
Heuristics of the graph covering problem
JOSEPH VICTOR WIJNAND VORAGE, University of Twente, The Netherlands

ABSTRACT
The graph covering problem is a lesser known problem in graph theory. It
asks whether there is a neighborhood preserving mapping from the vertices
of a graph𝐺 to a graph𝐻 . It has many similarities to the graph isomorphism
problem and in some ways can be viewed as an extension to it. Research has
been done into the complexity of the problem for several different classes
of fixed based graph 𝐻 . Additionally, the graph covering problem has been
proven to be NP-complete for free base graph 𝐻 . However, this research is
spread amongst different papers and is expressed purely in mathematical
form, without example code or pseudocode given to solve the problem. This
paper shows a group of techniques which have been collected from existing
research or created to solve the problem through a computer algorithm.
Additionally, the results of this algorithm will be presented on a range of
differing base graph structures to gain insight on its efficiency for these
differing structures. The result is a working algorithm which solves the
graph covering problem for any two input graphs𝐺 and 𝐻 . The research
also includes considerations for disconnected base and covering graphs
which serves as an extension to what is found in current research. The
benchmarking results show that for a great many cases of graphs, the graph
covering problem can be solved in polynomial time even for slightly more
symmetric structures, though graphs which are currently known to be
difficult to solve in the graph isomorphism problem are generally difficult
when extended to the graph covering problem. This research therefore shows
that the mathematical research which has been done into the graph covering
problem can be used into a working computer algorithm to solve it and
serves as a practical confirmation of the theory.

Additional Key Words and Phrases: graph theory, graph covering, algorithm,
complexity

ACM Reference Format:
Joseph Victor Wijnand Vorage. 2023. Heuristics of the graph covering prob-
lem. 1, 1 (July 2023), 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The graph covering problem is a problem which has already been
around in the field of graph theory for quite some time. N. Biggs
covered the existence and some aspects of this problem [2]. As it
has been researched, it takes a fixed graph 𝐻 and admits a given
graph 𝐺 and asks whether there exists a neighborhood preserving
mapping from the vertices of 𝐻 onto the vertices of 𝐺 . A covering
graph of a connected graph is sometimes referred to as a "lift". The
problem is known to be NP-complete for some fixed 𝐻 [4]. For such
base graphs graphs, the computation time scales exponentially with
the size of the covering graph. Since the graph covering problem is
NP-complete for these fixed 𝐻 , the problem as it is researched here,
admitting free 𝐻 and free 𝐺 is therefore NP-complete as well.

Author’s address: Joseph Victor Wijnand Vorage, j.v.w.vorage@studente.utwente.nl,
University of Twente, P.O. Box 217, Enschede, The Netherlands, 7500AE.

© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

That being said, the complexity of the problem depends strongly
on the structure of the base graph. Though the problem as a whole
has been proven to be NP-complete, there exist structures of the
base graph 𝐻 such that the problem can be solved polynomially [4].
These proofs do not however come accompanied with a working
algorithm for solving the problem.
This paper puts forth an overview of heuristics for solving the

graph covering problem from existing research. Along with this,
an algorithm for solving the graph covering problem with these
heuristics included will be given together with the results of its
performance on varying classes of graphs.

With this, this research attempts to create a practical implementa-
tion of theoretical research which has been done into the complexity
of the graph covering problem. Since it is impossible to test such an
algorithm on every possible graph, considerations are made as to
which classes of graphs to include. Additionally, a benchmarking
set used to test algorithms for the graph automorphism problem is
used for this algorithm. Some well-known graph structures such
as trees are included, as well as many graph structures which are
known in the field of graph isomorphism to be difficult to solve.
Additionally, an algorithm is included to produce random graphs in
order to test the algorithm on various cases.

2 NOTATION
This paper makes use of shorthand notations for different concepts
related to the graph covering problem. The base graph is generally
referred to as 𝐻 , and the covering graph is referred to as 𝐺 . The set
of vertices of any given graph 𝐺 is written as 𝑉 (𝐺). The number of
vertices in a given graph, |𝑉 (𝐺) | will be referred to as the ’order’
of the graph and denoted 𝑂 (𝐺). Similarly, the set of edges of any
given graph𝐺 is written as 𝐸 (𝐺) and the number of edges contained
in this set |𝐸 (𝐺) | is referred to as the ’size’ of the graph, denoted
𝑆 (𝐺). The ’neighborhood’ of a given vertex 𝑣 is denoted as 𝑁 (𝑣)
and denotes all vertices connected directly to this vertex through
an edge. When denoting the neighborhood of a vertex in a specific
graph𝐺 , it is denoted as 𝑁𝐺 (𝑣). The size of the neighborhood 𝑁 (𝑣)
will be referred to as the ’degree’ of that vertex and is denoted as 𝑑𝑣 .

Definition 1. The graph covering problem asks whether there
exists a neighborhood preserving bijection 𝑓 of the vertices𝑉 (𝐺) to the
vertices 𝑉 (𝐻), such that for every 𝑣 ∈ 𝑉 (𝐺), 𝑓 (𝑁𝐺 (𝑣)) = 𝑁𝐻 (𝑓 (𝑣)).

Problem 1. Given two graphs 𝐺 and 𝐻 , does there exist a neigh-
borhood preserving mapping 𝑓 of the vertices 𝑉 (𝐺) to the vertices
𝑉 (𝐻), such that for every 𝑣 ∈ 𝑉 (𝐺), 𝑓 (𝑁𝐺 (𝑣)) = 𝑁𝐻 (𝑓 (𝑣)). Produce
a mapping if it exists.

3 PARTITION REFINEMENT

3.1 Refinement
Degree partition refinement can be used to help solve the graph
covering problem more efficiently, and is used similarly for solving
the graph isomorphism problem[6]. The blocks of a partition will

, Vol. 1, No. 1, Article . Publication date: July 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Joseph Victor Wijnand Vorage

be denoted as 𝐵1, ...𝐵𝑛 , while the block a specific vertex 𝑣 belongs
to will be denoted as 𝐵(𝑣)

Definition 2. The degree partition of a graph is the partition of
the graph’s vertices into the minimum number of blocks 𝐵1, ..., 𝐵𝑛 for
which there are constants 𝑟𝑖 𝑗 such that for each 𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛) each
vertex 𝑣 ∈ 𝐵𝑖 is adjacent to exactly 𝑟𝑖 𝑗 vertices in 𝐵 𝑗 [4].

Theorem 1. If G covers H, and G is connected, then for each
𝑣1, 𝑣2𝑖𝑛𝑉 (𝐺), one has 𝐵𝐺 (𝑣1) = 𝐵𝐺 (𝑣2) if and only if 𝐵𝐻 (𝑓 (𝑣1)) =
𝐵𝐻 (𝑓 (𝑣2)).

In a covering projection between two connected graphs, each
vertex 𝑣 ∈ 𝑉 (𝐺) must map to 𝑛 vertices in 𝑉 (𝐻), where 𝑛 =

𝑂 (𝐺)/𝑂 (𝐻). This means that each block in the partition set of 𝐺
must be of size 𝑛𝑚, where𝑚 is equal to the size of the corresponding
partition block in 𝐻 .
An important conclusion to draw from this is that if any block

of 𝐺 is not of size 𝑛𝑚, then we can simply conclude that 𝐺 is in
fact not a covering of 𝐻 . This means that if we can compute the
stable partition of both graphs, we can compare the block sizes of
each graph. This potentially rules out the possibility of a covering
altogether. If it does not rule out the possibility, it often shrinks
down the number of possibilities for a covering which needs to be
checked as described in the next section.

One can reach the degree partition through a process of partition
refinement. By initially colouring each vertex according to its degree.
After this, the partition will be further refined based on each vertex
and its neighbours’ partition groups.
An algorithm for efficient partition refining exists created by

John Hopcroft [1] which has a worst case complexity of𝑂 (𝑛𝑠 log𝑛),
where 𝑛 is the order of the graph and 𝑠 is the size of the graph,
for providing the degree partition of a graph. Hopcroft’s algorithm
is used to establish the degree partitions of the base and covering
graphs in this research.

Fig. 1. Stable partition for an example graph

3.2 Finding a solution
The most naive way of solving the problem is to simply generate
all possible covering projections and test each of them individually.
Initially one could speculate that each vertex in 𝐺 could possibly
map to any vertex in 𝐻 . A simple restriction one could then apply
is limiting each 𝑣 ∈ 𝑉 (𝐺) to only possibly map to a 𝑣 ′ ∈ 𝑉 (𝐻) such
that 𝑑 (𝑣) = 𝑑 (𝑣 ′).

What degree partitioning offers us is a stronger restriction. Any
𝑣 ∈ 𝑉 (𝐺) can only possibly map to any 𝑣 ′ ∈ 𝑉 (𝐻) if 𝑣 and 𝑣 ′ are
in corresponding partition blocks. Showing that 𝐺 and 𝐻 have a

matching stable partition is not enough to prove that a covering
projection exists. It does, however, shrink down the problem sig-
nificantly as each vertex 𝑣 ∈ 𝐵𝐺𝑖 must map to one of the vertices
𝑣 ∈ 𝐵𝐻𝑖 which means a significantly lower amount of vertices need
to be considered as candidates.
Unfortunately, for some specific classes of graphs, such as con-

nected graphs of k-regular graphs, the partition refinement algo-
rithm does not shrink the problem down. In the specific case of
regular graphs, the partition is stable after the first iteration of
degree colouring.

Fig. 2. The degree partition of a 3-regular graph of order 8

In the case of more symmetric graphs, there possibly exist other
heuristics depending on the base graph’s structure which may help
solve the problem. But if no such options are available, the next
step to resort to is simply trying out all valid options to see if one
of them results in a valid covering. The strongest factor for the
size of the labeling options depends primarily on the sizes of the
partitions in the base graph and secondarily on the order factor
𝑛 between the base graph and the covering graph. For each block
𝐵′1, ..., 𝐵

′
𝑛 ∈ 𝐵(𝐺) and corresponding 𝐵1, ..., 𝐵𝑛 ∈ 𝐵(𝐻), there are

(𝑚𝑛)!
(𝑛!)𝑚 options for mapping the vertices of the block in 𝐻 to the
vertices of the block in𝐺 with. In the caseswhere the size of the block
in the base graph is equal to 1, there is only one possible mapping
from the block of the covering graph to that of the base graph. This
is why the partitioning is so powerful for base graphs which are
not very symmetrical. However, for large block sizes, the problem
insurmountable as the sizes of these partitions grow, especially
when considering each other partition has labeling options which
scale in a similar manner. However, in many cases, the problem is
not as sizable as described here. After each step of choosing some
𝑚 vertices of a block 𝐵′

𝑖
to map to some vertex of 𝐵𝑖 . We can create

new partition blocks 𝐵′
𝑛+1 containing the 𝑚 vertices in 𝐺 and a

new partition block 𝐵𝑛+1 containing the vertex mapped to in 𝐻 .
With these new partition blocks created, we can run Hopcroft’s
algorithm to refine the partition according to this choice. In many
cases, this quickly causes a choice to be written off as the new
partition refinement does not align for the two graphs, or it may at
least further refine the partition so that fewer options remain for
testing this particular path. On top of this, when choosing which
vertices to assign to some new partition, we can choose the smallest
partition set to choose from. This has the least possible options for
this particular set while possibly allowing the options to become
significantly smaller through running Hopcroft’s algorithm after an
assignment has been tried. Thesemethods work to significantly limit
the bruteforcing work required on many different graph structures.

, Vol. 1, No. 1, Article . Publication date: July 2023.

Heuristics of the graph covering problem • 3

This method however still faces issues when it comes to highly
symmetrical graph structures such as for example regular graphs
as seen in figure 2. For these structures the partition groups are
generally very large and as such this method of bruteforcing grows
extremely quickly.

4 HEURISTICS

4.1 Trees
If the base graph for the graph covering problem is a tree, the
problem can be solved in polynomial time.

Theorem 2. If 𝐻 is a tree, 𝐺 is a connected graph, and there exists
a covering projection 𝑓 from G, to H, then 𝐺 must be isomorphic to
𝐻 [4].

We can use this fact, together with the fact that the graph isomor-
phism problem is solvable in polynomial time for trees[3] to show
that the graph covering problem can be similarly solved for trees in
polynomial time.
We can check if a given graph 𝐺 is a tree in two steps. First, we

determine whether the graph is connected by using for example
breadth-first search from any given vertex as the starting point in
the graph. Once we establish that the graph is connected, we can
simply check whether 𝑆 (𝐺) = 𝑂 (𝐺) − 1. If both of these are true,
we know that the given graph is a tree. Both of these steps can be
performed in polynomial time.
Once we have established that both 𝐻 and 𝐺 are trees, we can

simply test whether the trees are isomorphic by first finding the
middle point of the tree by pruning the leaves iteratively, and then
comparing the individual branches of the tree.

4.2 Unicyclic base graphs
Unicyclic graphs are a simple graph structure which expand upon
the tree structure slightly. A unicyclic graph is any connected graph
with 𝑂 (𝐺) = 𝑆 (𝐺), meaning the number of edges and vertices are
equal. A unicyclic graph can structurally be viewed as a single
cycle structure with each vertex of the cycle having zero or more
tree structures attached to it. One can construct a unicyclic graph
by simply adding a single edge to a tree structured graph. With
the size factor between the base graph and covering graph 𝑛 =

𝑂 (𝐺)/𝑂 (𝐻), any covering graph of such a base graph contains a
cycle with order equal to that of the base graph’s cycle multiplied
by 𝑛. Additionally, the covering graph must contain 𝑛 copies of each
of the trees attached to the base graph’s cycle.

Theorem 3. The graph covering problem can be solved in polyno-
mial time if base graph 𝐻 is unicyclic [4].

Establishing whether a given graph 𝐺 is unicyclic can simply
be done by first checking for connectedness through breadth-first
search and then verifying that 𝑆 (𝐺) = 𝑂 (𝐺).
Once established, the problem can be solved as follows. First,

seperate the trees and the cycle for both 𝐻 and the covering 𝐺 .
This can be done by iteratively removing each vertex of a graph if
its degree is equal to one. Repeatedly doing so prunes a unicyclic
graph down to its cycle in polynomial time. Once the cycle has
been obtained, the trees can be identified by taking the original

graph, removing the cycle, and identifying the disjoint trees through
breadth-first search.
Once the trees and cycle have been separated, verify that the

size of the cycles in 𝐻 and 𝐺 match the ratio 𝑛. After this, establish
the isomorphisms between the trees of 𝐻 and the trees of 𝐺 using
the procedure described in the previous section. If any of the trees
in 𝐺 are not isomorphic to all the trees in 𝐻 , then there exists no
covering projection. If there exist isomorphisms for each tree in 𝐺 ,
establish whether the trees are connected at corresponding locations
in both the base graph in the covering graph. If this is the case, it
is established that graph 𝐺 covers graph 𝐻 . Otherwise, there exists
no covering projection.

4.3 Reduction to 2-satisfiability
Based on the result of the degree partition, some shortcuts can
be possible. Specifically, if each block of the degree partition of
𝐻 contains at most two vertices, the problem can be transformed
into the 2-satisfiability problem in polynomial time. The resulting
2-satisfiability problem can then be solved in polynomial time to
produce a solution.

Theorem 4. If, for a given base graph 𝐻 , �𝑣1, 𝑣2, 𝑣3 ∈ 𝑉 (𝐻) such
that 𝐵𝐻 (𝑣1) = 𝐵𝐻 (𝑣2) = 𝐵𝐻 (𝑣3), then the graph covering problem is
solvable in polynomial time.[4]

This transformation is realised by transforming each connection
between partition sets within the graph into a decision of assigning
vertices a value of true or false.

For cover graph𝐺 , with degree partition blocks 𝐵′1, ...𝐵
′
𝑛 and base

graph 𝐻 , with degree partition blocks 𝐵1, ...𝐵𝑛 , the 2-satisfiability
problem is constructed as follows.

First, label the vertices of each block 𝐵1, ..., 𝐵𝑛 with a true or false
value. If the block contains only one vertex, label it true. Otherwise,
if the block contains two vertices, label the first 𝑇 and the second
𝐹 . Then construct the 2-satisfiability for 𝐺 . The 2-sat problem is
constructed based on whether a vertex in 𝐺 should map to the true
or false node in the base graph.

Rules are constructed for each of the vertices in 𝐺 based on their
connections to other blocks as well as the way those corresponding
blocks connect in the base graphs [4].

Once the problem has been reduced to the 2-satisfiability problem
it can be solved in polynomial time. And since the reduction is
in polynomial time as well, this means that for these graphs the
problem as a whole can be solved polynomially.

4.4 Disconnected graphs
In the previous sections, this paper has covered cases for connected
𝐻 and connected 𝐺 . In order to solve the graph covering problem
for disconnected 𝐻 or disconnected 𝐺 , additional considerations
must be made. First considering disconnected base graph 𝐻 with
connected subgraphs 𝐻1, ..., 𝐻𝑛 and connected covering graph 𝐺 .
The graph covering problem is polynomially solvable for discon-
nected 𝐻 if and only if the problem is polynomially solvable for
each disjoint subgraph of 𝐻 [4].

, Vol. 1, No. 1, Article . Publication date: July 2023.

4 • Joseph Victor Wijnand Vorage

Theorem 5. For disconnected base graph𝐻 with the set of separated
disjoint subgraphs 𝐻1, ..., 𝐻𝑛 denoted 𝐶 (𝐻) and connected covering
graph 𝐺 . (∃𝐻𝑖 ∈ 𝐶 (𝐻)) (𝐺 covers 𝐻𝑖) =⇒ 𝐺 covers 𝐻 .

This is not found elsewhere in the literature. The mathematical
proof for this theorem falls outside the scope of this research. There
may exist covering projections from 𝐺 to multiple 𝐻𝑖 ∈ 𝐶 (𝐻) but
in order for 𝐺 to cover 𝐻 there need only be a single one. Notably,
for such a disconnected graph, each 𝑣1 ∈ 𝑉 (𝐺) must map to some
𝑣2 ∈ 𝑉 (𝐻), but not all 𝑣 ∈ 𝑉 (𝐻) need to be mapped to.

Now considering connected base graph 𝐻 and disconnected cov-
ering graph 𝐺 .

Theorem 6. For connected base graph𝐻 and disconnected covering
graph𝐺 with the set of separated disjoint subgraphs𝐺1, ...,𝐺𝑛 denoted
𝐶 (𝐺). (∀𝐺𝑖 ∈ 𝐶 (𝐺)) (𝐺𝑖 covers 𝐻) =⇒ 𝐺 covers 𝐻 .

Each disjoint subgraph of𝐺 here can be seen as a separate graph,
all of which must individually cover 𝐻 for 𝐺 as a whole to cover 𝐻 .
Combining these two theorems into a final theorem for discon-

nected 𝐺 and disconnected 𝐻 .

Theorem 7. For disconnected base graph𝐻 with the set of separated
disjoint subgraphs 𝐻1, ..., 𝐻𝑛 denoted𝐶 (𝐻) and disconnected covering
graph𝐺 with the set of separated disjoint subgraphs𝐺1, ...,𝐺𝑛 denoted
𝐶 (𝐺). (∀𝐺𝑖 ∈ 𝐶 (𝐺)∃𝐻𝑖 ∈ 𝐶 (𝐻)) (𝐺𝑖 covers 𝐻𝑖) =⇒ 𝐺 covers 𝐻 .

These theorems can be applied to the algorithm in a simple man-
ner. Simply split the base graph and covering graph up into the set
of their disjoint subgraphs and verify whether for each graph in
the covering set, there exists a graph in the base set such that the
algorithm produces a correct covering projection.

4.5 Comparison to isomorphism problem
As noted several times in this paper, the graph covering problem
shares many of its aspects with the graph isomorphism problem. The
graph covering problem can be seen in many ways as an extension
to the graph isomorphism problem. Notably, the graph isomorphism
problem is fully covered itself by the graph covering problem al-
ready and is a strict subset of it. To show this, simply take a base
graph 𝐻 of order 𝑛 and a covering graph 𝐺 of order 𝑛. If 𝐺 covers
𝐻 , then𝐺 is an isomorphism of graph 𝐻 . The differences in solving
the graph covering problem therefore mostly come as extensions
to the algorithms which exist for the graph isomorphism problem
instead of introducing new techniques. However, some classes of
graphs such as complete base graphs, and complete graphs minus
one edge are difficult to solve for the graph covering problem, while
being significantly easier when it comes to isomorphisms. Addition-
ally, there exist some heuristics for regular graphs for the graph
isomorphism problem which are not easily translatable to the graph
covering problem.

4.6 Resulting algorithm
The resulting algorithm applies the heuristics in the following order:

• Confirm (|𝑉 (𝐺) |/|𝑉 (𝐻) |) ∈ Z+
• Check if both graphs have a tree structure and apply tree
heuristic if applicable

• Check if both graphs have a unicyclic structure and apply
unicyclic heuristic if applicable

• Compute partition blocks and confirm size factors
• Check if the largest partition block of 𝐻 has size ≤ 2. Reduce
to 2-sat and solve if applicable

• Establish the mapping to one 𝑣 ∈ 𝑉 (𝐻) and repeat partition-
ing function

• Repeat previous step until a solution is found or determine
there is no covering projection if all options have been tried

5 BENCHMARK
This section will review the results the algorithm has obtained on
different classifications of graphs. Firstly, we will go over the perfor-
mance of some graphs which follow specific structures for which
heuristics have been implemented, such as trees and graphs of max-
imum partition size two. Then we will, the algorithm’s performance
will be shown for a benchmarking set used by the University of
Twente for testing algorithms for graph isomorphisms and automor-
phisms. From these, double and quadruple covers were generated
to test the performance as the size of the covering graph increases.
Since these benchmarking graphs are used for testing automorphism
algorithms, they generally contain some level of symmetry, which
will likely be difficult graph structures for the algorithm to solve.

Fig. 3. Computation time for random graphs generated with𝑆 (𝐺) = 𝑂 (𝐺) ·
2

5.1 Random graphs
The complexity of random graphs depends heavily on how many
edges the base graph contains. A large amount of edges generally
means that there is more symmetry present and as such, the block
sizes of the partition refinement will be larger. This means that
as cover graphs get larger the problem scales exponentially. On
the other hand, a lower amount of edges generally means that the
graph is easier to solve and often falls in the category of blocks
with maximum size of either 1 or 2. The complexity for these two
cases are displayed in the figures 3 and 4. The random graphs are
generated by creating some input number 𝑛 vertices, creating a
Prüfer[5] sequence to create a random spanning tree, and adding
additional edges up to some input size𝑚.

, Vol. 1, No. 1, Article . Publication date: July 2023.

Heuristics of the graph covering problem • 5

Fig. 4. Computation time for random graphs generated with 𝑆 (𝐺) =
𝑂 (𝐺) · (𝑂 (𝐺)−1)

2 − 2

5.2 Trees
As can be seen in figure 5, the algorithm performs efficiently when
solving tree-structured graphs as is expected. The complexity can
be seen to scale polynomially as is congruent with the theory on
tree isomorphisms.

Fig. 5. The computation time for tree-structured graphs

5.3 Partition block size two
To test this benchmark, a small group of base graphs with order 6
with stable partition sets which contain blocks of both size 1 and
size 2 were used. From these base graphs, 2𝑛 covers were generated
with 𝑛 ∈ 1, ..., 11. The algorithm was similarly able to solve the
problem for graphs of very high orders, scaling polynomially with
the order of the covering graph. The results can be seen in figure 6.

5.4 Benchmark set
The data for the benchmarking set will instead be shown in a table
where each file will have its computation time denoted for the dis-
covery of a 1x cover, a 2x cover and a 4x cover. This table shows the

Fig. 6. The computation time for base graphs with partition size ≤ 2

Table 1. Benchmark performance

File name 1x cover 2x cover 4x cover
auttreeA17_1 0.002 0.02 0.06
badcref8_1 2.8 11.2 850.2
cycles350_1 26.8 65.8 218.43

double_auttreeB_88_1 0.35 0.8 3.2
hugecographsE_1 14.5 27.7 84.9
hugecographsF_1 0.26 2.4 25.1

Miyazaki4_1 0.02 0.03 1.8
pseudocographs3_1 0.06 0.09 0.23

tori60_4_1 0.7 1.47 4.2
wheelstar16_1 0.006 0.004 0.2

computation time for the graph when a single, double or quadruple
cover is taken for that graph.
Based on the benchmarking data, the only graph structure that

seems to fall in the area of scaling exponentially is badcref8_1.
Notably for this graph, none of the graphs cover one another and as
such every single possibly must be exhausted before the algorithm
can confirm whether the graph is a covering or not. It is notable that
many of the graphs do seem to scale polynomially, though more
testing would be required to assert this. This could be due to that
they are covered by Hopcroft’s algorithm, have a tree structure, or
have maximum block size of 2 for their partitions.

6 CONCLUSION
In this paper is shown the results of a working algorithm for the
graph covering problem and a collection of the heuristics from re-
search which can be used for said algorithm. The main heuristics
used and presented in this paper are partition refinement through
Hopcroft’s algorithm, tree isomorphism testing through symmetry
from the center, reduction to 2-sat for graphs with partition blocks
of size ≤ 2 and an application of the tree symmetry and graph reduc-
tion to a cycle for unicyclic graphs. Finally, an extra piece presented
here not found in current research is the consideration for discon-
nected graphs, solved by dividing the graphs up into disjoint parts.
The proof for how to solve the problem for disconnected graphs is

, Vol. 1, No. 1, Article . Publication date: July 2023.

6 • Joseph Victor Wijnand Vorage

not found in current research and the algorithm to solve such cases
is therefore a notable addition from this research. The produced
result is a flexible algorithm which allows for both connected and
unconnected graphs to be tested for the existence of a covering
projection. The algorithm works well on a large number of differ-
ing graph structures, though it may struggle on more symmetric
structures such as regular graphs and complete graphs.

7 FURTHER RESEARCH
Further research could be done into adding additional heuristics to
such an algorithm. This research focused specifically on the pieces
of literature which were somewhat more straightforward or realistic
to be applied to a computer algorithm. However, there exist more
base graph structures which are proven to be solvable in polynomial
time through more complicated proofs. If one was able to transform
those proofs into a computer algorithm, it could be added to what
is presented here in order to expand upon the number of structures
which the algorithm covers. There exist proofs for graphswhich only

have two vertices of degree ≥ 2 as well as graphs which have all but
two vertices having degree of 2 which could possibly be transformed
into an algorithm [4]. Additionally, further research could be done
in creating specific benchmarking graphs which challenge such an
algorithm in interesting ways which are tailored specifically to the
graph covering problem.

REFERENCES
[1] Alfred V Aho and John E Hopcroft. 1974. The design and analysis of computer

algorithms. Pearson Education India.
[2] Norman Biggs. 1974. Algebraic graph theory. https://doi.org/10.1017/

CBO9780511608704
[3] Scott Fortin. 1996. The graph isomorphism problem. (1996). https://doi.org/10.

7939/R3SX64C5K
[4] Jan Kratochvíl, Andrzej Proskurowski, and Jan Arne Telle. 1995. Complexity of

graph covering problems. SpringerLink (Jan 1995). https://link.springer.com/
chapter/10.1007/3-540-59071-4_40

[5] Heinz Prüfer. 1918. Neuer Beweis eines Satzes über Permutationen. Archiv der
Mathematischen Physik 27 (1918), 742–744.

[6] Stephan Schwartz. 2022. An overview of graph covering and partitioning. https:
//www.sciencedirect.com/science/article/pii/S0012365X22000905

, Vol. 1, No. 1, Article . Publication date: July 2023.

https://doi.org/10.1017/CBO9780511608704
https://doi.org/10.1017/CBO9780511608704
https://doi.org/10.7939/R3SX64C5K
https://doi.org/10.7939/R3SX64C5K
https://link.springer.com/chapter/10.1007/3-540-59071-4_40
https://link.springer.com/chapter/10.1007/3-540-59071-4_40
https://www.sciencedirect.com/science/article/pii/S0012365X22000905
https://www.sciencedirect.com/science/article/pii/S0012365X22000905

	Abstract
	1 Introduction
	2 Notation
	3 Partition refinement
	3.1 Refinement
	3.2 Finding a solution

	4 Heuristics
	4.1 Trees
	4.2 Unicyclic base graphs
	4.3 Reduction to 2-satisfiability
	4.4 Disconnected graphs
	4.5 Comparison to isomorphism problem
	4.6 Resulting algorithm

	5 Benchmark
	5.1 Random graphs
	5.2 Trees
	5.3 Partition block size two
	5.4 Benchmark set

	6 Conclusion
	7 Further research
	References

