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ABSTRACT 

Event-driven architectures are gaining industry support. The 

comparison of Event-streaming brokers which have been 

established and which have been newly developed are compared 

with respect to their architectural constraints defined by non-

functional requirements. Redis, Apache Kafka and RabbitMQ 

compared and representative architecture based on the use-case of 

inters-service communication is devised. The evaluation of non-

functional requirements is reviewed and applied to the three 

software solutions. 

 
Additional Key Words and Phrases: Non-functional requirements, Event-

driven architecture 

INTRODUCTION 

The adoption of microservice architecture and more specifically, 

event-driven microservice architectures that utilize real-time data to 

support business objectives, is increasing. Companies across 

industries have seen an increase in the presence of data sources and 

volume which dovetails with these developments. Message-

oriented middleware is an essential part of many distributed 

systems and microservice architectures. While traditional message 

queueing systems are common in microservice architectures, it is 

important to note that brokers with streaming capabilities play a 

distinct role in event-driven microservice architectures [3] [4]. 

Event-streaming brokers and traditional message queues generally 

differ in distinct aspects, for example, in that Event-streaming 

brokers offer non-destructive consumer semantics and that they 

offer a degree of backwards accessibility of past data. [5]. 

Generally, in Event-driven microservices, the role of Event-

streaming brokers is to receive events from producers, store them in 

logically separate streams and make them available to one or more 

consumers [6]. The key data structure at the heart of a stream can 

be described as an append-only log [7]. For large-scale systems, 

groups of Event-stream broker instances together receive, store and 

provide events in clusters to fulfill the necessary requirements [4]. 

The streams of logically separate topics, or append-only logs, can 

thus be partitioned across separate machines [8]. The focus of this 

research are Event-streaming solutions used to enable Event-driven 

microservice architectures. In the last 5 years, some of the most 

well established messaging solutions, Redis and RabbitMQ have 

added data streaming capabilities to their software. Other 

established event streaming solutions, like Apache Kafka, have 

seen continued adoption in a wide variety of industries. Along with 

the benefits of adopting new architectural styles, new challenges 

and trade-offs have to be navigated in order for the possible 

benefits of these new adaptations to be realized. Changes in 

business strategies, like the aforementioned trends, prompt further 

innovations in architectures, which bring about new developments 

and extensions of existing applications.  

 

 

The comparison of these three software products as Event-

streaming brokers represents a gap in the research, as a lot of the 

development related to this is fairly recent.  Redis, Apache Kafka 

and RabbitMQ are widely used software products, each with 

distinct features that make them applicable for different use-cases 

to varying degrees. 

 

This research aims to compare them by their intersecting quality as 

Event-streaming solutions, and to analyze the implications that their 

differences have for their non-functional requirements, in the 

context of Event-driven microservice architectures. The leading 

question would therefore be: How do Redis, Apache Kafka and 

RabbitMQ differ with respect to their architectural constraints 

defined by non-functional requirements, used to facilitate 

asynchronous inter-service communication in event-driven 

microservice architectures?  

 

This research aims to address this matter with the following 

research questions:                            

  

1) What are relevant non-functional requirements and features of 

Event-stream brokers used for asynchronous communication in 

microservice architectures? 

2) What are the different properties of the three Event-stream 

brokers and what is their appropriate architecture and configuration 

for this use-case? 

3)  What are important insights for the evaluation of non-functional 

requirements and which one's out of those collected should be 

analyzed? 

4) How do the three Event-broker solutions compare with respect to 

the selected non-functional requirements? 

  

The first research question will be answered in section one through 

a surveying of the relevant contemporary literature and research. 

Section two covers the second research question. A description and 

comparison of the three Event-streaming brokers properties will be 

based on their documentation. The architecture and configuration 

will be informed by the results in the first section in combination 

with the documentations. The third research question, answered in 

the third section, consists of a survey of the relevant research, as 

well as the content of the first section to select a subset of the non-

functional requirements. Section number four contains the answers 

to the fourth research question. The non-functional requirements 

elicited in research question three will be evaluated comparatively 

for the three Event-broker solutions, with support of the 

information in section two. 

  

This analysis will be conducted based on the open-source versions 

of these applications, as opposed to the commercially supported 

options. It will also be based on the out-of-the-box features 

provided by said open source versions and not take into direct 

account possible custom extensions.  
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SECTION 1 –  EVENT-STREAMING BROKERS 

 

1.1 Requirements 

 

For the elicitation of important non-functional requirements and the 

support of their analysis, materials from three related areas can be 

relied upon. Firstly, literature on distributed systems can be relied 

upon due to microservices being a subcategory of distributed 

systems. Furthermore, contemporary literature from industry 

professionals about Event-driven microservices are an appropriate 

source. Thirdly, due to their aforementioned similar use-case, we 

can rely on research that deals with the evaluation and comparison 

of message queues and publish/subscribe systems in order to gather 

insights. 

 

Relevant work was perfumed by Bellemare in “Building Event-

driven Microservices”. Descriptions of four essential requirements 

for Event-brokers, with a focus on large-scale system capabilities 

have been provided by Bellemare [6]. The features listed and their 

provided contextualization by Bellemare [6] are the following:  

 

Scalability - " Additional event broker instances can be added to 

increase the cluster’s production, consumption, and data storage 

capacity", 

 
Durability - " Event data is replicated between nodes. This permits 

a cluster of brokers to both preserve and continue serving data 

when a broker fails.",  

 

High Availability - "A cluster of event broker nodes enables clients 

to connect to other nodes in the case of a broker failure. This 

permits the clients to maintain full uptime.", 

 

High Performance - "Multiple broker nodes share the production 

and consumption load. In addition, each broker node must be 

highly performant to be able to handle hundreds of thousands of 

writes or reads per second." 
 
Four different papers that evaluate messaging systems based on a 

queue and publish/subscribe paradigm have been selected. Table 1 

shows a matrix of the included non-functional requirements per 

research paper. The term "performance" has been designated to 

include all papers which took the factors of "latency" and 

"throughput" into account. In some of the papers by the authors 

listed in table 1, this has been noted under "efficiency", in others as 

separate terms. The categories of "durability" mentioned by 

Bellemare [6] and the of "reliability" listed by Fu, Yu and Zhang 

[9] both refer to the same aspects, the usage of multiple nodes in a 

cluster and the replication of data between them in order to manage 

the failure of single nodes without interruption of the service as a 

whole. The term "reliability" will be used to represent both. 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1. Comparison of research papers 

 

 

The overlapping requirements named by Bellemare and the selected 

research papers are Scalability, Availability, Performance and 

Durability. The remaining requirements named by Zhang, Fu and 

Yu, are usability defined by "easiness of installation", 

"completeness of documentation" and "management & monitoring 

functionality" and compatibility [9]. The aspect of compatibility 

focuses on the connection of message queues to different types of 

long-term storage, which is not applicable to this context. 

Mairiza, Zowghi, and Nurmuliani performed research on which 

non-functional requirements are most commonly listed in certain 

domains [10], they named extensibility as one requirement 

spanning all system and application domains. Extensibility is also 

covered as a design goal of distributed systems in the work of 

Tanenbaum, under the umbrella term of "openness" [11]. The only 

non-functional requirement not included so far, of the five most 

common, listed by [10] and also by [12] is that of security. The 

survey of research and literature thus results in the following list of 

preliminary non-functional requirements: 

 

 

1) Scalability 

2) Availability 

3) Performance  

4) Reliability 

5) Usability  

6) Extensibility 

7) Security   

 

 

1.2 Features 

 

In the domain of messaging systems, qualities of service (QOS), 

describe conditions which can apply to the delivery of messages. In 

[13], [9], [14] and [15], the relevant QOS of "delivery guarantees" 

has been named. This refers to the guarantees regarding the number 

of times the same message will be delivered to the same consumer. 

The delivery guarantees referred to are at-least-once, at-most-once 

and exactly-once. The two other QOS listed are that of message 

persistence and message ordering. The differing feature 
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requirements of more traditional message brokers make these less 

relevant categories for the evaluation of Event-streaming brokers. 

The persistence of events is an expected requirement, while the 

ordering of events may only differ when stored across different 

partitions, depending on the use-case. Bellemare further states in 

his work on Event-streaming brokers as important features of their 

underlying storage facilities: Partitioning, Strict ordering, Indexing, 

Infinite retention and Replayability [6].  

 

Due to limitations of storage capacity, assuming continuous 

production of events only a subset of all historical data can be 

stored locally [16]. The rule-sets which dictate which data to 

remove and when are referred to as the retention policy. Since 

storage of events is an assumed feature, it is also an expected 

quality of the system. Publisher acknowledgements and Consumer 

acknowledgements are possible features which allow the publishing 

and consumption of events to be confirmed. Its implementation has 

implications for the consistency of data and message delivery 

guarantees. The position in the respective partition which 

consumers have last accessed can be stored by consumers or by the 

Event-streaming system [17].  As in the case of databases, multiple 

distinct operations, such as the adding of multiple events, can be 

viewed as a single operation, semantically. Just as with databases, 

such a conditional grouping can be named a transaction and 

represents another possible feature [18]. 

 

SECTION 2 – PROPERTIES, ARCHITECTURE AND 

CONFIGURATION 

 

2.1 Properties and Architecture  

 

Redis, Apache Kafka and RabbitMQ are software solutions with 

differing and overlapping capabilities. Table 2 in the appendix A1 

contains a general comparison of the products properties and 

streaming related features. Redis is a multifunctional, in-memory 

data store application with optional extended storage settings and 

different data-structures. Event-streaming capabilities were added 

starting with version 5.0. Apache Kafka is a high performance 

Event-streaming and Event-stream processing platform, with an 

extensive ecosystem. RabbitMQ is a feature-rich messaging 

application which supports a multitude of protocols. Event-

streaming functionalities, including an optional new binary 

streaming protocol have been in development, starting with version 

3.9. 

 

Section one elaborated on common requirements and some of the 

architectural practices related to them. To adequately compare the 

different Event-streaming solutions with one another, the 

appropriate architecture for each needs to be determined. This 

architecture must be chosen according to the overall use-case of 

Event-driven microservice communication, based on the elicited 

requirements, while providing the needed features, across all three 

Event-streaming brokers.  

 

The requirements are based on the assumption of a large-scale, 

distributed context. This is in line with the requirement of 

performance. Different requirements are positively related, 

meaning that certain architectural decisions benefit them similarly. 

Scalability, Availability, Durability and Performance all can all 

increase in a clustered, distributed architecture. This comes with the 

increased complexity of maintaining other requirements, such as 

data consistency, traceability, maintainability and others.  

Across multiple sources, the concepts of clustering, scalable design, 

data replication across nodes and the possibility for automatic 

failovers and recovery from failures have been mentioned [4] [6] 

[9]. The chosen architecture will be a cluster made up of three main 

nodes. An uneven number of nodes is advantageous for certain 

leader election methods, because it helps to prevent split-brain 

scenarios [19] during which multiple nodes assume the leader role, 

leading to data inconsistencies. When configuring each of the three 

applications, the aim is to cater to the requirements and features 

elicited in section one. Because of the differing properties of the 

three Event-streaming broker solutions, the optimal and possible 

adjustments are distinct for each. 

 

2.2 Configuration 

 

This section describes the configuration appropriate for all three 

software products, such that they converge to fulfill the 

architectural requirement in a similar fashion. 

 
2.2.1 Redis 

 

In the Redis architecture, depicted in Figure 1 of the appendix A2, 

data is replicated from master node to slave nodes. Each of the 

three master nodes will have two replica nodes. This results in an 

odd number of nodes which results in the option of an quorum [20] 

to aid in prevent split-brain conditions during network partitions to 

avoid data inconsistencies. Because the first line of storage for 

Redis is random-access memory, to fulfill the requirements, 

durability options need to be enabled. This involves setting append 

only file (AOF) and RDB snapshots, with a strong fsync policy/. 

These settings result in a lower performance but make it so that 

Redis fulfills the necessary durability requirements. 

 

2.2.2 RabbitMQ 

 

The RabbitMQ architecture is depicted in Figure 2 of the appendix 

A3. To take advantage of the higher throughput and all stream 

related features such as offset tracking and publisher message 

deduplication, the stream plugin must be activated. Recovery mode 

should be set as "autoheal" to enable the automated failover during 

network partitions. 

 

2.2.3 Kafka  

 

Figure 3 of the appendix A4 shows the Apache Kafka architecture. 

The publisher acknowledgement level is set to the highest level. 

This causes events to only be acknowledged once they have been 

replicated to a majority of nodes present, resulting in their full 

durability in case of a complete failure of one node.  

 

 

SECTION 3 –  TRAITS AND SELECTION OF NON-

FUNCTIONAL REQUIREMENTS  

 

3.1 Traits 
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This section described the examination of relevant research papers 

with the goal of eliciting important factors that can provide 

guidance for the definition and evaluation of non-functional 

requirements. 

 

The research conducted by Chung and Leite [21], as well as the 

research by Mairiza, Zowghi and Nurmuliani [10] provides 

information to further guide our evaluation of non-functional 

requirements. [21] and [10] compare and contrast various 

conceptualizations of non-functional requirements. Chiefly, the 

appropriate working definition of a non-functional requirement is 

that of any architectural constraint or quality that judges a system 

based on a certain condition.  What is agreed upon by many authors 

is that there is no clear consensus when it comes to their scope, 

definition, elicitation, verification and the nomenclature used to 

describe them [10]. A consequence of this stated in [10] is that for 

practical purposes, non-functional requirements need to be defined 

with respect to the use-case. The NFR framework [22] and others 

discussed [10] propose a goal-oriented definition, appropriate for 

the system at hand. The authors of [10] describe broadly that non-

functional requirements can be transformed from abstract 

requirements "into more concrete terms and detail" with the usage 

of "means, methods and operations". Another concept discussed in 

the work of [21] which was included in several classification 

schemes is that of "interdependencies" among non-functional 

requirements. Expressed more concretely, in relation to the 

framework in [22], this is further conceptualized as positive and 

negative correlations between non-functional requirements [21]. 

The analysis of [10] also concluded that certain non-functional 

requirements are defined as an attribute of other non-functional 

requirements. They provide the example of the non-functional 

requirement availability being an attribute belonging to the non-

functional requirement of security. 

 
Thus the evaluation with respect to non-functional requirements 

should take into account two aspects. Firstly, the definition related 

to the use-case, meaning that the non-functional requirement should 

be operationalized by stating goals that apply to the context. 

Secondly, the positive and negative relations of non-functional 

requirements amongst themselves should be taken into account. 

 

3.2 Selection 

 

For the evaluation, we will focus on a non-functional requirement. 

Due to its relevance in [22] [9] and [6], as well as its relation to the 

distributed architecture of using Event-streaming brokers in large-

scale systems the selected non-functional requirement will be that 

of reliability. 

 

SECTION 4 –  DEFINITION AND EVALUATION 

 

4.1 Definition  

 
In the analysis of [10] availability is listed as an attribute of 

reliability. This interaction thus relates two of the requirements 

from section one.  Another attribute listed in [10] is that of fault 

tolerance. This aligns with the descriptions of reliability given in 

[6] and [9]. In the use-case of Event-streaming broker in the given 

architecture reliability can thus be operationalized with the 

following goals: 

 

-> the continued availability of service in case of failure defined by 

one or more unavailable nodes 

 

-> the consistency and durability of data in case of failure defined 

by one or more unavailable nodes 

 

-> the efficient failover and/or recovery in case of failure defined 

by one or more unavailable nodes 

 

-> the guarantees above, additionally in case of failure defined by 

partitions in the network 

 

 

4.2 Evaluation 

 

This section examines the three Event-streaming brokers with 

respect to the qualities elicited in the previous section. 

 

4.2.1 Redis 

 

Redis uses a full-mesh cluster, where in a cluster on N nodes, each 

node is connected to N-1 nodes via TCP. Nodes utilize a gossip 

protocol to determine their mutual availability. Failover involves 

the election of new master nodes. In Redis, this is handled by 

master and replica nodes together in a majority vote fashion. After a 

node is found to be unreachable for a majority of the nodes, the 

master node no longer receives writes. To replace it, one of its 

replica nodes is promoted to be a master. In case of a network 

partition, only the majority portion which is connected will be 

available after a short time-out period. Thus Redis can only handle 

minor partitions before becoming unavailable. To be able to form a 

quorum and to help avoid a data inconsistency caused by a split 

brain condition, it is recommended to have an uneven number of 

nodes in a cluster. For three master nodes, two replicas each result 

in a total of nine nodes. Redis is single-threaded and therefore 

cannot benefit considerably in throughput by scaling vertically, 

which is why algorithmic sharding is used to distribute data across 

different nodes in the cluster, using hashing. This enables the 

parallel processing of operations across the cluster. Shards and their 

number can be redistributed when the number of nodes in the 

cluster changes. Data from a shard can be replicated to one or more 

replica instances in the cluster. Replication of data happens 

asynchronously between master nodes and their dedicated replicas. 

Because replication occurs asynchronously, writes are 

acknowledged to publishers before they are shared with replica 

instances. This leads to two possible data-loss scenarios. Firstly, a 

master node can acknowledge a write before it is replicated further 

and then fail. Secondly, a master node fails and gets marked as 

unreachable but then becomes reachable and receives a write before 

being demoted to a replica itself by a new master. From this follows 

that Redis cannot provide strong consistency of the data. 

 

 

4.2.2 RabbitMQ 

 

In the cluster, for each stream exists a leader node to which writes 

are directed. The remaining nodes receive replicates of the data and 
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serve read requests. This entails that a node can be a leader or 

replica depending on the distinct stream in question. 

To tolerate network partitions, a quorum of nodes must be 

reachable in the cluster. For a three node cluster, this results in 

RabbitMQ being able to tolerate one complete node failure, while 

retaining availability. When a new stream is created, the leader 

node for that  stream will be the node with the least leader roles. In 

case of the failure of a node, a replicate node will become the leader 

for the stream. When a node is reachable, it can rejoin and continue 

as a replica node for the stream. The acknowledgement of publisher 

messages in RabbitMQ occurs when the data has been replicated to 

a quorum of nodes in the cluster. Once received, data is persisted to 

disk and not kept in memory, however, data is not written to disk 

synchronously using fsync. Instead RabbitMQ relies on the 

operating system to schedule the writing on the operating system 

page cache. Thus it is possible that data is lost during a node 

failure, however, if another node which the data has been replicated 

to has not failed, the data will be replicated again. Should the node 

fail before the publisher receives an acknowledgement, then the 

aforementioned guarantees don't apply 

 

 

4.2.3 Kafka 

 

Certain aspects of clusters in Kafka are in part managed by an 

application called Zookeeper, such as naming, but in general the 

nodes, referred to as brokers, handle most of the functionality. Data 

in Kafka is replicated across all brokers. Publisher message 

acknowledgements, as configured, only confirm messages to 

publishers once they have been replicated across all three nodes. 

Through replication of data along with extensive publisher 

acknowledgements, Kafka is able guarantee that messages will not 

be lost as long as there is one node alive with a replica. Streams are 

not fully contained in any one node, but rather are partitioned in 

ordered segments across all nodes. One partition node is always 

considered the leader. All reads and writes occur through the leader 

for each specific stream topic. There are two conditions nodes must 

fulfill to be considered functional. Firstly, it should respond to the 

heartbeat requests managed by Zookeeper to signal its aliveness. 

Secondly, it should successfully receive writes from leader nodes in 

the cluster. Leader nodes maintain a list of functional replicas. 

Nodes that fulfill their functioning criteria are called "in-sync". A 

controller node is used to manage the registration of active brokers 

in the cluster and removes nodes which are not in-sync. Apache 

Kafka does not rely on a majority vote method to elect new leader 

nodes, instead all in-sync nodes are eligible to become leaders. This 

is possible due to the requirement of writes across all replication 

nodes, which guarantees they are not behind. In case that a node 

fails, Kafka does not require it to be consistent in order to rejoin. 

Before a reachable node can join the cluster again, it is required to 

become in-sync by default. This still implies that Kafka is not 

immune to failure due to a too high amount of network partitions. 

While Kafka guarantees data integrity with at-least one replica node 

being in-sync, this does not hold when all nodes become 

unavailable. The default strategy implemented in Kafka here is to 

wait until the first replica node that was listed as in-sync becomes 

reachable again and to promote it to the leader. This causes the 

system to be unavailable until this occurs. The consistency of the 

data is dependent on the state of the new leader, if the node incurred 

a form of disk error, the data is possibly inconsistent.  

 

CONCLUSION 

The three Event-streaming brokers Redis, Apache Kafka and 

RabbitMQ all employ different strategies to ensure reliability. They 

differ most in the degree of certainty they provide with regard to 

publisher acknowledgements with Apache Kafka providing the 

highest guarantees, followed by RabbitMQ and then Redis. Similar 

among all of them is that a large enough amount of network 

partition or node failures will lead to a sustained loss of availability. 

Apache Kafka and RabbitMQ provide a selection of settings to 

determine the degree of publisher acknowledgement and setting 

with regards to failover procedures which enable users to prioritize 

availability or partition consistency, while Redis is strongly focused 

on high availability, providing disaster recovery options rather than 

consistency. The choice of the in-sync set approach for leader 

election used by Apache Kafka allows for the loss of one more one 

in a three node cluster when compared to the majority vote 

approach used by Redis and RabbitMQ. 

 

FURTHER RESEARCH AND THEATS TO VALIDITY  

The research carried out in this paper is focused on the single 

requirement of reliability, in a general manner. Different cases of 

failure (hardware, software, malicious intent) should be taken into 

consideration. More requirements and their interrelation with 

reliability should be examined to get a clearer view of the design 

implications of the respective applications. The conclusions in this 

paper have been drawn based on the information found in the 

official documentation, this implies that a more thorough 

verification of the claims made therein could lead to different 

results. Guarantees and behaviors might deviate from 

documentation based on bugs and implementation errors.  

 

REFERENCES 
 

[1] Newman, S. (2021). In Building microservices: Designing fine-grained systems (p. 

19). essay, Sebastopol, CA: O’Reilly Media. 

 

[2] Rocha, H. a. O. (2022). Practical Event-Driven Microservices Architecture: 

Building Sustainable and Highly Scalable Event-Driven Microservices (p. 94) 

https://link.springer.com/content/pdf/10.1007/978-1-4842-7468-2.pdf 

 

[3] Newman, S. (2021). In Building microservices: Designing fine-grained systems (p. 

48). essay, Sebastopol, CA: O’Reilly Media. 

  

[4] Bellemare, A. (2020). Building Event-Driven Microservices (p. 28). O’Reilly 

Media 

[5] Bellemare, A. (2020). Building Event-Driven Microservices (p. 31,32). O’Reilly 

Media. 

 

[6] Bellemare, A. (2020). Building Event-Driven Microservices (p. 28,29). O’Reilly 

Media. 

 

[7] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas 

Behind Reliable, Scalable, and Maintainable Systems. (446) “O’Reilly Media, Inc.” 

 

[8] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas 

Behind Reliable, Scalable, and Maintainable Systems. (447) “O’Reilly Media, Inc.” 

 

[9] Fu, Guo & Zhang, Yanfeng & Yu, Ge. (2020). A Fair Comparison of Message 

Queuing Systems. IEEE Access. PP. 1-1. 10.1109/ACCESS.2020.3046503.  



Bachelor’s Student Conference Proceedings Paper in LaTeX Template  TScIT 37, July 8, 2022, Enschede, The Netherlands 

7 

 

[10] Mairiza, D., Zowghi, D., & Nurmuliani, N. (2010). An investigation into the 

notion of non-functional requirements.  

https://doi.org/10.1145/1774088.1774153 

 

[11] Tanenbaum, A. S., & Van Steen, M. (2023b). Distributed Systems (p. 15). 

Maarten Van Steen. 

 

[12] Tanenbaum, A. S., & Van Steen, M. (2023b). Distributed Systems (p. 21). 

Maarten Van Steen. 

 

[13] Dobbelaere, Philippe & Sheykh Esmaili, Kyumars. (2017). Kafka versus 

RabbitMQ: A comparative study of two industry reference publish/subscribe 

implementations: Industry Paper. 227-238. 10.1145/3093742.3093908.  

 

[14] Hegde, R.G. (2020). Low Latency Message Brokers. 

[15] [15] T, S. (2019, December 8). A study on Modern Messaging Systems- Kafka, 

RabbitMQ and NATS Streaming. arXiv.org. https://arxiv.org/abs/1912.03715 

 

[16] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas 

Behind Reliable, Scalable, and Maintainable Systems. (p. 450) “O’Reilly Media, Inc.” 

 

[17] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas 

Behind Reliable, Scalable, and Maintainable Systems. (p. 449) “O’Reilly Media, Inc.” 

 

[18] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas 

Behind Reliable, Scalable, and Maintainable Systems. (p. 221) “O’Reilly Media, Inc.” 

 

[19] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas 

Behind Reliable, Scalable, and Maintainable Systems (p. 352, 367) “O’Reilly Media, 

Inc.” 

 

[20] Joshi, U. (n.d.). Quorum. martinfowler.com. 

https://martinfowler.com/articles/patterns-of-distributed-systems/quorum.html last 

accessed: 25.6.2023 

 

[21] Chung, L., & Leite, J. C. S. D. P. (2009). On Non-Functional Requirements in 

Software Engineering. In Springer eBooks (pp. 363–379). https://doi.org/10.1007/978-

3-642-02463-4_19 

 

[22] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in 

Software Engineering. International Series in Software Engineering, vol. 5, p. 476. 

Springer, Heidelberg (1999) 

 

 
 

APPENDIX 

 

A1 – Table 2 
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A4 – Figure 3 
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