Al Enabled Slice Resource Management for Improved QoS in WiFi-based

loT Networks

REIJER VAN HARTEN, University of Twente, The Netherlands

As new IoT services are being developed, the number of connected devices
with different QoS requirements in many WiFi networks is ever-increasing.
The current standard of using different access categories is often not well
suited to provide the wide variety of QoS requirements of the different
connected devices. Network slicing, where network airtime is divided into
segments called slices, is a potent technology to meet diverse QoS require-
ments in IoT networks. Traffic flows with different QoS requirements are
assigned to slices and their resources are managed to prioritize flows over
one another and subsequently meet their requirements. Proposed solutions
have considered a limited number of slices, however, and QoS diversity
in IoT requires eight or more slices to efficiently meet QoS requirements.
Managing the resources of a larger number of slices is a complex task, but
Al can be used to handle this complexity. Therefore, we have implemented
a DRL agent using DDPG that can divide the airtime between the slices in
a simulated IoT network with eight slices and manages to nearly provide
the necessary throughput requirements in a network where resources are
limited.

Additional Key Words and Phrases: Wireless network slicing, Deep rein-
forced learning, Software-defined networking, IoT, QoS, WiFi

1 INTRODUCTION

Over the last decade, there has been a vast increase in the number
of devices connected to the internet. This trend also applies to the
number of connected IoT devices, which hit 10.0 billion in 2019 and is
expected to increase to 30.9 billion by 2025 [7]. Similarly, the number
of different applications of IoT has increased as well. Many of these
applications have varying quality of service (QoS) requirements to
function optimally, including requirements for throughput, latency
and reliability. Meeting these requirements can often be crucial for
the performance of the IoT device [12].

The current standard of providing the QoS requirements in a
wireless network is by using the EDCA access categories defined in
IEEE 208.11e [1]. This approach is not suitable to ensure all the QoS
requirements are met. It can only distinguish between four fixed
categories of traffic and provides a fixed configuration for each of
them. This is not enough to support the variety of QoS requirements
and the range of network dynamics that may occur in modern IoT
Networks [9].

One relatively new method of managing the different require-
ments for the devices connected to an access point is to use network
slicing. This solution aims to categorize the connected devices with
similar QoS requirements into groups called slices. The available
airtime in the network is then divided proportionally between the
slices by assigning each slice a quantum value which determines
how much airtime the slice gets. In this time period, the slice gets
complete access to the network. This allows us to configure the
network to support more than the four fixed QoS categories in IEEE
208.11 [10].

TScIT 39, July 7, 2023, Enschede, The Netherlands
2023.

Multiple existing works focus on the optimization of different
parameters of the slicing algorithm (see section 2), but some param-
eters are hard to optimize mathematically. Especially when there
are many different QoS requirements and a large number of slices is
needed [4]. This optimization gets even harder when unstable net-
work conditions cause the available throughput to be unpredictable
and the parameters constantly need to be reconfigured to keep sup-
porting the QoS requirements as best as possible. When a network
becomes overloaded with traffic, an access point should use the best
possible parameters to control the slices and to ensure maximum
bandwidth while maintaining the QoS requirements. Because WiFi
connections often exist in a non-static environment where mobile
devices can move around and connection quality can vary over time,
adjustments to these parameters can preferably be performed in
real-time without the need for human intervention.

In this work, we address this challenge by proposing a DRL-based
slice resource management solution which will learn about the cur-
rent network’s dynamics and will be able to predict the best division
of airtime between the slices to ensure their QoS requirements. Our
proposed solution will be able to support eight different slices be-
cause this allows for a relatively wide range of QoS requirements
to be supported. For instance, with eight slices, we can support
all combinations of the requirements for throughput, latency and
reliability. Each slice would then correspond to a subset of 0, 1, 2
or all of the requirements, meaning 23 = 8 slices would be needed.
Our contributions can be summarized as follows:

o We have developed a DRL-based slice resource management
algorithm to automate the process of dividing network re-
sources (airtime) for network slicing in an SDN-controlled
IoT network to meet the QoS requirements.

o We tested our solution on a simulated network with eight
slices to demonstrate how machine learning can help achieve
better QoS in a dynamic and adaptive manner compared to
EDCA and other proposed solutions in the existing literature.

2 RELATED WORK

Relevant work includes the research done by Richart et al., who have
taken big steps to analyze the performance of sliced WiFi networks.
In their 2019 work [10], they describe the Adaptive Time-Excess
Round Robin (ATERR) scheduling mechanism which aims to allocate
different airtime requests of the slices and to fairly allocate airtime
to each user within a slice. Given an existing set-up with slices, they
propose calculations which allow for the slices to gain a requested
portion of the transmission time available in the network. However,
the proposed solution of providing a fixed portion of airtime to a
slice does not give any guarantees about the available throughput
under varying and dynamic channel conditions.

The team has since then extended their work to propose a math-
ematical solution aiming to guarantee all the QoS requirements [9].
This solution cannot guarantee throughput rates in practice either,

TScIT 39, July 7, 2023, Enschede, The Netherlands

because the total throughput of the wireless channel can be un-
predictable. Wireless channel conditions can fluctuate wildly and
the Modulation and Coding Scheme (MCS) has large effects on the
available bandwidth as well.

In the 2019 study done by Isolani et al. [3], a solution for slice
resource management is proposed which uses two slices: A QoS
slice which focuses on providing a set of requirements, and a best
effort slice which contains all the other network flows. In 2020, the
team proposed a mathematical solution for an arbitrary number of
slices [4]. But this solution takes too long to compute for more than
seven slices, making it impractical for controlling IoT networks in
real-time.

Although research exists on the application and benefits of WiFi
network slicing, these solutions do not perform well under unpre-
dictable network conditions. A solution involving machine learn-
ing can consider more variables, such as the MCS and the current
network status and can be used to dynamically adjust the slices’
configuration to meet the QoS requirements.

Using Deep Reinforcement Learning (DRL) to manage slices has
already been proven to provide higher throughput rates compared
to solutions from other studies implementing WiFi network slicing.
Work in [12] has employed DRL to allocate resources to the network
slices in an IoT network to enable dynamic support for the QoS
requirements. The proposed machine learning algorithm considers
the current throughput of the slices and the required throughputs of
the slices. It then modifies the quantum values assigned to the slices
to change the amount of airtime each slice is allowed to use and
maximize the satisfaction of the individual slices. The work provides
a useful starting point for finding an efficient solution. However, it
only considers using three slices which is not sufficient to address
the QoS diversity in an IoT network.

3 NETWORK SETUP

This work aims to find a solution for resource management in a
network with one access point and eight different IoT devices with
varying QoS requirements, as seen in figure 1. This network is
controlled by an SDN controller and implements WiFi network
slicing for eight different slices. We send one stream of data to each
of the devices in the downlink, so each stream serves a different
IoT application with unique QoS requirements. Each stream gets
assigned a unique DSCP value, which ensures that each stream gets
assigned to a unique slice.

A DRL agent is running on the controller, which communicates
with the access point implementing WiFi slicing. The agent receives
statistics for the throughput of each of the slices and can change
the division of airtime for the slices.

The slices are scheduled using Airtime Deficit Weighted Round
Robin scheduling. With this type of scheduling, each of the slices
receives a set amount of time they are allowed to send for during
each round, which is called the quantum value for the slice. One by
one, the slices are selected to transmit data packets. The selected
slice remains active as long as the expected time to send the next
packet is smaller than the remaining amount of time assigned to
the slice. If the total amount of time given to the slice gets exceeded,
this gets subtracted from their allotted airtime in the next round [2].

Reijer van Harten

©@ @

@ @
@ @
(@)
(@)

SDN Controller

Fig. 1. Network Overview

4 PROBLEM STATEMENT

The slice resource management problem can be modelled as a
Markov Decision Process, where the goal of the agent is to find
policy 7 which aims to find the optimal action a for each state s
to maximize the expected reward value q,, where g, is defined as
follows:
(o]

v're
=0

qr (s,a) =E,

So =s,Ap = a} (1)

where E,; denotes the expected value of the random variable when
the agent follows policy 7. Furthermore, y is the discount factor
(0.8), r; is the reward at time t and Sy and Ay are the initial state
and action respectively.

The action, state and reward are defined as follows:

e Action: Actions are defined as a vector of 8 values, where each
value determines the new quantum value for one of the slices.
It can be represented by

ar = (q1,92,---,9s) (2)

where g; determines the quantum value for slice i at time
t +1. Because the agent does not learn to provide QoS guaran-
tees for scheduling delays by itself, we define the maximum
airtime to be assigned to each of the slices as 10000 us. This
ensures that the scheduling delay remains small. Furthermore,
we limit the minimum airtime to 250 ps because the system
becomes more unpredictable when too small quantum values
are used, making the training process more difficult.

Vi € ar, q; € [250,10000] 3)

State: States are given by a vector of 8 values, where each
value represents the average throughput of one of the slices,
as measured over the last 4 seconds.

st = (tp1,tpa, ..., tps) 4

Reward: We defined and tested two different reward functions.
The first reward function aimed to maximize the smallest ratio
of the achieved throughput to the required throughputs for

Al Enabled Slice Resource Management for Improved QoS in WiFi-based loT Networks

any of the slices. This reward function is shown below:

throughput; 5)

reward = 100 * min -
i requirement;

with i € [1, 8]. Because the reward is based on the slice which
gets the least of its required throughput, this ensures that the
agent will learn to optimize for the requirements of all of the
slices.
The second reward considered the sum of the squared dif-
ferences between the throughput requirements and the mea-
sured throughputs of the slices:

max (0, (requirement; — throughputi)z) (6)

8
reward = 100 —

i=0

Using this function, the predictions by the agent were much
less accurate, which is why we opted to use the first reward
function instead.

5 PROPOSED SOLUTION

Our proposed solution for controlling the slices in a WiFi-based IoT
network is to use a DRL agent to manage the slices. In the work of
Zia et al. [12], the authors used a deep Q-learning agent to predict
what actions to take. In each time step, the agent takes an action
which determines for each slice if the quantum value should be
reduced, increased or kept the same. Because a deep Q-learning
agent can only predict one action at a time, the number of actions
which could be taken by the agent was equal to 3 to the power of
the number of slices. So this approach does not scale to a solution
which can solve the problem for eight slices.

Instead, we propose to use a deep deterministic policy gradient
(DDPG) agent. Such an agent can predict values from a continuous
action domain [6]. DDPG has already been proven to be a successful
tool in similar tasks, such as managing transmission power in a
5G network [8]. In theory, such a DDPG agent would be able to
directly predict the quantum values for each individual slice, vastly
reducing the number of required output nodes and allowing for
more accurate control over the quantum values.

5.1 Deep Deterministic Policy Gradient

DDPG is an actor-critic, model-free machine learning algorithm [6].
The term actor-critic refers to the fact that the algorithm uses two
different neural networks to predict different values. Firstly, the
actor network takes the current state as input and predicts which
action should be taken to maximize rewards. Specifically, it tries to
find action a for which

a = arg max 0O(s,a) (7)

where Q(s, a) is the expected reward for taking action a in state
s. Secondly, the critic model takes the state and the predicted ac-
tion as input and evaluates the action by predicting the expected
reward value for performing the given action in the given state. This
expected reward has been defined in equation 1.

To stabilize the learning process, we introduce two more neural
networks: a target actor and a target critic network. These networks
are more stable because their parameters are updated using a soft

TSclT 39, July 7, 2023, Enschede, The Netherlands

update function, which can be seen in this equation:
p—(1-1)p+10 8)

where ¢ is the target network’s parameters, 6 is the original net-
work’s parameters and 7 is a small number between 0 and 1.
At each timestep, the following steps are performed:

(1) The agent takes an action based on the current state. This
action is a vector of the quantum values: One value for each
of the slices. We add Gaussian noise to the predicted action
to allow for exploration of the action space. We then restrict
the quantum values to be between 250 and 10000.

(2) The quantum values of the network are updated and we re-
ceive the reward and the next state from the environment.

(3) The agent then stores the current state, action, reward and
next state in a replay buffer. Afterwards, we take a batch of
64 random samples from the replay buffer for learning.

(4) The critic model’s parameters are updated to minimize the
loss across the samples in the batch.

(5) The actor model’s parameters are updated to maximize the
expected reward. We define the loss of the actor as the nega-
tion of the expected reward, which will be predicted by the
critic.

(6) The target networks are updated using the soft update func-
tion.

The pseudocode given in algorithm 1 gives a complete overview
of the steps described above.

Algorithm 1 DDPG

Randomly initialize critic network Q and actor network p with
weights 09 and 04

Initialize target networks Q' and y/ with weights 69" — 69 and
o — oM.

Initialize replay buffer R.

Observe the initial state s;.

fort=12,.. t,,q do

o t
Calculate standard deviation o « 2500 — 300000+ (2500=100)

Sample noise N; «— X1,Xo, ..., X, with X; ~ N(0, a?).
Select action a; « p (s¢|6#) + N¢.
Ensure a; bounds: a; < max(250, min(10000, a;)).
Execute action a; and observe reward r; and new state s41.
Store transition (s, as, r¢, S¢+1) in R.
Sample a random batch of 64 transitions (s;, a;, 13, s;) from R.
Calculate target value y; < r; +yQ’ (s}, W (s7116H)]69).
Update critic parameters using loss:
L= % %i(yi — Q(si,a;i]09))?
Update actor parameters using loss:
L= —g7 Zi(Q(si, p(si|0™)|69))

Update the target networks:

09" — 709 + (1 -1)09

OF — t0H + (1—1)0H

end for

TScIT 39, July 7, 2023, Enschede, The Netherlands

Parameter Value
(Target) actor network layer sizes (8, 256, 128, 8)
(Target) critic network layers sizes | (16, 256, 128, 1)
Hidden layer activation function ReLU
Output activation function (actor) Softmax
Output activation function (critic) linear
Learning rate (actor) 0.001
Learning rate (critic) 0.002
Optimizer Adam
Discount factor y 0.8
Soft update parameter 7 0.001
Replay buffer size 50000
Replay buffer sample size 64
Noise standard deviation o (interval) [100, 250]

Table 1. Training parameters

5.2 Deep Neural Network Architecture

We have discussed the four required deep neural networks in the
DDPG algorithm. We will now discuss the architecture of these
networks and the values of the hyperparameters. An overview of
these parameters is shown in table 1.

First, the actor and the target actor networks have an input layer
of 8 nodes, two hidden layers with 256 and 128 nodes, and one
output layer with 8 nodes. The hidden layers use the ReLU activation
function and the output layer uses the Softmax activation function.
The outputs are then scaled to represent quantum values between
250 and 10000. The actor’s learning rate is 0.001.

Second, the critic and the target critic networks have a similar
structure to the actor network: They have two hidden layers with
256 and 128 nodes which use the ReLU activation function. The
input layer consists of 16 nodes and the output layer has one node
which uses the linear activation function. The critic’s learning rate
is 0.002.

The networks are implemented using the Python Keras library
and use the Adam optimizer [5]. We set the discount factor y to 0.8
and the soft update parameter 7 to 0.001. Our replay buffer keeps
track of the previous 50000 samples.

The standard deviation of the Gaussian noise added to the pre-
dicted actions decreases during training. It starts at 250 and de-
creases linearly to 100 during the first 300,000 timesteps.

6 PERFORMANCE ANALYSIS

To analyze the performance of the slice resource management, we
set up the DRL agent in a simulated environment. We ran the DDPG
algorithm as described in section 5 and used the simulation to esti-
mate the resulting state and reward after every action taken by the
agent.

The simulated network had eight simulated connections with dif-
ferent DSCP values and each of the connections was given different
throughput requirements, as can be seen in table 2. Because each
connection had a different DSCP value, only one connection was
served by each of the eight slices.

Reijer van Harten

DSCP value | Required Throughput (Mb/s)
0 2.0
8 0.1
18 0.3
20 1.5
30 6.0
44 4.0
46 3.0
48 2.5

Table 2. Throughput requirements for each of the slices

To ensure that the actor would learn to take optimal actions,
even when the throughput of a network is constantly changing, we
simulated fluctuations in the throughput of the network. Therefore,
on each timestep, we added a random value between -0.5 and 0.5 to
the throughput of the previous timestep. The total throughput was
always bounded between 18 and 22 Mb/s.

tpy = max(18, min(22, tp;—1 + Ry)) 9)
where R; is a random value sampled from a uniform distribution.
R ~ U(=0.5,0.5) (10)

The action taken by the actor defines the quantum values to be used
for each of the slices. We can estimate the resulting throughputs
for each of the slices by dividing the throughput over the slices
proportionally to the quantum values.

quantumsg;

tPs,t = Z— * tPt (11)

j quantum;

where tps ; is the throughput of slice s at time ¢, quantums ; is the
quantum value assigned to slice s by the actor at time ¢ and tp; is
the total throughput of the simulated network at time ¢.

Finally, we calculated the reward value as shown in equation 5.
The calculated new throughputs and the reward value were then
stored in the replay buffer to be used for learning.

The code for the setup can be found on GitHub [11].

6.1 Results

We have run our DRL solution on a simulated environment for
1,000,000 timesteps. After every 500 timesteps, we took the average
throughput for each of the slices over this period. These averages
are plotted in figure 2.

The figure shows that the agent initially did not have any under-
standing of the environment and was predicting a wide range of
quantum values, causing unstable throughput rates for the slices.
The first two slices that were being optimized were slices 8 and
18, which both got assigned the minimum possible quantum val-
ues after timestep 300,000, probably because the throughputs of
these slices were easily met and lowering their quantum values
did not influence the reward value. Finally, after 700,000 timesteps
the algorithm converged and was able to maintain fairly constant
throughput rates for each of the slices. Four of the slices got their
required throughput rates. The average throughput rates of the
other four slices, taken over the final 5000 timesteps, were within
0.15 Mb/s of the throughput requirements of the slices, or 7.3%, as

Al Enabled Slice Resource Management for Improved QoS in WiFi-based loT Networks

TSclIT 39, July 7, 2023, Enschede, The Netherlands

Slice Throughputs (average per 500 timesteps)

| | | | | ——— Slice 30 throughput
—— Slice 44 throughput
10 | | = Slice 46 throughput
—— Slice 48 throughput
—— Slice 0 throughput
—— Slice 20 throughput
81 -| | —— Slice 8 throughput
= —— Slice 18 throughput
5
=
. i
E |
5 ‘ ‘ 'll |r l '
= 4
=
L) Il f “ Mol)
.qm l& m . i wﬂw 'ﬁ
2 ‘ ﬁ ‘w". M"U* Wm W\ 1
iy W Wv Pt ey
0 _
| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Timestep .106
Fig. 2. Slice throughputs in the simulated environment
DSCP value | Required Throughput (Mb/s) | Achieved Throughput (Mb/s) | Difference (Mb/s) | Percentual Difference
0 2.00 1.89 -0.11 -5.4%
8 0.10 0.48 +0.38 +377%
18 0.30 0.48 +0.18 +59%
20 1.50 1.39 -0.11 -7.3%
30 6.00 6.12 +0.12 +1.9%
44 4.00 4.35 +0.35 +8.8%
46 3.00 2.85 -0.15 -5.0%
48 2.50 2.35 -0.15 -6.1%

Table 3. Achieved throughputs in the simulated environment (mean over the last 5000 timesteps)

shown in table 3. In these final 5000 timesteps, the average total
throughput of the network was 19.9 Mb/s, which was only 0.5 Mb/s
bigger than the sum of the required throughputs of the slices.

Figure 3 shows the reward values given to the agent. Again, we
show the average of every 500 timesteps. As we saw before in
figure 2, the agent converged after 700,000 timesteps. The figure
also shows that the agent never managed to receive the maximum
reward value of 100. In the final 5000 timesteps, it got an average
reward of 85.4. So, in accordance with our reward calculation, there
was still room for improvement.

6.2 Discussion

Even though the DRL agent was unable to find the right quantum
values to provide 100% of the throughput requirements of the slices,
we still believe our implementation can be considered successful.
Because the total bandwidth of the network was only 3% larger
than the sum of the throughput requirements of the slices, we con-
sider the small differences between the required and the achieved
throughputs to be acceptable. However, future studies can try to
improve the accuracy of our implementation, for example by trying
different parameters for the neural network.

One aspect worth mentioning is that the agent takes a long time
to learn about the network dynamics. In a real network, conditions

TScIT 39, July 7, 2023, Enschede, The Netherlands

Reijer van Harten

Reward Value (average per 500 timesteps)

100 T T T

80

Reward Value
(o)
o

'S
S

20

T T T T

0 0.1 0.2 0.3 0.4

|
0.5 0.6 0.7 0.8 0.9 1

Timestep 10°

Fig. 3. Reward value in the simulated environment

might be even more dynamic which might make it take even longer
for the agent to learn. And even if the agent converges in the same
number of timesteps (700,000), this would still take very long in a
non-simulated environment. In a real network, we need multiple
seconds to measure the new throughputs of the slices before being
able to calculate the reward value. Therefore, it would probably take
multiple days before the DRL learning algorithm converges.
Because of this long learning time, it is important to find a solu-
tion which can quickly adapt to changing network environments
and avoid having to restart the training process when faced with
different requirements. Potentially, our solution might be able to
learn how to adapt if it gets trained on a wide variety of network
setups with varying requirements, but this requires further research
to determine. This research could also investigate if there are bene-
fits to providing the agent with input values other than the current
throughputs of the slices. Maybe the agent can adapt to a new net-
work environment more quickly if we give it other information,
such as the current MCS values used for the different connections.
One final point of discussion is that the agent does not consider
different priorities between the QoS requirements. If the throughput
of the network gets too low to provide the throughput requirements
for all of the slices, the agent treats them equally and takes the same
percentage of bandwidth from all of them. This problem can be
addressed by changing the reward function to a function which puts
more importance on the requirements of slices with higher priority.

7 CONCLUSION

Because of the rising number of 10T applications with different QoS
requirements, it is increasingly more complex to manage all QoS
requirements in WiFi networks. Network slicing is a technology
which aims to provide a wide variety of QoS requirements by di-
viding the airtime of the network over slices with varying QoS
requirements. To manage the division of airtime between the slices,

we proposed a DRL-based solution for slice resource management
in an SDN-controlled wireless IoT network with 8 slices. This is
an improvement over earlier studies because it allows supporting
more slices than before, which ensures that a wider variety of QoS
requirements can be provided. We proposed the implementation of
A DRL agent using DDPG and tested our approach by running the
agent in a simulated network. The agent was able to evenly divide
the network resources between the different slices according to their
throughput requirements but was not able to guarantee that all of
the requirements were met in a network with limited bandwidth.

Future research should focus on determining the agent’s ability
to adapt to changing network dynamics and QoS requirements.
Furthermore, research can be done on the effects of using different
input metrics or changing the hyperparameters used for the DRL
agent and the neural networks. This might help it adapt to different
network setups more quickly, as well as further increase its accuracy.
Finally, an improved reward value might be considered to allow the
agent to prioritize between the different QoS requirements of the
connected devices.

REFERENCES

[1] 2005. IEEE Std 802.11e-2005. IEEE. OCLC: 956670291.

[2] Estefania Coronado, Roberto Riggio, Jose Villalon, and Antonio Garrido. 2018.
Lasagna: Programming Abstractions for End-to-End Slicing in Software-Defined
WLANS. In 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile
and Multimedia Networks" (WoWMoM). IEEE, Chania, Greece, 14-15. https:
//doi.org/10.1109/WoWMoM.2018.8449797

[3] Pedro Heleno Isolani, Nelson Cardona, Carlos Donato, Johann Marquez-Barja,

Lisandro Zambenedetti Granville, and Steven Latre. 2019. SDN-based Slice Or-

chestration and MAC Management for QoS delivery in IEEE 802.11 Networks.

In 2019 Sixth International Conference on Software Defined Systems (SDS). IEEE,

Rome, Italy, 260-265. https://doi.org/10.1109/SDS.2019.8768642

P. H. Isolani, N. Cardona, C. Donato, G. A. Perez, J. M. Marquez-Barja, L. Z.

Granville, and S. Latre. 2020. Airtime-Based Resource Allocation Modeling for

Network Slicing in IEEE 802.11 RANs. IEEE Communications Letters 24, 5 (May

2020), 1077-1080. https://doi.org/10.1109/LCOMM.2020.2977906

[4

https://doi.org/10.1109/WoWMoM.2018.8449797
https://doi.org/10.1109/WoWMoM.2018.8449797
https://doi.org/10.1109/SDS.2019.8768642
https://doi.org/10.1109/LCOMM.2020.2977906

Al Enabled Slice Resource Management for Improved QoS in WiFi-based loT Networks TSclT 39, July 7, 2023, Enschede, The Netherlands

[5] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti- [9] Matias Richart, Javier Baliosian, Joan Serrat, and Juan-Luis Gorricho. 2020. Re-

—

—

[

mization. http://arxiv.org/abs/1412.6980 arXiv:1412.6980 [cs].

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2019. Continuous control with
deep reinforcement learning. http://arxiv.org/abs/1509.02971 arXiv:1509.02971
[cs, stat].

Knud Lueth. 2020. State of the IoT 2020: 12 billion IoT connections, surpassing
non-IoT for the first time. https://iot-analytics.com/state-of-the-iot-2020-12-
billion-iot-connections-surpassing-non-iot-for-the-first-time/

Gabriel Pimenta de Freitas Cardoso, Paulo Henrique Portela de Carvalho, and
Paulo Roberto de Lira Gondim. 2023. Deep reinforcement learning for resource
allocation of mobile communication systems with device-to-device underlay.
International Journal of Communication Systems (March 2023), e5476. https:
//doi.org/10.1002/dac.5476

source Allocation and Management Techniques for Network Slicing in WiFi
Networks. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium. 1-6. https://doi.org/10.1109/NOMS47738.2020.9110407 ISSN: 2374-
9709.

Matias Richart, Javier Baliosian, Joan Serrat, Juan-Luis Gorricho, and Ramon
Agiiero. 2019. Slicing in WiFi Networks Through Airtime-Based Resource Allo-
cation. Journal of Network and Systems Management 27, 3 (July 2019), 784-814.
https://doi.org/10.1007/s10922-018-9484-x

Reijer van Harten. 2023. Empower-RL. https://github.com/reijervharten/
empower-rl

Kamran Zia, Alessandro Chiumento, Paul Havinga, Roberto Riggio, and Yanqiu
Huang. 2023. QoS Aware Slice Resource Management using Deep Reinforcement
Learning in IoT Networks. (2023).

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1509.02971
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://doi.org/10.1002/dac.5476
https://doi.org/10.1002/dac.5476
https://doi.org/10.1109/NOMS47738.2020.9110407
https://doi.org/10.1007/s10922-018-9484-x
https://github.com/reijervharten/empower-rl
https://github.com/reijervharten/empower-rl

	Abstract
	1 Introduction
	2 Related Work
	3 Network Setup
	4 Problem Statement
	5 Proposed Solution
	5.1 Deep Deterministic Policy Gradient
	5.2 Deep Neural Network Architecture

	6 Performance Analysis
	6.1 Results
	6.2 Discussion

	7 Conclusion
	References

