then it would be better to consider alternatives, because
the lack of support for them drastically increases the complexity of
the research, while reducing its reliability.

Likewise, the test set of projects that were used to test the tool is
small, so a possible extension point is to use the dataset of projects
provided by [18] to test the performance of the tool.

Finally, KotlinRMiner has not been analyzed in depth yet and,
as we showed in our experiment, it still fails to detect a lot of
refactorings. Therefore, further research needs to be done into the
performance of KotlinRMiner and the validation of its claimed
capabilities.
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