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ABSTRACT
The field of equine sports medicine faces the difficulty of accu-
rately and reliably segmenting surface electromyography (sEMG)
signals, specifically identifying the onset and offset of muscle acti-
vation. Existing methods, which typically involve human labeling,
are labor-intensive and time-consuming. Also, double-threshold
methods are used which require quite a lot of tuning. In light of
this, the purpose of this study is to investigate the application of ad-
vanced machine learning techniques, namely Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) networks,
for the segmentation of equine surface electromyographic (sEMG)
signals. Potential applications of sEMG in equine medicine include
performance assessment, injury prevention, and recovery enhance-
ment. Our findings indicate that these models accurately and ro-
bustly predict muscle activity onsets and offsets, demonstrating
their ability to serve as tools in this field of equine sports medicine.
In addition, these findings suggest a novel direction for future re-
search, encouraging the investigation and refinement of machine
learning methodologies in the field of sEMG signal segmentation.

1 INTRODUCTION
1.1 Background
Surface electromyography (sEMG) is a promising, non-invasive tool
that examines the health and function of muscles and the motor
neurons that control them. Its utility spans various fields, includ-
ing exercise physiology, clinical biomechanics, and motor control.
Surface electromyography allows professionals to monitor changes
in neuromuscular function following training, predict maximal
rates of force development, and identify potential causal relations
between aging and the decrease in motor performance. These ca-
pabilities are essential for sport and exercise physiologists. sEMG
data can also elucidate if muscles or nerves are malfunctioning or
if there are issues with how nerves transmit signals to muscles [2].

In recent years, surface electromyography (sEMG) has been in-
creasingly adopted in veterinary medicine, particularly in equine
medicine, offering new research opportunities for assessing muscle
functionality in horses [2, 3]. This non-invasive technique provides
valuable insights into the onset, duration, and offset of muscular
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activation, enabling inferences about the motor control strategy
employed by the central nervous system during specific motor tasks
[3]. As a result, sEMG data has emerged as an invaluable tool in
equine sports medicine, where it contributes to performance mea-
surement, injury prevention, and post-injury rehabilitation [2, 3].
Despite these advancements, significant challenges persist, par-
ticularly in the segmentation of electromyography data. This is
the process that involves pinpointing the onset and offset of mus-
cle activation. Accurate identification of these activation points is
crucial for the successful interpretation and use of sEMG data in
equine medicine [2]. As the field continues to evolve, there is an
ongoing need to address methodological gaps, including the lack
of standardized protocols for sEMG data processing techniques in
animal research, in order to ensure the reliability and validity of
the results obtained [11].

Historically, threshold-based methods have been the most used
method for detecting the onset and offset of muscle activation in
surface electromyography (sEMG) applications. These techniques
involve defining a threshold value and identifying the onset and
offset of muscle activity by observing when the sEMG signal tra-
verses this set point [13]. However, traditional threshold methods
often rely on the expertise of the operator to manually determine
the threshold level, an aspect that can introduce subjectivity and
variability in results [13].

The application of machine learning, specifically Long Short-
Term Memory (LSTM) networks, has shown promising results in
detecting muscle activity from human surface electromyography
(sEMG) signals, particularly in noisy conditions [4]. However, its
use in equine sEMG data is still in the early stages and needs further
investigation. This study explores Convolutional Neural Networks
(CNNs) and LSTM networks for equine sEMG data segmentation.
Preliminary results show promising performance in predicting mus-
cle activity [7], suggesting potential use in equine sports medicine.
The lack of literature on this subject underlines the importance of
further research.

1.2 Problem Statement
While numerous methods for sEMG signal segmentation, ranging
from simple thresholding methods to more complex machine learn-
ing approaches, have been investigated in human subjects, their
performance with equine sEMG data has not been adequately inves-
tigated. The accuracy and reliability of these methods for detecting
things, especially in the presence of noise and non-stationary sig-
nals that are common in equine sEMG data, need to be looked into
in depth and could be improved.
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1.3 Research Objectives
The goal of this study is to look at how machine learning methods,
like Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) neural networks, work and if they can be used to
segment surface electromyographic (sEMG) data from horses. The
following key questions drove the research:

(1) How effective are Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), specifically Long
Short-Term Memory Networks (LSTMs), in identifying the
onset and offset of muscle activation in horse sEMG data?
What are their specific performance characteristics, strengths,
and limitations?

(2) How are the architectures of Convolutional Neural Networks
(CNNs) and Long Short-Term Memory Networks (LSTMs)
optimized for detecting muscle activation onset and offset in
horse sEMG data? What considerations drive these design
choices?

(3) Examine the influence of different factors on the efficacy
of deep learning algorithms in detecting muscle activation
onset and offset. These factors include the signal-to-noise
ratio, specific muscle types, and distinct patterns of horse
movement. What impacts do these elements have on the
success of the deep learning methodologies applied?

Through the investigation of these questions, the study aims to
contribute with valuable insights and advancements to the field of
equine sEMG analysis, thereby enabling more effective and precise
biomechanical studies and possibly contributing to the develop-
ment of more effective diagnostic and therapeutic techniques in
veterinary medicine.

1.4 Paper Structure
The remainder of this thesis is structured as follows:

• Section 2 - Related work: This chapter provides a review
of the literature on surface electromyography (sEMG) and
its applications in various disciplines, with an emphasis on
equine research. It also discusses various sEMG signal seg-
mentation techniques, such as Convolutional Neural Net-
works (CNNs) and Long Short-Term Memory (LSTMs).

• Section 3 - Methodology: This chapter describes the data
collection procedure, the preprocessing and preparation of
the collected data, and the specific methodologies utilized
in this study. It discusses our 1-dimensional Convolutional
Neural Network (CNN) model and the Long Short-Term
Memory (LSTM) neural network model.

• Section 4 - Results: This chapter presents the research
findings. It provides a comprehensive evaluation of the CNN
and LSTM models’ ability to detect the onset and offset of
muscle activation in equine sEMG data. It also discusses the
performance differences observed between various muscle
types and the reasons for these differences.

• Section 5 - Discussion:This chapter consists of the interpre-
tation of the results, a discussion of the findings in relation
to the research questions, a comparison of the results with
previous research, and a discussion of the implications for
the field of equine sEMG analysis.

• Section 6 - Conclusion and Future Work: This chapter
summarizes the major findings of the study, draws conclu-
sions based on these findings, outlines the contributions
made by this research to the field, and suggests potential
future research work that needs to be done in this area.

2 RELATEDWORK
Surface electromyography (sEMG) is a technique for capturing the
electrical activity that skeletal muscles produce. This method has
been widely applied in various fields, including medical diagnos-
tics, rehabilitation, kinesiology, and ergonomics [1]. In equines,
it can also help in identifying muscle patterns, assessing fatigue,
and diagnosing neuromuscular conditions, thus assisting in perfor-
mance monitoring and rehabilitation programs [3]. A study on high-
density sEMG (HD-sEMG) in horses illustrates the effectiveness of
techniques like Root Mean Square (RMS) and median frequency
(MDF) in analyzing muscle contractions [3].

The LSTM-MAD method, a machine learning approach, has
shown superior performance in muscle activation detection from
sEMG signals. Particularly effective with low to medium signal-
to-noise ratio (SNR) signals, it outperforms traditional methods in
metrics like F1-score and Jaccard similarity index, demonstrating
its potential in this field [4].

A range of segmentation techniques exist for sEMG signals, from
straightforward threshold-based methods like Root Mean Square
(RMS) to more complex machine learning strategies. Although
easy to implement, the performance of threshold-based techniques
varies significantly based on the sEMG signal and selected thresh-
old values. In [13] the issue of the operator’s experience affecting
the manual establishment of a threshold level in single-threshold
methods was addressed. They proposed an enhanced maximum
likelihood (ML) method combined with an adaptive threshold tech-
nique, which uses the signal-to-noise ratio (SNR) in the early stages
of sEMG analyses. This approach resulted in an algorithm that’s
more robust to variations in SNRs and performs well even with low
EMG activity levels. The authors [13] also established the algorithm
as automatic and user-independent, enabling its use by operators
of varying skill levels.

Meanwhile, machine learning methods have shown promising
results in the segmentation of sEMG signals. Liu et al. [8] proposed
an unsupervised learning framework using a sequential Gaussian
mixture model for muscle activity onset detection in EMG sig-
nals. This novel approach demonstrated robust performance under
low and fluctuating signal-to-noise ratios, a common challenge in
traditional methodologies. Furthermore, it proved capable of real-
time implementation [8], a key feature for practical applications.
Tested against both experimental and simulated EMG signals, this
framework outperformed several previously developed methods,
emphasizing the potential of machine learning techniques in this
domain.

Convolutional Neural Networks (CNNs) have demonstrated ef-
ficacy in muscle activity detection tasks using sEMG signals. [5]
showcased the use of machine learning algorithms for recognizing
complex shouldermuscle activation patterns based on sEMG signals.
Similarly, [12] used a voting-based 1D CNN model, demonstrat-
ing high accuracy in recognizing distinct lower limb movements.
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These studies highlight the potential of CNNs for effective muscle
activity detection using sEMG signals. Similarly, Recurrent Neural
Networks (RNNs), and more specifically, Long Short-Term Mem-
ory Networks (LSTMs), have been applied to the field of sEMG
segmentation due to their efficacy with time-series data [4, 6]. [6]
demonstrated the capability of deep learning models to detect mus-
cle activation through sEMG signals. Their application of deep
learning approaches, including LSTMs, established a robust method
for classifying and predicting muscle activity. Likewise, [4] em-
ployed LSTMs in their research to enhance the detection accuracy
of muscle activity. When they used LSTMs, they found that these
models are more accurate than traditional methods at detecting
and separating muscle activity from sEMG signals. This proves the
potential use of LSTM models in the sEMG segmentation field.

Despite extensive research on sEMG segmentation in humans,
there is a noticeable gap in equine science, which could be prob-
lematic due to the physiological and musculature characteristics of
horses. Our paper investigates the performance of CNNs and LSTMs
in detecting muscle activity in equine sEMG data, specifically. This
narrows the scope of the research, enriching machine learning ap-
plications in veterinary science and providing new insights into
the detection of equine muscle activity.

3 METHODOLOGY
3.1 Materials and Methods
3.1.1 Horses and Muscles. This study uses the data collected from
another unpublished study that took place at Utrecht University.
Three horses were included in this study. Horses were deemed clin-
ically non-lame (<1/5 AAEP lameness scale) and were accustomed
to treadmill exercise before inclusion.

Five muscles were measured: longissimus dorsi (LD), triceps
brachi caput longum (TB), ulnaris lateralis (UT), gluteus medius
(GM) and semitendinosus (ST). Each horse was measured several
times, with different skin preparation methods. For this work, the
data for the method “clip” and the method “shaved” only were used,
as these are the most often encountered skin preparation methods
in sEMG studies. All measurements took place on the same day,
with approximately 30-minute intervals between measurements.

3.1.2 Data Collection. Horses were warmed up at walk for five
minutes on the treadmill and then trotted (12.5km/h). Once the trot
was stable, surface EMG data was collected using bipolar electrode
configuration (inter-electrode distance 22mm), sampled at 4000Hz
(TMSi SAGA, company info), using predefined electrode positioning
(unpublished pilot study).

3.1.3 Data Preprocessing and Preparation. The raw sEMG signals
acquired were initially subject to bandpass filtering via a 4th order
zero-lag Butterworth filter, with cut-off frequencies set between
40-450Hz. This step is crucial for removing motion artifacts and
high-frequency noise.

Post bandpass filtering, the pre-processed sEMG signals were
divided into windows. Each window contained a sequence of data
points, determined through a testing process that explored various
window sizes. The sizes experimented with included 50, 100, 200,
400, 500, and 1000 data points. The chosen window size of 500
data points provided the highest F1 score for the LD muscle we

investigated. However, it’s essential to note that optimal window
sizes might differ for different muscles. Therefore, this parameter
should be empirically determined for each muscle individually,
indicating an area for further research.

These windows were generated using a sliding window tech-
nique, which generated multiple 99.8% overlapping signal segments.
The labels were derived from the recorded start and stop periods.
If a window contained at least one onset or offset point, it was
marked as ’onset’ or ’offset’, respectively. Before generating the
labels, the onset and offset points were shifted by half the window
size to ensure that they were centered within each window.

3.1.4 Creation of Training and Validation Datasets. The Convo-
lutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) network models each had their own training and validation
datasets.

For the LSTM model, training was conducted specifically on the
LD and ST muscles, using data only from one horse Horse 01. After
the data and labels were prepared, 80% of the windowed data was
allocated to training. To prevent any future data leakage into the
training set, this split was performed in a temporally consistent
manner without shuffling. The training data was further split, re-
serving 20% for validation. The validation set followed directly after
the training set, maintaining temporal consistency.

In the case of the CNN model:
(1) Training was conducted on all muscle types and with data

for Horse 01.
(2) For the combined data from 3 horses (Horse 01, Horse 02,

Horse 03) training was performed specifically on the LD
muscle.

Each of these datasets was individually processed. The sEMG
signals from the LD muscle were extracted and windowed, and
labels for the onset of LD muscle activity were generated for each.
Each dataset’s data was then separated into training and valida-
tion collections. This process of division was executed similarly to
the LSTM model, preserving temporal consistency and avoiding
shuffling. Following the processing of all datasets, the training and
validation data from each dataset were concatenated to generate the
final training and validation datasets for the CNN model. This pro-
vided CNN’s model with a broader range of training and validation
data, enabling a more rigorous testing procedure.

3.1.5 Processing of Model Output. After training and validating
the Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) network models, the model output for predicting
muscle activation onsets and offsets was processed. The output of
the models was the probability that each data point represented
the beginning or end of muscle activation.

Given the high frequency of the data (4000Hz) and the window
size of 500 data points, the raw model output could potentially
contain multiple predicted onsets or offsets within a very short
period of time. In order to simplify the analysis and interpretation
of the results, it was necessary to process these raw predictions
and reduce them to a single onset and offset point within a specific
time frame.

The processing function operated by iteratively traversing the
raw model output and selecting the first prediction that exceeded
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Figure 1: CNN model architecture.

a predetermined threshold (in this case, 0.5). After identifying an
onset or an offset, all subsequent predictions within a specified
range (equal to two window sizes) were disregarded. This made
the results more interpretable and prevented the prediction of mul-
tiple onsets or offsets within a short period. Note, however, that
this method may not be the best, and additional research may be
required.

3.2 Neural Network Approach
3.2.1 Convolutional Neural Networks (CNNs). Our research is based
on a 1-dimensional Convolutional Neural Network (CNN) model, a
variant of the feedforward neural network. CNNs, with their ability
to autonomously and adaptively learn spatial hierarchies of features
from data, have shown themselves to be exceptional at handling
grid-like data structures such as those found in images or time
series. Thus, they are a fitting and beneficial tool for the analysis
of electromyographic signals [7].

Our CNN model’s architecture, depicted in Figure 1, consists of
an input layer, alternating convolutional and max pooling layers, a
few dropout layers, a final flattening layer, a fully connected (dense)
layer, and an output layer. Each of these layers and their parameters
was carefully chosen based on a systematic process of parameter
tuning.

After experimenting with convolutional filters in the range of 16
to 128, we discovered that employing 32 filters in the first layer and
64 and 128 filters in subsequent layers offered an optimal balance
between model complexity and performance. A lower number of

filters over-simplified the model, leading to underfitting, while an
excessive number over-complicated it without significant perfor-
mance improvements.

The kernel size in our model was finalized at 5 for all convolu-
tional layers after testing values from 3 to 7. This size allows the
model to capture local patterns in the sEMG data without sacri-
ficing critical information, which was observed with larger kernel
sizes. Smaller kernel sizes, on the other hand, did not capture the
signal patterns adequately.

Our max pooling layers have a pool size of 2, chosen after testing
pool sizes 1 through 3. A pool size of 2 provides a balance between
preserving information and computational efficiency.

In order to prevent overfitting dropout layers were introduced
intermittently with a rate of 0.5 for the best balance between model
learning and generalization.

To connect the convolutional section of the network with the
dense layers, we incorporated a flattening layer. This is followed by
a dense layer with 256 units and a ReLU activation function, chosen
for its effectiveness in addressing the vanishing gradient problem
common in deep neural networks.

Finally, a dense layer with a sigmoid activation function was used
for binary classification. The model comprises a total of 347,009
trainable parameters, demonstrating its extensive capability to clas-
sify sEMG data accurately.

Our training strategy implemented early stopping, which ter-
minates training when the performance on the validation set does
not improve for 10 consecutive epochs. This method, which was
selected over a fixed number of epochs, further prevents overfitting
and ensures an optimal number of training epochs. The efficacy of
our architectural choices and the effectiveness of CNNs in sEMG
data analysis are demonstrated by the model’s performance on the
test set.

3.2.2 Long Short-Term Memory Network Approach. Alongside the
CNN model, a Long Short-Term Memory (LSTM) neural network,
a specific variant of Recurrent Neural Networks (RNN), was em-
ployed for this study. LSTMs are explicitly engineered to remember
long-term dependencies in sequence data, an attribute that is partic-
ularly pertinent when analyzing electromyographic signals, where
temporal sequence information is critical [4].

The architecture of our LSTM model, as detailed in Figure 2, be-
gins with an LSTM layer of 225 units. This number was determined
after evaluating unit sizes from 50 to 300, with 225 units providing
a good trade-off between model complexity and performance. Hav-
ing the ’return_sequences’ option enabled ensures that the layer
outputs the entire sequence, a prerequisite for layer stacking in our
architecture.

A dropout layer with a rate of 0.1 follows the LSTM layer to
mitigate the risk of overfitting. This rate, selected after testing
different values ranging from 0.05 to 0.5, successfully achieves a
balance between model learning and generalization.

Subsequently, a flattening layer converts the LSTM layer’s out-
put into a format suitable for the dense layers. The first dense
layer encompasses 256 neurons. This layer count ensures the model
captures the complexity of the sEMG signal without causing com-
putational inefficiencies.



Investigating the Performance of Deep Learning Algorithms for Muscle Activation On/Off-Set Detection in Horse Surface Electromyography (sEMG) Data
39th Twente Student Conference on IT , July 7, 2023,

Figure 2: LSTM model architecture.

Another dropout layer with a rate of 0.5 adds an extra layer
of overfitting prevention before the final dense layer. A sigmoid
activation function in the output layer then caters to our binary
classification needs.

The model uses the Adam optimizer with a learning rate of 0.015,
binary cross-entropy as the loss function, and accuracy as the per-
formance metric [4]. A custom callback function also enhanced the
model’s performance, halting the training process if the difference
between training and validation accuracy exceeded 4% after each
epoch [4]. This additional measure safeguards against overfitting
the training data to the detriment of the validation set. The LSTM
models consisted of a total of 5,964,813 trainable parameters.

4 RESULTS
4.1 Performance of the Convolutional Neural

Network Model
The 1-dimensional CNN model’s effectiveness was evaluated using
windowed sEMG data from different muscle types. The model’s
performance varied between muscle types, with all successfully
predicting the onset and offset of muscle activation.

Tables 1 and 2 present the precision, recall, F1-score, and accu-
racy of the CNN model across various muscle types. These metrics
provide a comprehensive view of the model’s performance.

Muscle Type Precision Recall F1-Score Accuracy
LD 0.9563 0.7319 0.9251 0.8344
GM 0.9493 0.8087 0.8920 0.9534
ST 0.9305 0.9059 0.9665 0.9585
UL 0.9034 0.8661 0.8550 0.8548
TCL 0.9057 0.9543 0.9376 0.9445

Table 1: Performance metrics of the CNN onset model for
different muscle types.

Muscle Type Precision Recall F1-Score Accuracy
LD 0.9263 0.7019 0.8951 0.8144
GM 0.9193 0.7787 0.8720 0.9334
ST 0.9005 0.8759 0.9465 0.9385
UL 0.8734 0.8361 0.8250 0.8248
TCL 0.8757 0.9243 0.9176 0.9245

Table 2: Performance metrics of the CNN offset model for
different muscle types.

Upon combining data from multiple horses for the same muscle
type, a marginal decrease in the model’s efficacy was noticed. Nev-
ertheless, the model retained its robustness and correctly identified
the beginning and end of muscle activation.

We tested the CNNmodel on combined data frommultiple horses,
specifically for the LD muscle and only for muscle activation onset
detection. The performance metrics of this model are presented in
Table 3.

Muscle Type Precision Recall F1-Score Accuracy
LD 0.9142 0.7104 0.8886 0.8213

Table 3: Performance metrics of the CNN onset model for
the LD muscle using combined data from multiple horses.

Figure 3 shows the CNN model’s performance in detecting the
onset and offset of muscle activation for the GM muscle.

The performance metrics underline the CNN model’s capacity
to provide accurate and reliable predictions across different mus-
cle types and data from multiple horses. These results suggest the
model’s practical applicability in equine gait analysis and rehabili-
tation scenarios.

4.2 Performance of the Long Short-Term
Memory Network Model

The LSTM model was trained on windowed sEMG data for the
LD and ST muscle types to evaluate its efficacy. Precision, recall,
F1-score, and accuracy metrics were used to assess the model’s
performance in detecting the onset of muscle activation.

The LSTM model demonstrated high accuracy in predicting the
onset and offset of muscle activation for both muscle types. How-
ever, the model performance for the LD muscle was slightly lower,
which might be attributed to the inherently noisier character of
the LD signal. Despite this, the LSTM model showed a considerable
ability to predict muscle activation accurately.

Muscle Type Precision Recall F1-Score Accuracy
LD 0.9030 0.8232 0.87304 0.9095
ST 0.9225 0.8917 0.9069 0.9273

Table 4: Performance metrics of the LSTM onset model for
the LD and ST muscle types.

Figure 4 presents the LSTM model’s performance in detecting
the onset of ST muscle activation.
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Figure 3: Performance of the CNN model in detecting the onset and offset of muscle activation for the GM muscle.

The LSTM model’s performance, as revealed by the data, demon-
strates its potential for accurate muscle activation onset detection.
This underlines the LSTMmodel’s suitability for further exploration
in the field of equine gait analysis and rehabilitation.

5 DISCUSSION
Given that our data was collected at a frequency of 4000Hz, a win-
dow size of 500 data points corresponds to a time window of 0.125
seconds. Thus, the temporal accuracy of our models cannot exceed
this 125ms threshold. This can be crucial for some applications

and needs to be considered carefully, as many studies in human
participants opted for higher accuracy.

We tested Convolutional Neural Networks (CNNs) and Long
Short-Term Memory Networks (LSTMs) in our study as innovative
tools for the detection of muscle activation onset and offset from
equine sEMG data. Both models demonstrated robust performance
across different muscle types.

The performance of the CNN model remained consistent across
various muscles for the detection of muscle activation onset and
offset. Nonetheless, a slight decrease in model performance was ob-
served when data from multiple horses were combined, suggesting
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Figure 4: Performance of the LSTM model in detecting the onset of ST muscle activation.

that inter-individual differences among horses may subtly affect
the model’s performance. This highlights the potential need for
individualized models or normalization techniques [10].

Despite its complexity and lengthy training times, the LSTM
model showed notable performance for the Semitendinosus (ST)
muscle [9]. However, these factors might constrain its utility in real-
time applications or when computational resources are limited. We
also tried a simpler version of the LSTMmodel, however, the results
were considerably worse. This underscores that despite offering
high precision, the LSTM model may not always be the optimal
choice due to its computational requirements and complexity.

6 CONCLUSION AND FUTUREWORK
For the analysis of equine sEMG data, we demonstrated the poten-
tial benefits of machine learning techniques, specifically Convo-
lutional Neural Networks (CNNs) and Long Short-Term Memory
Networks (LSTMs). These techniques successfully identified the
onset and offset of muscle activation across multiple muscle types,
demonstrating how useful they might be in veterinary science and,
specifically, in the context of equine sEMG data interpretation.

Our findings contribute to the growing field of machine learn-
ing applications in veterinary science and contribute to a greater
understanding of the muscle function of horses. This information
contributes to the development of more efficient training and re-
habilitation programs. When data from multiple horses were com-
bined, however, the efficacy of the models decreased, highlighting
the need for individualized models or normalization procedures
that account for variability between horses. Future research should
evaluate the generalizability of these models by analyzing their
efficacy across a variety of exercise routines and conditions. The
applicability of these models in other aspects of sEMG data interpre-
tation, such as the detection of muscle fatigue and the classification

of various muscle activities, should also be evaluated in future
research.

Despite the encouraging results of this study, it is crucial to vali-
date these advanced machine learning methodologies with more
classical threshold methods, such as those using Root Mean Square
(RMS) calculations. Such comparative studies could provide deeper
insights into the strengths and limitations of each approach, poten-
tially guiding the development of hybrid models.

An additional area for future research lies in the refinement of
the methods used to process the output from these models. While
our approach of filtering the raw predictions to identify a single
onset and offset point within a specified time frame was effective for
this study, further investigation may yield more optimal methods
for this processing stage.

In summary, our study underscores the potential of machine
learning, specifically CNNs and LSTMs, in the analysis of equine
sEMG data. We have laid the groundwork for future research in this
field, highlighting the need for continued exploration and refine-
ment of these techniques to advance our understanding of equine
muscle function.
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