
1

 Bachelor Thesis Business and IT

 Patrick Japink

 University of Twente

Redis, Apache Kafka, RabbitMQ: Effect of choosing Event-streaming

middleware upon architectural constraints defined by Non-functional

requirements in Event-driven microservice architectures.

2

TScIT 37, July 8, 2022, Enschede, The Netherlands Author

Patrick Japink, University of Twente, The Netherlands

ABSTRACT

Event-driven architectures are gaining industry support. The

comparison of Event-streaming brokers which have been

established and which have been newly developed are compared

with respect to their architectural constraints defined by non-

functional requirements. Redis, Apache Kafka and RabbitMQ

compared and representative architecture based on the use-case of

inters-service communication is devised. The evaluation of non-

functional requirements is reviewed and applied to the three

software solutions.

Additional Key Words and Phrases: Non-functional requirements, Event-

driven architecture

INTRODUCTION

The adoption of microservice architecture and more specifically,

event-driven microservice architectures that utilize real-time data to

support business objectives, is increasing. Companies across

industries have seen an increase in the presence of data sources and

volume which dovetails with these developments. Message-

oriented middleware is an essential part of many distributed

systems and microservice architectures. While traditional message

queueing systems are common in microservice architectures, it is

important to note that brokers with streaming capabilities play a

distinct role in event-driven microservice architectures [3] [4].

Event-streaming brokers and traditional message queues generally

differ in distinct aspects, for example, in that Event-streaming

brokers offer non-destructive consumer semantics and that they

offer a degree of backwards accessibility of past data. [5].

Generally, in Event-driven microservices, the role of Event-

streaming brokers is to receive events from producers, store them in

logically separate streams and make them available to one or more

consumers [6]. The key data structure at the heart of a stream can

be described as an append-only log [7]. For large-scale systems,

groups of Event-stream broker instances together receive, store and

provide events in clusters to fulfill the necessary requirements [4].

The streams of logically separate topics, or append-only logs, can

thus be partitioned across separate machines [8]. The focus of this

research are Event-streaming solutions used to enable Event-driven

microservice architectures. In the last 5 years, some of the most

well established messaging solutions, Redis and RabbitMQ have

added data streaming capabilities to their software. Other

established event streaming solutions, like Apache Kafka, have

seen continued adoption in a wide variety of industries. Along with

the benefits of adopting new architectural styles, new challenges

and trade-offs have to be navigated in order for the possible

benefits of these new adaptations to be realized. Changes in

business strategies, like the aforementioned trends, prompt further

innovations in architectures, which bring about new developments

and extensions of existing applications.

The comparison of these three software products as Event-

streaming brokers represents a gap in the research, as a lot of the

development related to this is fairly recent. Redis, Apache Kafka

and RabbitMQ are widely used software products, each with

distinct features that make them applicable for different use-cases

to varying degrees.

This research aims to compare them by their intersecting quality as

Event-streaming solutions, and to analyze the implications that their

differences have for their non-functional requirements, in the

context of Event-driven microservice architectures. The leading

question would therefore be: How do Redis, Apache Kafka and

RabbitMQ differ with respect to their architectural constraints

defined by non-functional requirements, used to facilitate

asynchronous inter-service communication in event-driven

microservice architectures?

This research aims to address this matter with the following

research questions:

1) What are relevant non-functional requirements and features of

Event-stream brokers used for asynchronous communication in

microservice architectures?

2) What are the different properties of the three Event-stream

brokers and what is their appropriate architecture and configuration

for this use-case?

3) What are important insights for the evaluation of non-functional

requirements and which one's out of those collected should be

analyzed?

4) How do the three Event-broker solutions compare with respect to

the selected non-functional requirements?

The first research question will be answered in section one through

a surveying of the relevant contemporary literature and research.

Section two covers the second research question. A description and

comparison of the three Event-streaming brokers properties will be

based on their documentation. The architecture and configuration

will be informed by the results in the first section in combination

with the documentations. The third research question, answered in

the third section, consists of a survey of the relevant research, as

well as the content of the first section to select a subset of the non-

functional requirements. Section number four contains the answers

to the fourth research question. The non-functional requirements

elicited in research question three will be evaluated comparatively

for the three Event-broker solutions, with support of the

information in section two.

This analysis will be conducted based on the open-source versions

of these applications, as opposed to the commercially supported

options. It will also be based on the out-of-the-box features

provided by said open source versions and not take into direct

account possible custom extensions.

Bachelor’s Student Conference Proceedings Paper in LaTeX Template TScIT 37, July 8, 2022, Enschede, The Netherlands

3

SECTION 1 – EVENT-STREAMING BROKERS

1.1 Requirements

For the elicitation of important non-functional requirements and the

support of their analysis, materials from three related areas can be

relied upon. Firstly, literature on distributed systems can be relied

upon due to microservices being a subcategory of distributed

systems. Furthermore, contemporary literature from industry

professionals about Event-driven microservices are an appropriate

source. Thirdly, due to their aforementioned similar use-case, we

can rely on research that deals with the evaluation and comparison

of message queues and publish/subscribe systems in order to gather

insights.

Relevant work was perfumed by Bellemare in “Building Event-

driven Microservices”. Descriptions of four essential requirements

for Event-brokers, with a focus on large-scale system capabilities

have been provided by Bellemare [6]. The features listed and their

provided contextualization by Bellemare [6] are the following:

Scalability - " Additional event broker instances can be added to

increase the cluster’s production, consumption, and data storage

capacity",

Durability - " Event data is replicated between nodes. This permits

a cluster of brokers to both preserve and continue serving data

when a broker fails.",

High Availability - "A cluster of event broker nodes enables clients

to connect to other nodes in the case of a broker failure. This

permits the clients to maintain full uptime.",

High Performance - "Multiple broker nodes share the production

and consumption load. In addition, each broker node must be

highly performant to be able to handle hundreds of thousands of

writes or reads per second."

Four different papers that evaluate messaging systems based on a

queue and publish/subscribe paradigm have been selected. Table 1

shows a matrix of the included non-functional requirements per

research paper. The term "performance" has been designated to

include all papers which took the factors of "latency" and

"throughput" into account. In some of the papers by the authors

listed in table 1, this has been noted under "efficiency", in others as

separate terms. The categories of "durability" mentioned by

Bellemare [6] and the of "reliability" listed by Fu, Yu and Zhang

[9] both refer to the same aspects, the usage of multiple nodes in a

cluster and the replication of data between them in order to manage

the failure of single nodes without interruption of the service as a

whole. The term "reliability" will be used to represent both.

Table 1. Comparison of research papers

The overlapping requirements named by Bellemare and the selected

research papers are Scalability, Availability, Performance and

Durability. The remaining requirements named by Zhang, Fu and

Yu, are usability defined by "easiness of installation",

"completeness of documentation" and "management & monitoring

functionality" and compatibility [9]. The aspect of compatibility

focuses on the connection of message queues to different types of

long-term storage, which is not applicable to this context.

Mairiza, Zowghi, and Nurmuliani performed research on which

non-functional requirements are most commonly listed in certain

domains [10], they named extensibility as one requirement

spanning all system and application domains. Extensibility is also

covered as a design goal of distributed systems in the work of

Tanenbaum, under the umbrella term of "openness" [11]. The only

non-functional requirement not included so far, of the five most

common, listed by [10] and also by [12] is that of security. The

survey of research and literature thus results in the following list of

preliminary non-functional requirements:

1) Scalability

2) Availability

3) Performance

4) Reliability

5) Usability

6) Extensibility

7) Security

1.2 Features

In the domain of messaging systems, qualities of service (QOS),

describe conditions which can apply to the delivery of messages. In

[13], [9], [14] and [15], the relevant QOS of "delivery guarantees"

has been named. This refers to the guarantees regarding the number

of times the same message will be delivered to the same consumer.

The delivery guarantees referred to are at-least-once, at-most-once

and exactly-once. The two other QOS listed are that of message

persistence and message ordering. The differing feature

4

TScIT 37, July 8, 2022, Enschede, The Netherlands Author

requirements of more traditional message brokers make these less

relevant categories for the evaluation of Event-streaming brokers.

The persistence of events is an expected requirement, while the

ordering of events may only differ when stored across different

partitions, depending on the use-case. Bellemare further states in

his work on Event-streaming brokers as important features of their

underlying storage facilities: Partitioning, Strict ordering, Indexing,

Infinite retention and Replayability [6].

Due to limitations of storage capacity, assuming continuous

production of events only a subset of all historical data can be

stored locally [16]. The rule-sets which dictate which data to

remove and when are referred to as the retention policy. Since

storage of events is an assumed feature, it is also an expected

quality of the system. Publisher acknowledgements and Consumer

acknowledgements are possible features which allow the publishing

and consumption of events to be confirmed. Its implementation has

implications for the consistency of data and message delivery

guarantees. The position in the respective partition which

consumers have last accessed can be stored by consumers or by the

Event-streaming system [17]. As in the case of databases, multiple

distinct operations, such as the adding of multiple events, can be

viewed as a single operation, semantically. Just as with databases,

such a conditional grouping can be named a transaction and

represents another possible feature [18].

SECTION 2 – PROPERTIES, ARCHITECTURE AND

CONFIGURATION

2.1 Properties and Architecture

Redis, Apache Kafka and RabbitMQ are software solutions with

differing and overlapping capabilities. Table 2 in the appendix A1

contains a general comparison of the products properties and

streaming related features. Redis is a multifunctional, in-memory

data store application with optional extended storage settings and

different data-structures. Event-streaming capabilities were added

starting with version 5.0. Apache Kafka is a high performance

Event-streaming and Event-stream processing platform, with an

extensive ecosystem. RabbitMQ is a feature-rich messaging

application which supports a multitude of protocols. Event-

streaming functionalities, including an optional new binary

streaming protocol have been in development, starting with version

3.9.

Section one elaborated on common requirements and some of the

architectural practices related to them. To adequately compare the

different Event-streaming solutions with one another, the

appropriate architecture for each needs to be determined. This

architecture must be chosen according to the overall use-case of

Event-driven microservice communication, based on the elicited

requirements, while providing the needed features, across all three

Event-streaming brokers.

The requirements are based on the assumption of a large-scale,

distributed context. This is in line with the requirement of

performance. Different requirements are positively related,

meaning that certain architectural decisions benefit them similarly.

Scalability, Availability, Durability and Performance all can all

increase in a clustered, distributed architecture. This comes with the

increased complexity of maintaining other requirements, such as

data consistency, traceability, maintainability and others.

Across multiple sources, the concepts of clustering, scalable design,

data replication across nodes and the possibility for automatic

failovers and recovery from failures have been mentioned [4] [6]

[9]. The chosen architecture will be a cluster made up of three main

nodes. An uneven number of nodes is advantageous for certain

leader election methods, because it helps to prevent split-brain

scenarios [19] during which multiple nodes assume the leader role,

leading to data inconsistencies. When configuring each of the three

applications, the aim is to cater to the requirements and features

elicited in section one. Because of the differing properties of the

three Event-streaming broker solutions, the optimal and possible

adjustments are distinct for each.

2.2 Configuration

This section describes the configuration appropriate for all three

software products, such that they converge to fulfill the

architectural requirement in a similar fashion.

2.2.1 Redis

In the Redis architecture, depicted in Figure 1 of the appendix A2,

data is replicated from master node to slave nodes. Each of the

three master nodes will have two replica nodes. This results in an

odd number of nodes which results in the option of an quorum [20]

to aid in prevent split-brain conditions during network partitions to

avoid data inconsistencies. Because the first line of storage for

Redis is random-access memory, to fulfill the requirements,

durability options need to be enabled. This involves setting append

only file (AOF) and RDB snapshots, with a strong fsync policy/.

These settings result in a lower performance but make it so that

Redis fulfills the necessary durability requirements.

2.2.2 RabbitMQ

The RabbitMQ architecture is depicted in Figure 2 of the appendix

A3. To take advantage of the higher throughput and all stream

related features such as offset tracking and publisher message

deduplication, the stream plugin must be activated. Recovery mode

should be set as "autoheal" to enable the automated failover during

network partitions.

2.2.3 Kafka

Figure 3 of the appendix A4 shows the Apache Kafka architecture.

The publisher acknowledgement level is set to the highest level.

This causes events to only be acknowledged once they have been

replicated to a majority of nodes present, resulting in their full

durability in case of a complete failure of one node.

SECTION 3 – TRAITS AND SELECTION OF NON-

FUNCTIONAL REQUIREMENTS

3.1 Traits

Bachelor’s Student Conference Proceedings Paper in LaTeX Template TScIT 37, July 8, 2022, Enschede, The Netherlands

5

This section described the examination of relevant research papers

with the goal of eliciting important factors that can provide

guidance for the definition and evaluation of non-functional

requirements.

The research conducted by Chung and Leite [21], as well as the

research by Mairiza, Zowghi and Nurmuliani [10] provides

information to further guide our evaluation of non-functional

requirements. [21] and [10] compare and contrast various

conceptualizations of non-functional requirements. Chiefly, the

appropriate working definition of a non-functional requirement is

that of any architectural constraint or quality that judges a system

based on a certain condition. What is agreed upon by many authors

is that there is no clear consensus when it comes to their scope,

definition, elicitation, verification and the nomenclature used to

describe them [10]. A consequence of this stated in [10] is that for

practical purposes, non-functional requirements need to be defined

with respect to the use-case. The NFR framework [22] and others

discussed [10] propose a goal-oriented definition, appropriate for

the system at hand. The authors of [10] describe broadly that non-

functional requirements can be transformed from abstract

requirements "into more concrete terms and detail" with the usage

of "means, methods and operations". Another concept discussed in

the work of [21] which was included in several classification

schemes is that of "interdependencies" among non-functional

requirements. Expressed more concretely, in relation to the

framework in [22], this is further conceptualized as positive and

negative correlations between non-functional requirements [21].

The analysis of [10] also concluded that certain non-functional

requirements are defined as an attribute of other non-functional

requirements. They provide the example of the non-functional

requirement availability being an attribute belonging to the non-

functional requirement of security.

Thus the evaluation with respect to non-functional requirements

should take into account two aspects. Firstly, the definition related

to the use-case, meaning that the non-functional requirement should

be operationalized by stating goals that apply to the context.

Secondly, the positive and negative relations of non-functional

requirements amongst themselves should be taken into account.

3.2 Selection

For the evaluation, we will focus on a non-functional requirement.

Due to its relevance in [22] [9] and [6], as well as its relation to the

distributed architecture of using Event-streaming brokers in large-

scale systems the selected non-functional requirement will be that

of reliability.

SECTION 4 – DEFINITION AND EVALUATION

4.1 Definition

In the analysis of [10] availability is listed as an attribute of

reliability. This interaction thus relates two of the requirements

from section one. Another attribute listed in [10] is that of fault

tolerance. This aligns with the descriptions of reliability given in

[6] and [9]. In the use-case of Event-streaming broker in the given

architecture reliability can thus be operationalized with the

following goals:

-> the continued availability of service in case of failure defined by

one or more unavailable nodes

-> the consistency and durability of data in case of failure defined

by one or more unavailable nodes

-> the efficient failover and/or recovery in case of failure defined

by one or more unavailable nodes

-> the guarantees above, additionally in case of failure defined by

partitions in the network

4.2 Evaluation

This section examines the three Event-streaming brokers with

respect to the qualities elicited in the previous section.

4.2.1 Redis

Redis uses a full-mesh cluster, where in a cluster on N nodes, each

node is connected to N-1 nodes via TCP. Nodes utilize a gossip

protocol to determine their mutual availability. Failover involves

the election of new master nodes. In Redis, this is handled by

master and replica nodes together in a majority vote fashion. After a

node is found to be unreachable for a majority of the nodes, the

master node no longer receives writes. To replace it, one of its

replica nodes is promoted to be a master. In case of a network

partition, only the majority portion which is connected will be

available after a short time-out period. Thus Redis can only handle

minor partitions before becoming unavailable. To be able to form a

quorum and to help avoid a data inconsistency caused by a split

brain condition, it is recommended to have an uneven number of

nodes in a cluster. For three master nodes, two replicas each result

in a total of nine nodes. Redis is single-threaded and therefore

cannot benefit considerably in throughput by scaling vertically,

which is why algorithmic sharding is used to distribute data across

different nodes in the cluster, using hashing. This enables the

parallel processing of operations across the cluster. Shards and their

number can be redistributed when the number of nodes in the

cluster changes. Data from a shard can be replicated to one or more

replica instances in the cluster. Replication of data happens

asynchronously between master nodes and their dedicated replicas.

Because replication occurs asynchronously, writes are

acknowledged to publishers before they are shared with replica

instances. This leads to two possible data-loss scenarios. Firstly, a

master node can acknowledge a write before it is replicated further

and then fail. Secondly, a master node fails and gets marked as

unreachable but then becomes reachable and receives a write before

being demoted to a replica itself by a new master. From this follows

that Redis cannot provide strong consistency of the data.

4.2.2 RabbitMQ

In the cluster, for each stream exists a leader node to which writes

are directed. The remaining nodes receive replicates of the data and

6

TScIT 37, July 8, 2022, Enschede, The Netherlands Author

serve read requests. This entails that a node can be a leader or

replica depending on the distinct stream in question.

To tolerate network partitions, a quorum of nodes must be

reachable in the cluster. For a three node cluster, this results in

RabbitMQ being able to tolerate one complete node failure, while

retaining availability. When a new stream is created, the leader

node for that stream will be the node with the least leader roles. In

case of the failure of a node, a replicate node will become the leader

for the stream. When a node is reachable, it can rejoin and continue

as a replica node for the stream. The acknowledgement of publisher

messages in RabbitMQ occurs when the data has been replicated to

a quorum of nodes in the cluster. Once received, data is persisted to

disk and not kept in memory, however, data is not written to disk

synchronously using fsync. Instead RabbitMQ relies on the

operating system to schedule the writing on the operating system

page cache. Thus it is possible that data is lost during a node

failure, however, if another node which the data has been replicated

to has not failed, the data will be replicated again. Should the node

fail before the publisher receives an acknowledgement, then the

aforementioned guarantees don't apply

4.2.3 Kafka

Certain aspects of clusters in Kafka are in part managed by an

application called Zookeeper, such as naming, but in general the

nodes, referred to as brokers, handle most of the functionality. Data

in Kafka is replicated across all brokers. Publisher message

acknowledgements, as configured, only confirm messages to

publishers once they have been replicated across all three nodes.

Through replication of data along with extensive publisher

acknowledgements, Kafka is able guarantee that messages will not

be lost as long as there is one node alive with a replica. Streams are

not fully contained in any one node, but rather are partitioned in

ordered segments across all nodes. One partition node is always

considered the leader. All reads and writes occur through the leader

for each specific stream topic. There are two conditions nodes must

fulfill to be considered functional. Firstly, it should respond to the

heartbeat requests managed by Zookeeper to signal its aliveness.

Secondly, it should successfully receive writes from leader nodes in

the cluster. Leader nodes maintain a list of functional replicas.

Nodes that fulfill their functioning criteria are called "in-sync". A

controller node is used to manage the registration of active brokers

in the cluster and removes nodes which are not in-sync. Apache

Kafka does not rely on a majority vote method to elect new leader

nodes, instead all in-sync nodes are eligible to become leaders. This

is possible due to the requirement of writes across all replication

nodes, which guarantees they are not behind. In case that a node

fails, Kafka does not require it to be consistent in order to rejoin.

Before a reachable node can join the cluster again, it is required to

become in-sync by default. This still implies that Kafka is not

immune to failure due to a too high amount of network partitions.

While Kafka guarantees data integrity with at-least one replica node

being in-sync, this does not hold when all nodes become

unavailable. The default strategy implemented in Kafka here is to

wait until the first replica node that was listed as in-sync becomes

reachable again and to promote it to the leader. This causes the

system to be unavailable until this occurs. The consistency of the

data is dependent on the state of the new leader, if the node incurred

a form of disk error, the data is possibly inconsistent.

CONCLUSION

The three Event-streaming brokers Redis, Apache Kafka and

RabbitMQ all employ different strategies to ensure reliability. They

differ most in the degree of certainty they provide with regard to

publisher acknowledgements with Apache Kafka providing the

highest guarantees, followed by RabbitMQ and then Redis. Similar

among all of them is that a large enough amount of network

partition or node failures will lead to a sustained loss of availability.

Apache Kafka and RabbitMQ provide a selection of settings to

determine the degree of publisher acknowledgement and setting

with regards to failover procedures which enable users to prioritize

availability or partition consistency, while Redis is strongly focused

on high availability, providing disaster recovery options rather than

consistency. The choice of the in-sync set approach for leader

election used by Apache Kafka allows for the loss of one more one

in a three node cluster when compared to the majority vote

approach used by Redis and RabbitMQ.

FURTHER RESEARCH AND THEATS TO VALIDITY

The research carried out in this paper is focused on the single

requirement of reliability, in a general manner. Different cases of

failure (hardware, software, malicious intent) should be taken into

consideration. More requirements and their interrelation with

reliability should be examined to get a clearer view of the design

implications of the respective applications. The conclusions in this

paper have been drawn based on the information found in the

official documentation, this implies that a more thorough

verification of the claims made therein could lead to different

results. Guarantees and behaviors might deviate from

documentation based on bugs and implementation errors.

REFERENCES

[1] Newman, S. (2021). In Building microservices: Designing fine-grained systems (p.

19). essay, Sebastopol, CA: O’Reilly Media.

[2] Rocha, H. a. O. (2022). Practical Event-Driven Microservices Architecture:

Building Sustainable and Highly Scalable Event-Driven Microservices (p. 94)

https://link.springer.com/content/pdf/10.1007/978-1-4842-7468-2.pdf

[3] Newman, S. (2021). In Building microservices: Designing fine-grained systems (p.

48). essay, Sebastopol, CA: O’Reilly Media.

[4] Bellemare, A. (2020). Building Event-Driven Microservices (p. 28). O’Reilly

Media

[5] Bellemare, A. (2020). Building Event-Driven Microservices (p. 31,32). O’Reilly

Media.

[6] Bellemare, A. (2020). Building Event-Driven Microservices (p. 28,29). O’Reilly

Media.

[7] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas

Behind Reliable, Scalable, and Maintainable Systems. (446) “O’Reilly Media, Inc.”

[8] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas

Behind Reliable, Scalable, and Maintainable Systems. (447) “O’Reilly Media, Inc.”

[9] Fu, Guo & Zhang, Yanfeng & Yu, Ge. (2020). A Fair Comparison of Message

Queuing Systems. IEEE Access. PP. 1-1. 10.1109/ACCESS.2020.3046503.

Bachelor’s Student Conference Proceedings Paper in LaTeX Template TScIT 37, July 8, 2022, Enschede, The Netherlands

7

[10] Mairiza, D., Zowghi, D., & Nurmuliani, N. (2010). An investigation into the

notion of non-functional requirements.

https://doi.org/10.1145/1774088.1774153

[11] Tanenbaum, A. S., & Van Steen, M. (2023b). Distributed Systems (p. 15).

Maarten Van Steen.

[12] Tanenbaum, A. S., & Van Steen, M. (2023b). Distributed Systems (p. 21).

Maarten Van Steen.

[13] Dobbelaere, Philippe & Sheykh Esmaili, Kyumars. (2017). Kafka versus

RabbitMQ: A comparative study of two industry reference publish/subscribe

implementations: Industry Paper. 227-238. 10.1145/3093742.3093908.

[14] Hegde, R.G. (2020). Low Latency Message Brokers.

[15] [15] T, S. (2019, December 8). A study on Modern Messaging Systems- Kafka,

RabbitMQ and NATS Streaming. arXiv.org. https://arxiv.org/abs/1912.03715

[16] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas

Behind Reliable, Scalable, and Maintainable Systems. (p. 450) “O’Reilly Media, Inc.”

[17] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas

Behind Reliable, Scalable, and Maintainable Systems. (p. 449) “O’Reilly Media, Inc.”

[18] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas

Behind Reliable, Scalable, and Maintainable Systems. (p. 221) “O’Reilly Media, Inc.”

[19] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas

Behind Reliable, Scalable, and Maintainable Systems (p. 352, 367) “O’Reilly Media,

Inc.”

[20] Joshi, U. (n.d.). Quorum. martinfowler.com.

https://martinfowler.com/articles/patterns-of-distributed-systems/quorum.html last

accessed: 25.6.2023

[21] Chung, L., & Leite, J. C. S. D. P. (2009). On Non-Functional Requirements in

Software Engineering. In Springer eBooks (pp. 363–379). https://doi.org/10.1007/978-

3-642-02463-4_19

[22] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in

Software Engineering. International Series in Software Engineering, vol. 5, p. 476.

Springer, Heidelberg (1999)

APPENDIX

A1 – Table 2

A2 – Figure 1

A3 – Figure 2

8

TScIT 37, July 8, 2022, Enschede, The Netherlands Author

A4 – Figure 3

	Patrick Japink, University of Twente, The Netherlands
	ABSTRACT
	INTRODUCTION
	SECTION 1 – EVENT-STREAMING BROKERS
	1.1 Requirements
	1.2 Features

	SECTION 2 – PROPERTIES, ARCHITECTURE AND CONFIGURATION
	2.1 Properties and Architecture
	2.2 Configuration

	SECTION 3 – TRAITS AND SELECTION OF NON-FUNCTIONAL REQUIREMENTS
	3.1 Traits
	3.2 Selection

	SECTION 4 – DEFINITION AND EVALUATION
	4.1 Definition
	4.2 Evaluation
	REFERENCES
	APPENDIX

