Scaling Out with Microservices: A Database-Centric Approach to
Monolithic Application Decomposition

Nicolae Mihalache
n.mihalache@student.utwente.nl
University of Twente
The Netherlands

ABSTRACT

In today’s fast-paced technological landscape, businesses are con-
stantly looking for ways to scale and remain competitive. One
approach that has helped companies is the use of microservices to
break down monolithic applications into smaller, more manageable
components. This research has the purpose to explore and identify
potential problems and best practices when it comes to dividing
a monolith app into microservices based on the database schema.
The research is expected to provide a quantitative analysis that will
compare the monolith and the microservice’s performance in terms
of scalability and overall response time.

KEYWORDS

Microservices, Monolith, Database schema, Scalability

1 INTRODUCTION

The advancement of technology in recent years has placed signifi-
cant demands on software development processes and architectures.
Organizations are under increasing pressure to deliver software that
can scale and evolve rapidly to meet ever-changing business require-
ments. Monolithic applications, which have long been the prevalent
architectural style, are increasingly proving to be a hindrance to
agility, flexibility, and scalability, thus negatively affecting overall
software development productivity and quality. Microservices ar-
chitecture has emerged as a promising alternative to monolithic
applications, providing multiple benefits such as improved scalabil-
ity, flexibility, and maintainability [5, 7, 9, 11]. Transitioning from a
monolithic to a microservices architecture is a hard task to perform,
as it involves careful planning, analysis, and execution to ensure a
successful outcome [8]. On the other hand, by decoupling function-
ality and limiting technical debt, it can streamline the development
process and make it easier to introduce new features and automate
testing [11].

Existing research has predominantly focused on decomposing
monolithic applications based on their functional components or
features [3, 6, 8]. While this approach has yielded positive results,
there is still a knowledge gap in the literature concerning the im-
plications of a database schema-driven approach to monolithic
application decomposition.

39th Twente Student Conference on IT, July 7, 2023,

© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

This research aims to investigate the impact of a database schema-
centric approach on the decomposition of monolithic applications
into microservices, specifically focusing on the resulting architec-
ture’s scalability and performance. By exploring the benefits and
drawbacks of this approach, the study seeks to contribute to a more
comprehensive understanding of the various factors that should be
considered when transitioning from a monolithic to a microservices
architecture.

In addition, this study aims to identify best practices and strate-
gies for effectively splitting a monolithic application into microser-
vices based on its database schema, shedding light on practical
considerations and challenges that developers and architects may
encounter during the decomposition process.

The subsequent sections are arranged in the following manner:

e Section 5 analyses the differences between relational and
no-relational scaling databases via a literature overview.

e Section 6 analyses what are the advantages and disadvan-
tegs from partitioning a monolith database into separete
microservices databases.

Section 7 details the performance testing of MySQL and
Apache Cassandra through various query and operation
tests, by executing a Go script and studying the results in a
graphical representation. In this section we also discuss how
metrics are collected for both databases and how exactly we
can scale Apache Cassandra horizontally.

2 PROBLEM STATEMENT

Even though there has been research conducted on transitioning
monolithic applications to microservices, none of them analyzed
the impact of partitioning the monolithic database into different
microservices that have their own database. This paper will explore
how the splitting affects the microservices architecture and how
other NoSQL databases can support the microservices architecture.

We have also identified the best practices in the process and how
we should split the monolith in microservices based on the database
as the primary focus.

2.1 Research Questions

The problem statement led to the following research question: What
are the benefits and drawbacks of using a database-centric approach
to decompose a monolithic application into microservices?

This has been answered with the following sub-questions:

e How does the database scale in a monolith and microservice
architecture?

e What are the advantages and disadvantages of partitioning
a relational database?

39th Twente Student Conference on IT, July 7, 2023,

e What impact does the database splitting have on the query
response time?

3 RELATED WORK

The migration from monolithic to microservices-based architec-
tures has attracted significant attention from researchers in recent
years. Ivanov and Tasheva [3] introduced a hot decomposition
procedure for transitioning operational monolith systems to mi-
croservices, addressing challenges such as data consistency and
service dependencies. Their approach minimizes downtime during
migration and offers valuable insights into effective decomposition
strategies.

Mili¢ and Makaji¢-Nikoli¢ [5] developed a quality-based model
for optimizing software architecture and compared monolith and
microservice structures. Their study presents a comprehensive anal-
ysis of software quality attributes, such as maintainability, scalabil-
ity, and reliability.

Mparmpoutis and Kakarontzas [6] conducted a mapping study
on the use of legacy application database schemas to identify mi-
croservices. Their research offers insights into the importance of
database schema in microservices decomposition and highlights
the potential advantages of a data-centric approach.

Prasandy et al. [8] presented a case study on migrating a mono-
lithic application to a microservices architecture. Their research
detailed the challenges encountered during the migration process
and evaluated the resulting microservices architecture based on per-
formance and maintainability. This study contributes with valuable
practical knowledge on the migration process.

In addition to these studies, Newman [7] provided a comprehen-
sive guide to building microservices, discussing the design princi-
ples, best practices, and challenges of adopting this architectural
style. Richardson [9] also contributed to the understanding of mi-
croservices by offering a set of patterns to help developers design,
deploy, and scale microservices-based applications.

4 METHODOLOGIES

To investigate the database-centric approach to monolithic applica-
tion decomposition, a mixed-methods approach has been employed.
First, a systematic literature review was conducted to identify differ-
ences between relational databases and no-SQL databases in order
to find the potential benefits of no-SQL databases for supporting
microservices architecture.

Finally, we delve into a case study that involves a monolithic
database. Specifically, we have extracted a portion of the monolith
database and transferred it to a microservices database. Our aim has
been to analyze the advantages of this move on the microservices
architecture and identify the impact it has on query speed.

5 DATABASE SCALING

Monolith applications typically rely on one relationship database,
which often becomes the bottleneck of the architecture. A bench-
mark study [1] found out that "microservices scale better than
monolith", and one of the reasons is the database bottleneck. Re-
lational databases are not designed to scale out horizontally, and
in order to do so, developers must implement a technique called
sharding to partition the database over different servers. However,

Nicolae Mihalache

a recent study [10] found that relational databases perform best on
single servers. The second scaling option is adding more CPU and
RAM power, but this can become costly very quickly [7].

On the other hand, No-SQL databases have the ability to scale
horizontally, which is a major concern of their architecture. Recent
research [2, 4] has shown that No-SQL databases, such as Mon-
goDB and Cassandra, scale better than relational databases, such
as MySQL.

Cassandra is a distributed No-SQL database that can partition
over different servers. In terms of microservices architecture, par-
titioning can be done so that the microservice and the database
partition are coupled on the same server. This achieves a lower re-
sponse time since the database and the microservice are physically
on the same server. This can be achieved by using a Kubernetes
infrastructure, which is currently one of the most popular tools for
managing containers, according to the 2022 CNCF Survey.

Another issue with monolith applications is that relational databases
typically use only one server instance, which increases the round
trip time (RTT) to clients that are far away. To replicate it across dif-
ferent servers, a master-slave architecture should be implemented
in an ACID manner, which decreases the response time.

However, Cassandra has multiple nodes with a masterless ar-
chitecture, meaning that any node in the database can provide the
same functionality as any other node. This makes it easy to repli-
cate on different servers and reduces the response time by moving
servers closer to the users (Figure 1). It is worth noting that Cassan-
dra, along with other No-SQL databases, lacks the ACID properties
commonly found in traditional relational databases.

L 2 ;:\

(Mlcrosen.r\ce #2
Server B

" T _ (Micmser\.rice #3_:
(Microservice #1 Server 3
" ServerA \

Figure 1: Microservice architecture with Cassandra replica-
tion

6 ADVANTAGES AND DISADVANTAGES OF
PARTITIONING A RELATIONAL DATABASE

During the transition from a monolithic to a microservices archi-
tecture, development teams must carefully contemplate whether to
partition the existing database or allocate a new one for each individ-
ual microservice, taking into account project-specific requirements
and the accumulated technical debt.

6.1 Advantages

The migration from a monolithic to a microservices architecture
offers a significant advantage in that it allows development teams

39th Twente Student Conference on IT , July 7, 2023,

Scaling Out with Microservices: A Database-Centric Approach to Monolithic Application Decomposition

to reset the technical debt associated with database architecture
choices. By leveraging accumulated requirements and replacing
the relational database with a more suitable alternative within the
microservice scope, developers can effectively start with a clean
slate, free from the constraints and limitations imposed by prior
decisions. This approach requires careful consideration, however,
as the decision to partition an existing database or allocate a new
one for each microservice must be based on project-specific require-
ments and technical considerations. As an example, a particular
component of the monolithic application that is exclusively used
for text searching purposes can be extracted to a microservice that
has an elastic search database, thereby enhancing the complexity
of the overall architecture but improving response times.

Another great improvement is choosing a distributed database
that can replicate across different server locations, which brings
the database close to the server, thus decreasing overall RTT.

6.2 Disadvantages

Despite the significant performance benefits that can be achieved
through transitioning from a monolithic to a microservices architec-
ture, there are trade-offs to consider. One of the primary challenges
that companies face after implementing microservices is the in-
creased complexity of managing and monitoring multiple databases,
as opposed to a single database in a monolithic architecture. This
can be particularly costly for smaller companies. Additionally, the
adoption of microservices requires a skilled development team with
a deep understanding of the domain, which may pose a challenge
for some companies. Implementing ACID behaviour is another big
challenge that developers would have to consider when migrating
to a microservice architecture.

7 CASE STUDY

This section presents a comprehensive analysis of the migration
process involved in transitioning a section of an app’s database
from a traditional SQL database to a NoSQL database. This analysis
delves into the details of testing and evaluating the performance of
the newly implemented database structure.

The initial phase of the assessment involved the identification
of a monolithic project that operates on a primary relational data-
base. After extensive research and deliberation, Akaunting 1 was
selected as an appropriate candidate for this purpose. Akaunting
is a PHP-based project that utilizes the Laravel framework and
is equipped with an Object-Relational Mapping (ORM) tool that
enables connection to various SQL databases.

The project was selected due to its MySQL monolith database
with multiple relationships. In order to get the project up and run-
ning, the first step was to create a MySQL instance and follow the
Akaunting project GitHub repository instructions.

7.1 Benchmarking

To evaluate the potential of the chosen databases, we created inde-
pendent instances of MySQL and Cassandra within distinct Docker
containers. MySQL was configured as a single instance, whereas
Cassandra was configured to take advantage of its capacity to form
a cluster with multiple instances.

1github.com/akaunting

We chose to operate Cassandra within a three-node cluster for
the purposes of this study in order to better comprehend and investi-
gate the potential benefits that could be realized from its scalability
when employed in a multi-node configuration (Figure 2).

904217070 3306

@ @ IcassaudraS‘ Imysql|

9042 [7070 .*

cassandra2

cassandral

Figure 2: Docker compose containers

Following this, we conducted a microservice extraction analysis,
concentrating on the relational database and associated codebase,
which revealed the existence of a company document management
system. Companies, Users, Documents, Document Totals, and Doc-
ument Items are the entities that the system supports (Figure 3).

Companies
id
created_by

document_items /
id

created_by

\ Users

document_id
company_id

Documents

id
created_by
company_id

document_totals
id
created_by

document_id
company_id

Figure 3: Selected tables from monolith database to be
grouped in a microservice

github.com/akaunting

39th Twente Student Conference on IT, July 7, 2023,

Cassandra is a query-first database. The process of migrating
from a relational database to Cassandra requires an initial discern-
ment of the queries we wish to support. Our analysis begins with
the following SQL queries:

1. SELECT avg(amount) FROM akaunting.documents;

2. Select avg(amount) from akaunting.documents left join
companies on companies.id = documents.company_id where
domain = ;

The first SQL query has no relationships, whereas the second
query selects all average quantities by the company domain by
doing a join. Cassandra employs partition keys; each partition key
is used to improve data placement, thereby enhancing the efficiency
of data writing and reading. Given the specific nature of our query,
which focuses on documents categorised by the company id, it
makes sense to designate the company id as our partition key for the
first query. In an effort to replicate the functionality of the MySQL
database, we propose incorporating the document identifier as the
secondary key. This strategy enables the ordering of documents by
id within each partition and the execution of queries by id, thereby
substantially enhancing the overall efficiency and effectiveness of
our database.

CREATE TABLE IF NOT EXISTS akaunting.documentsByCompanies
(id int, company_id int, document_number text, type
text, status text, amount double, PRIMARY KEY
(company_id, id));

For the second query however, we created a separate Cassandra
table, where the domain of the company is the partition id.

CREATE TABLE IF NOT EXISTS
akaunting.documentsByCompaniesDomain (id int, domain
text, document_number text, type text, status text,
amount double, PRIMARY KEY ((domain), id)) WITH
CLUSTERING ORDER BY (id DESC);

The Akaunting project utilizes seeding scripts to generate ran-
dom data pertinent to the entities selected for our research. An in-
tegral part of this process required the creation of migration scripts
which could effectively map MySQL queries onto Cassandra’s table
structure.

Using two distinct methods, metrics were gathered. Initially, a
database was created solely for the purpose of aggregating met-
rics. Therefore, each time a query was executed, its duration was
recorded in this specialized database. A script written in the Golang
programming language was used to initiate the testing procedure
for metric collection. This script initiated multiple concurrent green
threads, each of which performed a single read or write operation.
Each query’s execution time was subsequently logged in the metrics
database.

Testing the first query: Initially, there were approximately 3000
entries in the database. A Go script was executed with a range
of coroutines, including 10, 50, 100, 150, and 350, each coroutine

Nicolae Mihalache

Cassandra == MySQL
0.6

0.4

Time

0.2

0.0
50 100 150 200
Mumber of coroutines

Figure 4: Read test 1st query (Time of execution / Number of
green threads)

== Cassandra == MySOL
0,3

0,6

04

Time

02

0,0

a0 100 1560 200 250 300 350

Mumber of coroutines

Figure 5: Read test 2nd query (Time of execution / Number
of green threads)

was executing a database query and coroutines are executed in a
concurrent manner. Figure 4 is a graphical representation of the
average query time for each worker count. Figure 4 shows that
MySQL’s read performance exceeded that of Cassandra.

Testing the second query: After we examined the results from
Figure 5, we noticed that using joins in SQL is slower than getting
data from just one table. This makes sense because a join makes the
query look in two tables, not just one. On the other hand, Cassandra,
which adopts a ’query first’ approach, organizes the requisite data
across different partitions and allocates one table structure for each
query. While this method does consume additional storage space
and demands higher maintenance effort from the project developers,
its efficiency cannot be underestimated.

In the next phase of our investigation, we analyzed the efficiency
of insert queries in each database system. Figure 6 shows a note-
worthy pattern: as the number of concurrent workers executing
insert operations increased, the performance of MySQL exhibited a
discernible decline, with insert operations gradually decelerating.
This trend was not reflected in Cassandra’s case. In contrast, the
time required for insert operations in Cassandra remained constant

39th Twente Student Conference on IT , July 7, 2023,

Scaling Out with Microservices: A Database-Centric Approach to Monolithic Application Decomposition

regardless of the number of concurrent inserting workers. This re-
sult suggests that Cassandra may have an advantage over MySQL in
scenarios requiring a large number of concurrent insert operations.

== Cassandra == MySQL

Time

50 100 150 200 250 300 350

Mumber of coroutines

Figure 6: Write test (Time of execution / Number of green
threads)

In the final phase of our investigation, we conducted a test in
which the Go script invoked an equal number of read and write
operations simultaneously. Figure 7 revealed a significant perfor-
mance gap between the two database management systems. In this
scenario, MySQL demonstrated inferior performance. A plausible
explanation for this is that MySQL has additional functionality to
preserve, specifically, ACID properties (Atomicity, Consistency, Iso-
lation, and Durability). While assuring transaction reliability and
integrity, these properties could potentially impose a performance
burden on write operations, thereby slowing down read operations.

Cassandra, on the other hand, demonstrated superior scalability
for concurrent inserts and writes. This may be due to its eventual
consistency model, which permits a greater write throughput by
relaxing the requirement for immediate consistency. These results
suggest that the choice between MySQL and Cassandra may hinge
on the application’s specific requirements, specifically the need
for ACID compliance versus the need for high write throughput.
Further research is required to investigate these tradeoffs in greater
depth.

MySQL outperforms Cassandra in terms of read performance, in
accordance with our findings and the findings of other benchmark-
ing studies. On the other hand, Cassandra appears to outperform
MySQL for insert operations. These results suggest that the applica-
tion’s specific operational requirements should govern the choice
between MySQL and Cassandra. [12]

7.2 Metrics

The possibility of observing database errors and the accumulation
of metrics are essential capabilities for database management and
oversight. This section describes the implementation of metric
collection for each database and describes the various categories of
available metrics.

This thesis’ scope of investigation extended beyond manual met-
ric collection to include automated metric analysis. A suite of data
analytics tools was applied to analyze the compiled metrics from

== Cassandra == MySOL
1,25

1,00

0,75

Time

0,50

0,25

0,00

10 50 100 150 200 250 300 350

Mumber of coroutines

Figure 7: Concurrent reads and writes test (Time of execution
/ Number of green threads)

the respective databases. Datadog? was utilized specifically for the
analysis of MySQL metrics data. Grafana3, the Grafana Agent, and
Prometheus* were utilized concurrently to analyze metrics from
both the Cassandra cluster.

Prometheus backend and,
Grafana cloud

Database metric collection architecture

Datadog Service

Virtual Machine

Docker container layer

W Datadog Agent

Cassandra Gassandra JMX Grafana agent

Cluster

Figure 8: Database metric collection architecture

Comparing the monitoring systems Cassandra and MySQL re-
veals several significant distinctions. In terms of available metrics,
Cassandra provides a broader selection of metrics for agent collec-
tion from the outset compared to MySQL. This contains valuable
metrics pertaining to writing and reading latencies, including com-
puted percentiles.

Implementing equivalent metrics in MySQL requires additional
development effort, which may pose difficulties and influence the
process’s efficiency.

Cassandra’s design architecture contributes considerably to the
accessibility of its metrics. Each node in a Cassandra cluster com-
municates with the Grafana agent and provides abundant granular
data. This inter-node communication enables the collection of ex-
haustive metrics, providing greater insight into the operation and
performance of the system.

Zhttps://www.datadoghq.com/
Shttps://grafana.com/products/cloud/
“https://prometheus.io/

https://www.datadoghq.com/
https://grafana.com/products/cloud/
https://prometheus.io/

39th Twente Student Conference on IT, July 7, 2023,

In contrast, when collecting metrics for MySQL, the Datadog
agent queries the Performance Schema. However, the MySQL Per-
formance Schema does not expose as much information as a Cas-
sandra node, resulting in a smaller range and depth of monitoring-
accessible data.

Regarding the availability of metrics, Cassandra appears to offer
more advantages than MySQL. This is not to imply that MySQL
is inferior, but it does highlight the distinctions between the two
systems’ design philosophies and capabilities. Depending on the
requirements and resources of a project, these distinctions could
have a significant impact on the selection of a monitoring system.

7.3 Scalability

In the section 7.1, we highlighted that scaling MySQL across multi-
ple servers presents a significant challenge. Performance analysis
revealed that while MySQL performs excellently for read-intensive
operations, it may not be the best choice when the application ne-
cessitates storing large amounts of data that exceed the capacity of
a single server and has a high volume of write requests.

Under these conditions, Cassandra emerges as a more suitable
choice due to its ability to scale by distributing different nodes
across multiple virtual machines, thus achieving horizontal scaling.
This discussion illustrates an example of how to horizontal scale
Cassandra nodes in a Docker Compose environment.

The environment configuration described here can be easily
adapted for use with Docker Swarm, Kubernetes, or other container
orchestration systems. This flexibility enhances the versatility of
Cassandra and further illustrates its advantages in scenarios that
demand high scalability.

Figure 2 provides a clear visualization of the Docker Compose
system architecture. Despite its seemingly simplistic nature, Cassan-
dra performs a variety of complex operations beneath the surface.
For instance, Cassandra nodes discover each other through a pro-
cess of communication utilizing the gossip protocol.

Once all the Cassandra nodes have been identified and a master-
less cluster has been formed, keyspaces can be created. A keyspace
in a Cassandra cluster is the highest-level data container that con-
trols how data is replicated across nodes. Keyspaces can employ
various replication strategies across the cluster to suit different
requirements.

To scale Cassandra nodes across multiple data racks, the use
of the NetworkTopologyStrategy is advised. This strategy aims to
distribute replicas across different racks as nodes within the same
rack (or a similar physical grouping) often experience concurrent
failures due to power, cooling, or network issues.

The following Cassandra command shows how to create a keyspace
that employs this strategy. The ’class’ indicates the desired strategy,
while the ‘replication_factor’ specifies the number of copies of each
row to be made within the data cluster:

CREATE KEYSPACE IF NOT EXISTS akaunting WITH REPLICATION =
{ : ,
: ¥

Nicolae Mihalache

This command creates a keyspace named "akaunting," if it does
not already exist, and sets the replication strategy to NetworkTopol-
ogyStrategy with a replication factor of three. This means that three
copies of each row will be created in the data cluster, providing
redundancy and resilience.

To execute a Cassandra cluster in a Docker Compose environ-
ment, a new Cassandra image was locally created, which employs
the jmx_prometheus_javaagent® to expose an endpoint for metric
collections. Assume that the image is named 'mycassandra:v2’.

cassandral:
image: mycassandra:v2
ports:
- 9042:9042
- 7070:7070
volumes:
- cassandra_data_1:/var/lib/cassandra
environment:
- CASSANDRA_CLUSTER_NAME=Test Cluster
- CASSANDRA_SEEDS=cassandral, cassandra2
- CASSANDRA_DC=sel
- CASSANDRA_ENDPOINT_SNITCH=gossip
cassandra2:

cassandra3:

In this configuration, the following parameters are defined:

e image: Specifies the Docker image to use for the container,
in this case, ‘'mycassandra:v2’.

e ports: Maps the container’s ports to the host’s ports. Here,
9042 is the Cassandra client port and 7070 is for metric col-
lections.

e volumes: Maps the Docker volume ’cassandra_data_1’ to
the path ’/var/lib/cassandra’ in the container. This is where
Cassandra’s data files will be stored.

e environment: Sets various environment variables for the
container:

- CASSANDRA_CLUSTER_NAME: Specifies the name
of the Cassandra cluster.

— CASSANDRA_SEEDS: Provides a comma-separated list
of seed nodes used when a new node joins the cluster.

— CASSANDRA _DC: Identifies the data center to which
the node belongs.

— CASSANDRA_ENDPOINT_SNITCH: Sets the endpoint
snitch, which tells Cassandra about the network topology
to route requests efficiently.

The configurations for ’cassandra2’ and ’cassandra3’ follow the
same structure, with adjustments as needed to accommodate their
specific roles and settings in the cluster.

The ease of horizontal scaling with Apache Cassandra, particu-
larly in a containerized environment, stands in stark contrast with
the complexity that characterizes the scaling process for MySQL.
The fundamental difference lies in their respective architectures:
while Cassandra is designed with a distributed system in mind,

Shttps://github.com/prometheus/jmx_exporter

https://github.com/prometheus/jmx_exporter

39th Twente Student Conference on IT , July 7, 2023,

Scaling Out with Microservices: A Database-Centric Approach to Monolithic Application Decomposition

MySQL’s design revolves around a single-node concept. This ab-
sence of built-in distributed system capabilities in MySQL makes
horizontal scaling a more involved process.

To achieve horizontal scaling with MySQL, a typical approach is
to establish replication or clustering, each of which comes with its
own complexity that demands careful planning, detailed configu-
ration, and ongoing maintenance. Replication entails the creation
of additional MySQL servers that serve as ’slaves’ to the ‘master’
server. The master server processes all write operations, whereas
read operations are distributed among the slave servers. Conversely,
clustering involves the creation of a group of servers that operate as
a single server. In applications, both strategies require considerable
effort and technical expertise to be implemented correctly.

It is thus evident that although both Apache Cassandra and
MySQL have the potential for horizontal scaling, the process is
significantly simpler and more straightforward with Cassandra
due to its inherent distributed features. Despite the complexity
associated with scaling MySQL, when properly configured and
maintained, both systems are capable of effectively managing large-
scale data tasks

8 CONCLUSION

In conclusion, the comparative analysis of MySQL and Apache
Cassandra in this thesis demonstrates that the choice between
these two database management systems depends significantly
on the operational requirements of a particular application. The
results demonstrated that MySQL excels in read performance but
may struggle with a large volume of concurrent write operations,
particularly when scaled across multiple servers.

In contrast, Cassandra excels in terms of write and insert perfor-
mance, especially under high concurrency. Its distributed design
allows for smoother and simpler horizontal scaling compared to
MySQL, which should be considered when developing applications
that are intended to process massive amounts of data or require
high write throughput.

However, it is also essential to keep in mind that MySQL provides
robust transaction reliability and integrity through its ACID prop-
erties, which could be crucial for applications requiring immediate
data consistency. In contrast, Cassandra’s eventual consistency
model allows for a higher write throughput but may not be viable
for use cases that require instant data consistency.

Regarding metric collection and monitoring, Cassandra seems
to offer more out-of-the-box compared to MySQL, which could
impact the efficiency of maintaining and observing the database.
However, these metrics’ richness and value would still be subject
to the specifics of an application’s requirements and the resources
allocated to manage them.

MySQL and Apache Cassandra each have advantages and disad-
vantages, but the decision should always be based on the specific
requirements of the application, the available resources, and the
context in which these systems will be used. Future research could
investigate the trade-offs between these two systems in a variety of
application scenarios in order to provide more nuanced insights to
developers and organizations seeking to make informed decisions
about their database management systems.

REFERENCES

[1] Nicholas Bjerndal, Manuel Mazzara, Antonio Bucchiarone, Nicola Dragoni, and
Schahram Dustdar. 2021. Migration from Monolith to Microservices: Bench-
marking a Case Study. The Journal of Object Technology (2021). https:
//doi.org/10.5381/jot.2021.20.2.a3

[2] Ticiana Capris, Pedro Melo, N. Garcia, . Pires, and Eftim Zdravevski. 2022. Com-
parison of SQL and NoSQL databases with different workloads: MongoDB vs
MySQL evaluation. 2022 International Conference on Data Analytics for Business
and Industry (ICDABI) (2022). https://doi.org/10.1109/icdabi56818.2022.10041513

[3] Nikolay Ivanov and Antoniya Tasheva. 2021. A Hot Decomposition Procedure:
Operational Monolith System to Microservices. International Conference on
Applied Informatics (2021). https://doi.org/10.1109/icai52893.2021.9639494

[4] Vishal Dilipbhai Jogi and Ashay Sinha. 2016. Performance evaluation of MySQL,
Cassandra and HBase for heavy write operation. International Conference on
Recent Advances in Information Technology (2016). https://doi.org/10.1109/rait.
2016.7507964

[5] Milos Mili¢ and Dragana Makaji¢-Nikoli¢. 2022. Development of a Quality-

Based Model for Software Architecture Optimization: A Case Study of Monolith

and Microservice Architectures. Symmetry (2022). https://doi.org/10.3390/

sym14091824

Antonios Mparmpoutis and George Kakarontzas. 2022. Using Database Schemas

of Legacy Applications for Microservices Identification: A Mapping Study.

International Conference on Advancements in Computational Sciences (2022).

https://doi.org/10.1145/3564982.3564995

[7] S.Newman. 2015. Building microservices - designing fine-grained systems, 1st
Edition. null (2015).

[8] Teguh Prasandy, Dina Fitria Murad, and Taufik Darwis. 2020. Migrating Appli-
cation from Monolith to Microservices. International Conference on Information
Management and Technology (2020). https://doi.org/10.1109/icimtech50083.2020.
9211252

[9] C.Richardson. 2018. Microservices Patterns: With Examples in Java.

[10] Samidi Samidi, Ronal Yulyanto Suladi, and Ario Bambang Lesmana. 2022. Im-
plementation of Database Distributed Sharding Horizontal Partition in MySQL.
Case Study of Application of Food Serving On Kemkes. Jurnal Sisfotek Global
(2022). https://doi.org/10.38101/sisfotek.v12i1.477

[11] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2017. Processes, Motiva-
tions, and Issues for Migrating to Microservices Architectures: An Empirical
Investigation. null (2017). https://doi.org/10.1109/mcc.2017.4250931

[12] Piush Vaish. 2023. A Comparison between Cassandra and MySQL.
https://adataanalyst.com/data-analysis-resources/a-comparison-between-
cassandra-and-mysql/

—_
S

https://doi.org/10.5381/jot.2021.20.2.a3
https://doi.org/10.5381/jot.2021.20.2.a3
https://doi.org/10.1109/icdabi56818.2022.10041513
https://doi.org/10.1109/icai52893.2021.9639494
https://doi.org/10.1109/rait.2016.7507964
https://doi.org/10.1109/rait.2016.7507964
https://doi.org/10.3390/sym14091824
https://doi.org/10.3390/sym14091824
https://doi.org/10.1145/3564982.3564995
https://doi.org/10.1109/icimtech50083.2020.9211252
https://doi.org/10.1109/icimtech50083.2020.9211252
https://doi.org/10.38101/sisfotek.v12i1.477
https://doi.org/10.1109/mcc.2017.4250931
https://adataanalyst.com/data-analysis-resources/a-comparison-between-cassandra-and-mysql/
https://adataanalyst.com/data-analysis-resources/a-comparison-between-cassandra-and-mysql/

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Research Questions

	3 Related Work
	4 Methodologies
	5 Database scaling
	6 Advantages and disadvantages of partitioning a relational database
	6.1 Advantages
	6.2 Disadvantages

	7 Case Study
	7.1 Benchmarking
	7.2 Metrics
	7.3 Scalability

	8 Conclusion
	References

