


Abstract

With cycling being the second most-used mode of personal transport in the Netherlands (Statis-
tics Netherlands, 2022), there is a clear need to be able to predict not only how many cyclists
are on the roads right now, but also how their distribution across the network changes when
the network changes. This is done today using traffic modeling, with one such model being the
OmniTRANS Spectrum (Mobiliteitsspectrum). The project was commissioned by the model’s
operator Dat.mobility and they wanted to improve the accuracy of the bicycle traffic assignment
in it. While this model can simulate traffic across the whole Netherlands, only the Arnhem-
Nijmegen region was investigated in this work. Because the results from this area were to be
applied to the whole model, restrictions were put in place such that any adjustments to improve
accuracy must be based on attributes that are attached to the links and that the adjustments
are done to the link speed values.

The investigation performed was done to answer research questions that asked a) if the observed
counts of cyclists in this region could be used to determine the impacts of demand factors—
characteristics of the link which influence its appeal—on traffic intensities, and b) if the traffic
model in question could be made more accurate using the findings from the performed analysis.

To achieve this, three different approaches were tried. The first two were unsuccessful and in-
volved regressions attempting to fit the demand factors onto some form of the observed traffic.
The final approach—which succeeded in improving the accuracy—involved the use of a Cali-
bration Coefficient (CC). It could identify the features which significantly impacted traffic, as
well as scale the speeds to incorporate this impact in the model. This approach involved the
use of a calibrated zone-to-zone model to provide observed intensities for near-all links in the
node-to-node model being adjusted. Because of this differing construction, a novel metric was
developed to validate the results in city centers where significant deviations from reality were
observed. It compared the number of cyclists and the distances they cycled within these areas.

Ultimately, the adjustments found were not applied to the full model, due to limited time. While
the identified CC values, and thus their resultant speeds, could improve the overall distribution
of traffic in the full model, the values themselves are not representative of cyclists’ behaviors
throughout the whole Netherlands. The CC values are just a representation of the difference
between the calibrated and default models within the study area per some characteristic—they
give no insight into how appealing a characteristic is for a cyclist.
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1 Introduction

Transportation networks form the backbone of modern civilization, acting as a country’s circu-
latory system by moving goods and people between different destinations. When dealing with
such an important and expansive system, it is useful to be able to predict what the number of
agents using said network is at any given point. Today, we accomplish this task by using traffic
modeling; a powerful tool that allows actors to easily investigate various measures pertaining to
the state of traffic on a network. Because of the predictive nature of traffic modeling, actors can
also look at what effects changes to the network would have on traffic. This can be done quickly
and without physical intervention, giving actors immediate insight into the interactions between
the network and its—simulated—users.

These users being simulated is an important distinction to make, as every traffic model is only
an abstraction of the real traffic situation. Thus it relies on many assumptions about the factors
related to any person’s travel behavior. Depending on the mode of travel, these factors can have
varying impacts on the results of the model. For example, a car is a large vehicle whose users are
protected from collisions by a metal frame. Compare this experience to that of riding a bicycle:
you are far more exposed to your surroundings, meaning your perceived safety of a route will
depend much more on the properties of the links used. Consider the benefits a solitary bike path
has over an unprotected painted lane in this respect—one offers a physical separation between
two modes of transport whose kinetic energies differ by orders of magnitude. This is just one
example of how different modes will have different criteria with which their users will assess and
choose their routes.

For cyclists, these criteria can range from physical factors such as the infrastructure present on a
road to subjective factors such as the perceived beauty or comfort of a route. These factors will
be further elaborated on in this work, but suffice it to say that there are many different types of
features that influence a cyclist’s route choice. While studies have been done into the effects of
these features in the Netherlands (Meijning, 2019; Bernardi et al., 2018; Genugten and Overdijk,
2016), none have been able to define the impact they have on a cyclist’s route choice in a form
that can be easily translated into a traffic modeling framework—they lack concrete values on
how specific features of a link affect the volume of traffic present on it. That is the knowledge
gap that this research project will address.

The following chapter will go on to introduce the background of this research project as well
clarifying its limitations, scope, and objectives. After that, the theoretical background will be
discussed and the methodology for the project will be put forth. Lastly, the results are presented
and discussed before finally concluding with remarks regarding possible future work in this area.

1.1 Project background

The project was commissioned by the firm Dat.mobility—a subsidiary of the transportation
engineering consultancy group Goudappel—that specializes in mobility data analysis. They
operate a traffic model called the OmniTRANS Spectrum (Mobiliteitsspectrum) that can provide
traffic intensities as well as many other statistics about the whole Dutch transportation network,
and it can do this for pedestrians, cyclists, cars, public transportation, and even freight traffic.
In this model, Dat.mobility wants to improve the assignment of bicycle traffic such that is it
more representative of the real situation. Specifically, they believe that the model is significantly
overestimating the amount of cyclists in city centers. As such, their objectives for the project
are to confirm if this is happening and, if it is, to implement a fix for this discrepancy into the
model. This fix is to take the form of adjustments to the links’ speed parameters.
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1.2 Research scope

As the Spectrum model covers the whole of the Netherlands and Dat.mobility wishes to improve
the accuracy for the whole model, at its broadest the scope covers this same area. However, as
running and analyzing the model over such a large area would be computationally very intensive,
a sub-section of the model was created. This version includes a detailed network—identical to
that present in the full model—of the Nijmegen-Arnhem region while only having a simplified
network outside of this study area. Dat.mobility hopes that the insights found using this region
can be extrapolated to the whole Dutch network.

Figure 1: The Arnhem-Nijmegen area being studied

Because of this need to apply any changes to the countrywide network, any adjustments made
to the study area network cannot be manual. That is to say, the adjustments must be dependent
on some attribute either already attached to the link, or one that can be (spatially) attached,
such that any link with said attribute would be affected by the change. This requires the use of
existing databases that contain information about the Dutch cycling network. One such database
is maintained by the Dutch Cyclists’ Union (Fietsersbond), which contains detailed information
about the infrastructure, quality, surroundings, and many other factors for all cycling links in
the Netherlands. It will be the primary source of data regarding link characteristics referred to
in this project.
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1.3 Research objectives

The problem put forth by Dat.mobility is that they believe their model to not be as accurate as
it could be, and thus they wish to improve it. The author’s hypothesis is that this issue could
be addressed by using the link characteristics to adjust their speeds. Therefore, the research
objective is to improve the assignment of bicycle traffic in the OmniTRANS Spectrum model
by adjusting the link speeds, based on the link’s characteristics. To achieve this objective it is
necessary to formulate research questions that the project will address, the first of which is about
the identification and valuation of the factors that impact a cyclist’s route choice.

• Q1: Can a spatial analysis approach be used on count data to determine the
impacts of demand factors on bicycle traffic intensities in the OmniTRANS
model?

In prior studies we saw the use of GPS route data to investigate the impacts of demand factors on
route choice; however, could this same investigation be done with a spatial analysis on observed
bicycle count data? This leads to following sub-questions:

• Q1a: What are the factors that impact bicycle traffic demand?

• Q1b: How would a spatial analysis of these demand factors look like?

• Q1c: What are the steps necessary to ensure the validity of the spatial analysis?

The second primary research question relates to the implementation of the factor impacts into
the model.

• Q2: Can the OmniTRANS model be made more accurate by considering de-
mand factors related to a cyclist’s route choice?

While the literature review suggests that a bicycle traffic model can indeed be made more accurate
by considering various factors, it is necessary to ask how the impacts of said factors can be
connected with the model.

• Q2a: How can the influence of demand factors be implemented into the model?

• Q2b: Can the insights from a subsection of the entire model be extrapolated to the whole
network?

• Q2c: Considering that all people have different (subconscious) valuations of the demand
factors, is it appropriate to extrapolate a single weight for any one factor?

With the objectives for this research work laid out it is necessary to establish what the current
state of knowledge in this area is. As such, let us now move on theoretical background of the
project.
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2 Theoretical background

2.1 Literature review

The idea of improving the route choice of cyclists in traffic models is not a novel one. There have
been many studies conducted in various countries using varying methods to identify the features
that influence a cyclist’s route choice, often with the goal of improving traffic modeling for this
mode. Table 1 contains an overview of the studies that were looked at in this literature review
together with the characteristics they investigated and the method used in said investigation.

Table 1: List of select cyclist route-choice studies, their method of analysis, and their studied factors

Study Method Studied factors

Meijning, 2019 RP Bicycle facilities, road quality, road surface, intersection type
Bernardi et al., 2018 RP Bicycle facilities, road quality, surroundings, trip length, signalization
Jensen et al., 2018 RP Bicycle facilities, surroundings, no. of car lanes, slope, turns, trip length
Broach et al., 2012 RP Bicycle facilities, intersection type, slope, turns, trip length, car traffic volume

Hardinghaus & Nieland. 2021 RP Bicycle facilities, road surface, intersection type, surroundings, lighting
Shin, 2016 SP Bicycle facilities, surroundings, trip motive, trip length, cyclist comfort

Genugten & Overdijk, 2016 SP Bicycle facilities, road quality, slope, travel time, intersection type, car speed

These investigations into what features of a link are desirable and undesirable for cyclists are
conducted using two primary methods: stated-preference (SP) and revealed-preference (RP).
Stated-preference studies use expert elicitation and surveys to directly ask cyclists to state the
criteria they consider when selecting their routes. This approach is good at identifying the fac-
tors which cyclists themselves perceive as important for their route choice. Revealed-preference
studies make use of collected data where cyclist behavior was observed and analyzed to reveal
the characteristics that influence their routes. Such an approach allows the quantification of
factors and their influence on cyclist behavior. In this section, what the factors that influence
cycling behavior are, and the different approaches used to evaluate their impacts, will be pre-
sented through the existing literature on the subject. The result of this literature review will be
a collection of factors that will be investigated to improve the assignment of bicycle traffic in the
OmniTRANS Spectrum model.

2.1.1 Revealed-preference studies

A common trend for revealed-preference studies was to use GPS data of bicycle trips to investigate
the characteristics of the routes cyclists take. How these studies differ in their approach is in
regards to how they select the alternative routes against which the observed routes are compared.
One option is to use the shortest route that can be taken between the observed trip origins and
destinations. This approach was used by Meijing in their 2019 study assessing the impact of
bicycle infrastructure in the Dutch province of Noord-Brabant. They used a linear regression
analysis to test if there was a relationship between the amount of deviation from the shortest
route and the differences between the network and infrastructural factors on the observed and
shortest route. It resulted in a significant deviation only for signalized intersection, where cyclists
would prolong their trip if it meant avoiding this feature. (Meijning, 2019)

One reason why Meijing’s approach could have failed to produce significant results for more
factors was the shortest alternate route selection—the shortest route is not always a realistic
alternative for cyclists. In the 2012 report by Broach et al. they found that, when applied
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to their dense network, the shortest alternate paths generated would leave and return to the
same corridor multiple times. Instead, they chose to generate alternate routes by maximizing
individual criteria, subject to multiple distance constraint values. The process is described in
Broach et al., 2010, where the generated alternatives were calibrated against the observed route
deviations. To then assess the probability of one of these alternatives being chosen by a cyclist
for a trip the Path-Size Logit (PSL) model is used. (Broach et al., 2012)

In the 2012 study by Broach et al. they found that dedicated bicycle facilities (protected paths
and boulevards) had a significant positive increase on utility, meaning cyclists would prolong
their trips to include these features. The presence of a bike lane was not found to be a significant
driver; however, the authors stipulate that bike lanes appear to offset the negative effects of
adjacent traffic but have no residual value of their own. They go on to state that, while bike
lanes reserve a space for cyclists on the road, they are no more or less attractive than a basic
low traffic volume street. For negative influences, they found slope, traffic control measures,
and traffic intensity to be drivers of decreasing utility. Cyclists would be willing to significantly
prolong their trips to avoid these features. (Broach et al., 2012)

One study that used a particularly interesting approach was the 2021 paper by Hardinghaus and
Nieland. There they used user queries from a bike-routing engine for the city of Berlin (BBBike)
to build their set of observed routes. These were grouped based on the settings the users would
select in the engine, with options such as avoiding traffic lights, unlit streets, and bad surfaces.
Users could also specify the type of road and if they preferred green pathways. To then evaluate
which of these settings were significant drivers of cyclist routing, a hierarchical cluster analysis
was performed. It could group the user generated routes based on their similarity which revealed
five clusters of user preferences. They found that, for over more than half of their 450,000
analyzed data points, users selected to avoid bad surfaces. This was the most significant finding,
but the authors stipulate that Berlin has much of its residential streets paved using cobblestone,
which may be influencing the outcomes. Their other findings include the importance of side
streets and dedicated facilities. (Hardinghaus and Nieland, 2021)

In the 2018 study by Jensen et al. they used a variation of the PSL model to better represent
the behavior of cyclists in a traffic model of Copenhagen. Their results showed that the number
of turns and increasing slope had a negative effect on perceived travel time. When investigating
link surroundings, they found that there were no significant impacts on perceived travel time by
the environment present on the left side of the link. For the right side of a link—when compared
to reference surroundings consisting of parks, water features, cemeteries, and sports facilities—
the perceived travel times increased in both high and low-density settlements, industrial areas,
and forests. Regarding bicycle facilities, they found that protected bicycle lanes decreased the
perceived travel time significantly, but that bicycle paths that are not adjacent to a road increase
perceived travel time for slow cyclists. The authors try to explain this by suggesting that slow
cyclists are especially sensitive to distance, therefore they are unwilling to deviate to include
such a feature. This sentiment that cyclists are extremely sensitive to distance is echoed in other
papers (Bernardi et al., 2018; Broach et al., 2012; Hardinghaus and Nieland, 2021).

Noticeable is how in the 2018 paper by Bernardi et al. they used observed alternate routes
instead of generated (simulated) alternatives. They found that 41% of their recorded trips were
repeated more than once, allowing them to build a choice set that, while smaller than in other
studies, has all its alternatives be both realistic and considered as valid options by cyclists. As
a reference route, they calculated the shortest possible route between each OD-pair and then
proceeded to group the alternate routes based on their length. This approach resulted in traffic
signalization to be a positive and significant factor, meaning cyclists would prolong their routes
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to include such features. Conversely, bicycle lanes and bike boulevards were found to be avoided
by cyclists in relation to roadway links. This appears to coincide with the findings of Broach et
al., 2012, where bicycle lanes were found to be no more attractive than a basic residential street.
As for the influence of surroundings, from a baseline of “fair level of beauty”, they found that
cyclists who took the shortest route had a negative perception of beauty, meaning they would
prefer shorter trips over those that had beautiful links. Again we can observe the sensitivity to
distance. They also found that good-quality links had a strong positive influence on route choice,
compared to a reference of fair-quality, which was to be expected. Finally, regarding trip motive,
only leisure was found to be a significant positive driver of longer routes. (Bernardi et al., 2018)

2.1.2 Stated-preference studies

Another study that looked at trip motives and how they effected route choice was the 2016
study by Shin that grouped their observed routes into to-work and back-home trips. While
this was a stated-preference study, they used GPS-mapped routes of selected cyclists that they
would interview about the characteristics of said routes. They also recorded alternative routes
that a cyclist would take, who were then questioned as to what compelled them to choose one
alternative over another. Their findings showed that cyclists traveling to work would significantly
prefer routes with safe, downhill sections that minimized the time spent travelling. For back-
home routes, they found that cyclists significantly preferred routes that featured good scenery,
which is in-line with expectations. When comparing primary routes with alternatives, they found
minimizing distance and time was significantly more important for main routes while alternatives
had significantly better scenery and—at a lower significance—better cycling facilities. Alternative
routes were, on average, longer than main routes between 1 and 1.4 kilometers. (Shin, 2016)

Finally, we look at a stated-preference study by Genugten and Overdijk, 2016, where they asked
728 Dutch cyclists to evaluate a number of link features and rate their importance in route choice.
These were, in order from most to least important: type of bicycle facility, road surface quality,
slope, reduced travel time on short distances, non-priority intersections, speed of other car traffic,
reduced travel time on long distances, signalized intersections, and priority intersections. Specific
insights include that, as trip distance increases, so does the influence the road surface quality
has on route choice. Older cyclists were also found to attach greater value to protected bicycle
paths. We can also observe the importance of travel time, and that this importance is greater
for short trips, which coincides with the findings of other papers discussed here (Shin, 2016;
Bernardi et al., 2018). (Genugten and Overdijk, 2016)

Of note is that, when asked to state their preferences regarding intersection types, signalized
intersections were found to be preferred at a 4% greater rate compared to uncontrolled intersec-
tions. This goes against the findings of Meijning, 2019, and Broach et al., 2012, but are conversely
supported by the results of Bernardi et al., 2018. If we discard the findings of Meijing—due to
a lack of realistic alternatives—this difference could be explained as a result of different cycling
behaviors between the United States and the Netherlands. For example, even in US cities with
better than average cycling facilities—such as Portland with its bicycle lanes and boulevards—
intersections are not always optimized for use by cyclists. Turning left (across oncoming traffic)
can be inconvenient and even unsafe if the intersection does not have a dedicated signal cycle
that allows cyclists to make this turn. Even more so if the intersection has multiple car (turning)
lanes. Such a problem is near-nonexistent in the Netherlands, where a great majority of intersec-
tions have good accommodations for cyclists. Therefore, when cyclists are given good facilities
at intersections, we could infer that they seek out signalized intersections that guarantee them a
safe and reliable crossing of busy car links.

10



2.1.3 Results of the review

One immediately common theme throughout the review was the dependence on route data
to investigate the impacts of features on cyclist behavior. Having to collect data at such an
individual level (per cyclist) goes to show just how individualistic cycling preferences are. How
much a person values a certain feature will depend on their age, trip motive and distance, and
even how experienced they are with cycling. Some of the papers discussed above aggregated the
factor impacts based on these population groups, from which they were able to find if a certain
population group was more likely to choose a path based on its characteristics. Take for example
the 2018 study by Jensen et al., where they found slow cyclists to perceive solitary paths as
183% longer while fast cyclists perceived them as 203% shorter, compared to a baseline of no
accommodations.

With the current state of knowledge regarding the factors that affect route choice for cyclists
presented, it is now necessary to specify the factors that could influence bicycle traffic demand
and what their possible values area. These are the factors that will be investigated by this
research work and they are presented in Table 2.

Table 2: List of factors that influence bicycle traffic demand

Factor Associated values

Bicycle facility No accommodations, bicycle lane, bicycle path, bicycle street
Intersection control Uncontrolled, signalized, roundabout

Car volume Range from 0 to peak hourly intensity, per link, if applicable
Surroundings Green (nature), blue (water features), urban, landmarks

Slope Range for the average incline.
Lighting Well lit, moderately lit, unlit

Road surface Paved, unpaved
Surface quality Good, middling, poor

Car volume is included as it can be a factor itself (Broach et al., 2012), but it can also be used as
a proxy for car road classification—residential roads will have lower traffic intensities compared
to primary links between towns. A bicycle lane is understood as an unprotected (painted) lane
on a road accessible to cars, while the bicycle path is physically separated from car traffic.

2.2 Conceptual framework

To guide the project from a theoretical state to its conclusion, a conceptual framework was
developed, shown in Figure 2. It illustrates how the knowledge taken from the literature review
will be used to progress the project from conception to completion. These sources of knowledge
are highlighted in red and they are connected to the stages of the project where they will be
used. The framework terminates at the evaluation of the adjustments made to the model, which
is the project result that Dat.mobility is interested in.
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Figure 2: The conceptual framework for the project

2.3 Model construction

Throughout this work there are three different traffic models that will be referred to. This section
will explain what the differences between these models are and how they are constructed, while
also elaborating on some of the technical jargon used throughout the paper.

2.3.1 Node-to-node model

A node-to-node (n2n) model refers to the locations where agents—the cyclists being simulated—
are spawned within the transportation network. These nodes are located at the connections
between different links in the network. It is at these intersections where the agents start their
trips and where traffic demand is first registered by the model, thus creating the traffic intensity
present on a link. Figure 3 depicts an area from the model, where the total attraction and supply
of agents from this zone is spread throughout the nodes in it. That is to say that any agent
whose trip terminates in this zone can have their actual terminus be any one of the nodes.

Figure 3: A sample zone and its intersection nodes
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The amount of traffic going to or coming from each of these nodes is governed by a table where a
percentage of the total traffic from the zone’s Origin-Destination (OD) matrix is assigned to each
node. That is how the OmniTRANS Spectrum model can depict traffic originating from and
terminating at any address in the Netherlands, resulting a very granular representation of the
traffic demand. Here, traffic demand and intensity both refer to the amount of traffic present on
a link over some time period, often referred to as agents per hour. For this project, cyclists per
day (c/day) will be used, as we are interested in the overall traffic present on the link throughout
the whole day and not how it is distributed throughout the day.

Link speed theoretically refers to the speed at which an agent can move from the start of the
link to its terminus, given in kilometers per hour. In practice, the speed is the cost that an
agent must pay to move along a link. Which links the agent chooses to use depend on said cost,
as the agent will attempt to minimize the total cost required to travel between his origin and
destination. This is often referred to as all-or-nothing assignment and is how all of the models
discussed here operate. By default, these speeds are assigned based on the facility, surface, and
length of a link, with an additional modifier depending on if the link is inside or outside of a
built-up area.

The version of the OmniTRANS Spectrum model provided to the author was written using
batch script and SQL, with some dependencies on Java for calculations. The model is executed
using a series of batch files from the command-line interpreter that is connected to a PostgreSQL
database where the results are stored. It is this n2n model that should be optimized by adjusting
the speeds.

2.3.2 Zone-to-zone model

What makes a zone-to-zone (z2z) model different from a n2n one is that the agents are not
spawned at the nodes of the network, but on feeder links that connect the centroid of a zone
to the road network. In the models used here, these zones take the shape of neighborhoods
(buurten). Figure 4 depicts one such zone, with its associated feeder link shown using a black
arrow. This feeder is connected to an intersection node on the network, where all of the traffic
going to or from this zone will have their trips either terminate or originate.

Figure 4: A sample zone and its feeder link
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This is unlike a n2n model, where the attraction and supply is spread across all of the nodes
in a zone, rather than being aggregated to a single point. The benefit of the z2z approach is
that it is faster to run, but that comes at the cost of a reduced resolution in its outputs. These
outputs are shown in Dat.mobility’s proprietary OmniTRANS Desktop software which uses the
Ruby programming language to calculate its results.

2.3.3 Calibrated commercial model

The final model discussed in this paper is a z2z model made by Goudappel for the transportation
authorities of the Arnhem-Nijmegen region. Considering that this model was accepted by the
client, it serves as a good benchmark for what an acceptable representation of the cycling situation
in the study area is. However, as this model is older than those discussed previously, it has some
differences in both the underlying network and the socio-economic data used. These differences
can take the shape of different digitizations of the network, different values for link speed, or
different OD matrices that govern the amount of traffic generated.

The model being calibrated means that its outputs were adjusted to fit a set of observed traffic
counts for the region. Specifically, this calibration was done by adjusting the attraction levels
for a zone until the traffic being spawned matched that which is observed (G. Wiersma, personal
communication, May 25, 2023). What this project will attempt to do is a calibration of the
n2n model, but instead of adjusting the OD matrix, it will attempt to influence the routing by
changing the speeds. This is a novel method of doing a traffic model calibration, so let us move
on to the methodology of how this will be accomplished.
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3 Methodology

The following section will cover how this quantitative research project will achieve its results
through the use of different approaches to determine what and how significant the relationships
between bicycle traffic and link characteristics are. First, it is necessary to first present the state
of both the available databases and the model, thus operationalizing what factors are possible to
investigate and what the benchmarks for any improvements to the model are. Then, how each
of the research questions will be addressed in the project workflow. Finally, the steps taken to
pre-process the available data are discussed.

3.1 Operationalization

To establish what the factors that can be investigated using the Cyclists’ Union database are,
we can compare them with those stated in Table 2. These factors and their associated values
within the database are shown in Table 3. It should be noted that the values stated here are
translated from Dutch by the author and are filtered based on relevance to the project. An
unedited breakdown, which includes the descriptive statistics for these characteristics, can be
found in Appendix A - Fietsersbond database statistics.

Table 3: List of factors present for each link in the Fietsersbond database

Factor Associated characteristics

Facility Solitary path, protected path along a road, bicycle street,
painted (unprotected) lane, normal road, service road, pedestrian area

Surface Asphalt/concrete, tiles, bricks, other, semi-paved, unpaved
Surroundings Rural village, fields, nature, forest, built-up (green), built-up (no greenery)

Water Yes (present), no (not present)
Intersection* Signalized, uncontrolled, roundabout, not applicable

Lighting Well lit, somewhat lit (e.g. only at intersections), unlit
Hindrance Very little, little, reasonable, a lot

Quality Good, reasonable, bad
Beauty Picturesque, nice, neutral, ugly, very ugly

Built-up area Yes (inside), no (outside)
Max speed 15 km/h, 30 km/h, 50 km/h, 60 km/h, 70 km/h, 80 km/h,

Average slope <1%, 1-2%, 2-4%, >4%
Max slope < 1%, 1-2%, 2-4%, 4-6%, 8-10%, 10-20%, >20%
Crossing Above grade, below grade, tunnel, ferry, none

* An intersection is understood as an at-grade crossing of two different modes.

When compared to Table 2, we see almost all of the factors represented in the database, with
the only one missing being car traffic volume. This is something that could be found using a car
traffic model from Dat.mobility, but the complexity of incorporating these results was considered
to be too great for the insight it provided. Instead, the hindrance characteristic could be used,
as it describes the nuisance other traffic poses on a link—examples of this hindrance could be
cars parked on the bike lane or busy car roads with poor bicycle facilities.

It should be noted that this database is built using community-sourced information about the
links, meaning it is often up to the contributor to decide how a characteristic is classified for a
link. This subjective assessment can pose issues with consistency both within the database and
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between the database and reality. No attempts were made to try and correct any issues with
this database, and it was left in the state that it was retrieved on the 28th of September, 2018.

3.2 Traffic counts

The best way to establish a model’s accuracy is to compare it against observations of the modeled
phenomena in reality. When talking about a traffic model’s accuracy, these observations are
traffic counts. That is what the second database of note for this project contains—the observed
traffic counts of cyclists in the Arnhem-Nijmegen region. Where these counts took place can be
seen in Figure 5.

Figure 5: The locations of the cyclist counts

In total, there were 480 counts made within the study area, with one count for each direction of
travel on a link. These were provided together with the calibrated z2z model and no information
is available as to their source or date of collection. They contain the traffic intensity for the
whole day in addition to intensities during the morning and evening peaks. Not all 480 counts
could be used for the project however, as some were located outside of the study area or were
on links whose shape was so different that they could not be easily connected to the assignment
network. That left 466 count locations, which we will now use to evaluate the accuracy of the
default n2n model assignment.
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3.3 Default model accuracy

To evaluate the accuracy of the n2n model and any adjustments made to it, it necessary to
first establish what these measures of accuracy are. One option is to plot the model intensities
(x-axis) against the observed counts (y-axis) using a scatter plot, as seen in Figure 6. Here, each
point represents one count location, with separate points for different directions on the same
link. The red line is a fitted linear regression curve with an R2 value of 0.6648, indicating that
the curve explains 66.5% of the variation in the observed counts.

Figure 6: Scatter plot of the model data against the count data

Observe how the points are scattered closely around the regression line, indicating the model
is already producing results of substantial accuracy. This is further supported by the high R2

value. To check if the differences between the model and counts are randomly distributed, we
can plot the standardized residual of traffic against its probability of occurrence, where traffic
residual is the observed count subtracted from the model intensity. This is shown in Figure 7.

Figure 7: Standardized traffic residual probability plot
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The distribution of residuals closely follows that of a bell curve, indicating that there is no pattern
to their distribution. The slight left-tail skew indicates that the most extreme differences between
the model and reality occur on links where traffic is being overestimated. This may explain why
the average traffic residual is -78 cyclists for the count data set.

Earlier in this section the coefficient of determination R2 and its use as a measure of model
performance was introduced. As this value should be calculated for the model directly, and not
in respect to some curve, it is necessary to go over how it is calculated.

3.3.1 Coefficient of determination - R2

The coefficient of determination is calculated by subtracting the residual sum of squares (RSS)
divided by the total sum of squares (TSS) from one. Eq. 3.1 shows the equation for the calculation
of RSS, where yi is the traffic count for location i (observed value) and xi is the model intensity
at location i (calculated value).

RSS =
∑
i

(yi − xi)
2 (Eq. 3.1)

Eq. 3.2 shows the equation for the calculation of TSS, where ȳ is the mean traffic count over all
traffic count locations i. The two are then combined in Eq. 3.3 to calculate R2.

TSS =
∑
i

(yi − ȳ)2 (Eq. 3.2)

R2 = 1− RSS

TSS
(Eq. 3.3)

What R2 does is present the accuracy of the model as a percentage, rather than an absolute
value. To get accuracy as an explicit amount of cyclists a different measure is computed, called
root-mean-square error.

3.3.2 Root-mean-square error - RMSE

Root-mean-square error is a measure that aggregates the residuals at individual data points into
a combined measure of precision, similar to that of standard deviation. Eq. 3.4 shows how
RMSE is calculated, where n is the number of data points, or in this case, the number of count
locations.

RMSE =

√
RSS

n
(Eq. 3.4)

Both RMSE and R2 are measures common in data analysis, but this paper will also make use of
some other measures that are specific to its subject matter.
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3.3.3 Calibration coefficient - CC

One measure that is firmly rooted in traffic modeling is the calibration coefficient. It is a unitless
quotient of the observed traffic over the modeled traffic, for a link, as seen in Eq. 3.5. The benefit
of this measure is that it directly states by how the traffic on a link must be scaled. (Bostanci
et al., 2018)

CC =
yi
xi

(Eq. 3.5)

Calculating this value for each link within the study area—with the calibrated model outputs
acting as the observed counts yi—their frequency of occurrence can be plotted, as seen in Figure
8. Note that these are filtered to exclude CCs equal to zero (n = 18009) and only consider
intensities along the direction of digitization; however, both directions have very similar graphs.
Additionally, the stated mean and median ignore CCs equal to or greater than 7, as these were
considered to be extreme outliers.

Figure 8: Histogram of the calibration coefficients compared against the calibrated model

To use the aforementioned measures to evaluate a model it is necessary that both the independent
and dependent variable are able to be calculated. This is a non-issue when dealing with observed
counts, but not so if you wanted to compare the default n2n model with the calibrated z2z model.
Because of the different underlying model logic, some links would have no demand on them in
the calibrated model, even though they would have traffic on them in reality. This would cause
noise in the results, contaminating any analysis that would come after. To address this, a novel
measure was suggested.
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3.3.4 Cyclist-kilometers per day

This measure is computed by multiplying the total length of all links within an area with the
total number of traffic generated on those links, as seen in Eq. 3.6. Here, li is the length of
link i in kilometers and xi,h refers to the daily model intensity along the digitization direction,
with xi,t being traffic against the direction of digitization. (T. Thomas, personal communication,
June 1, 2023)

cyclist-km per day =
∑
i

(li ∗ (xi,h + xi,t)) (Eq. 3.6)

The idea behind this measure is that, when computed for both the default and calibrated model,
it compares the total distance traveled by all agents within a zone. Assume that both models
have the same OD-matrices, but in one the cyclists travel along longer routes to leave the zone.
This would be revealed by the higher c-km per day value, as the length of the links being cycled
over by the same number of cyclists is higher. Eq. 3.7 shows how this can be computed as ratio,
where values < 1 indicate underestimation and values > 1 indicate overestimation. The location
and shape of the zones being investigated with this measure is shown in Figure 9, together with
their values.

c-km per day ratio =
default c-km per day

calibrated c-km per day
(Eq. 3.7)

Figure 9: Areas selected for the comparison of the cyclist-km per day measure
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These zones were shaped in such a way that a minimum amount of through-traffic would be
present in reality, thus allowing the measure to investigate the effects of changes within the zone
without external influence. We see significant overestimation happening in the city centers of
Nijmegen and Arnhem, which is in line with expectations. As a control comparison, a neighbor-
hood of the nearby town of Wijchen was looked at, where some slight underestimation of traffic
was observed. This observation is confirmed using the CC measure with which an average value
of 1.23 is found within the zone.

It should be noted that the OD-matrices between the two models (default and calibrated) differ
because of the calibration process, causing the values to be skewed. However, as we are interested
in the effects of adjustments to the model on this measure, we can ignore that issue and focus
on the change in these ratios between the different model adjustments. With the measures
introduced, the benchmarks for the model adjustments can be stated.

3.3.5 Adjustment benchmarks

To properly claim that any adjustments made to the model are improvements from the default
version it is necessary to set some targets that the adjusted model must surpass. These are given
in Table 4.

Table 4: List of measures and their benchmarks

Measure Value Ideal state Performed on

R2 0.615 1 count set
RMSE 917 0 count set
CC 0.919 1 study area

c-km per day - 1 zones

3.4 Project workflow

Having introduced the measures used to evaluate the model accuracy we can now look at how
these measures will be used in the analysis of the current traffic situation and the subsequent
model adjustments. This section will cover how each of the research questions will be answered
and what the limitations to each of the stated approaches are.

3.4.1 Question 1: Valuing the impacts of features on demand

The literature review revealed a number of factors that influence cyclist routing and these factors
(or their proxies) were also found to be present in the available database. Given all that, it is
necessary to establish what effect an individual value for a factor has on the speed of any link
where that characteristic is present. One approach that achieves this is a regression analysis.

A multinomial regression model could give the contributions each of the factors have on the traffic,
given that the independent variables were the factors on a link and the dependent variable was
the amount of traffic generated on that link. This approach comes naturally with a number of
limitations and assumptions. For one, if the dependent variable is traffic, then locations with
high traffic intensities will have their features overvalued compared to locations with little traffic.
To address this, a spatial regression model could be used. Such a model considers the values
of the neighboring dependent variables to a point being regressed, thus decreasing the effects of
large traffic intensities on the regression coefficients.
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This could be done in the GeoDa software which can do Ordinary Least Squares (OLS) regressions
as well as the mentioned spatial lag and spatial error models. These latter models require each
data point to be spatially located on a x-y coordinate system, from which GeoDa constructs a
set of polygons. The polygons dictate if two points are neighbors, and depending on the selection
of the user, these neighbors can either be only along the edges of the polygon, or also across the
vertices.

While using GeoDa would solve the issue with overvaluation, it would still have the problem
of the coefficients being in units of cyclists, which would need to be processed somehow to get
the equivalent effect on link speed. The alternative to this is setting the dependent variable
to be speed but this comes with its own problems. One is that there is no way to convert
traffic to speed, as traffic is consequential of the speed of a link, but there is no relation in the
opposite direction. By assuming proportionality, a ”theoretical speed” value could be calculated
to produce such a relationship, as seen in Eq. 3.8.

theoretical speed =
count intensity
model intensity
default speed

(Eq. 3.8)

This theoretical speed could be regressed on directly (as the dependent variable) but it would
also be possible to run the model first with these speeds assigned to their respective links, see
if the accuracy was improved, and then perform the regression with the residuals now being
calculated using the intensities the model just calculated. Doing this can verify if the theoretical
speeds actually improve the model.

One limitation of this approach is that proportionality does not entirely apply here, and even if it
did, the approach results in very high residuals returning extreme speeds (<4 and >200 km/hr).
This could be accounted for by taking the average intensities per distinct default speed—of which
there are only 28 in the study area—but such aggregation loses detail in any subsequent analysis.

Moving from the dependent to the independent variables, they too involve some assumptions, the
most prominent of which involves the value of the variable itself. Take for example the facility
factor; it has a range of values associated with it but there is no objective way to determine how
much more appealing a solitary bicycle path is over a bicycle street. The immediate solution to
is is using dummy variables which either take the value 1 when a characteristic is present or 0
when it is not. Issue then becomes the number of these variables, as most software is limited in
how many independent variables it can consider—GeoDa has a maximum of 16 and Excel can
compute up to 64. Considering that there are up to 69 unique characteristics over 13 factors
that a link could have, Excel will have to be used when dealing with such variables.

One way to avoid all of these limitations with regression modelling would be to manually identify
some relationship between the characteristics of the link, be it spatial or physical, and then adjust
the speeds of links with this property based on some other measure. For example, Dat.mobility’s
theory is that traffic within city centers is being overestimated. With this hypothesis it would be
possible to select some characteristic of this area (such as pedestrian spaces) and see if a change
to the speed of all links with this property would improve the accuracy.

The immediate limitation with this approach is that it relies on some other calculation to find
the effects of the characteristics on speed. One such option is to use the calibration coefficient
and calculate its median value for each characteristic. Significance of this value could then be
based its deviation from the mean value, but this may however cause the results to be over-fit
to the data set. That is to say, the values found to improve the accuracy for this data set may

22



not produce the same effects when applied to the whole Netherlands. It will also involve some
trial-and-error to find which factors give the best results.

3.4.2 Question 2: Implementing the found impacts

The method used to find the effects of the features will partially dictate how they will be incor-
porated into the model, but there is some variety in the specifics. The most complex method
involves the conversion of coefficients resulting from regressions involving traffic volumes. If the
independent variable weights are in units of relative importance—i.e. 0 for the worst perceived
characteristic and 1 for the best—then the coefficients will be the contribution this factor has
towards the traffic volume in cyclists per day. To get a ratio in the form necessary to correctly
adjust the speeds, the new expected traffic on a link must be divided by the current default
traffic, similarly to the CC measure as seen in Eq. 3.5. By adding the resulting regression equa-
tion to the default speed, the new traffic volume can be calculated, which divided by the default
speed returns a ratio which can be used to scale the speed by. Eq. 3.9 depicts this, where cn is
the coefficient for factor n, wn is the weight for characteristic n, and xi is the estimated traffic
for link i.

adjustment ratio =
xi + c1 ∗ w1 + c2 ∗ w2 + ...+ cn ∗ wn + C

xi
(Eq. 3.9)

If the weights are set to the average residual for a characteristic, then the equation stays the same
but c and w are flipped, with the regression fitting the importance instead of the traffic volume.
When theoretical speed is the dependent variable, then this gets simplified further to just the
fitted equation being how the speed is calculated—no ratio or other adjustment necessary.

The calibration coefficient was already introduced in prior sections as a measure of accuracy,
but it can also serve as a weight with which to adjust the speeds by. This is because of its
construction, which relates the ratio between the two intensities; default and calibrated. Note
however that the CC can take values anywhere between 0.002 and 150,000, so some aggregation
is required. Using the mean CC across all links with some characteristic would cause these
extremes to significantly skew the adjustments. For example, the mean CC across all links is
24.092, but when values greater than 7 and those equal to 0 are removed, this drops down to a
much more reasonable value of 1.299.

An average CC of 1.299 would indicate that the model is underestimating the amount of traffic,
but based on the count data, it should be overestimating. This further confirms that using
means would not be ideal. By comparison, the median for the filtered set is 0.938; a far more
reasonable value which fits our expectations for the model. To check if a median CC for a feature
deviates significantly from the overall median CC, we can compute the standard deviation across
the median CCs for a factor. If one of these median CCs then falls outside of the median ∓
1 standard deviation range, then the characteristic is said to have a significant impact for that
factor. We can verify this by visually comparing the CC frequency plots for a characteristic
against the frequency chart for the whole set (Figure 8).
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3.5 Data pre-processing

Before any analysis can be done, the data must be processed and combined from their respective
databases. This poses a challenge when the different databases use different methods to relate
the information within them. The biggest problem here was connecting the count database with
the model outputs, as the underlying networks of these two models was not identical, both in
the digitization and the shapes of the links. To perform this connection, first the start and end
nodes were compared to see if they lie within 0.1 meters of each other, and then azimuth of a link
segment was calculated for both models. If they were identical, then the digitizations were also
identical. If they were flipped by 180 degrees, then they were digitized in opposite directions.
This process removed 875 links whose shapes were significantly different between the models.

One important step that is necessary to do before any regression analysis is checking the corre-
lation between the values being investigated. If two independent variables are highly correlated
with each other, then one of the fundamental assumptions of the regression is violated—no mul-
ticollinearity. The correlations between the characteristics in the count set was checked using
Excel’s CORREL function, and those with values > ± 0.8 were excluded from subsequent investi-
gations. The full correlation matrix can be seen in Appendix B - Factor correlation matrix, with
the found highly correlated values being unknown surface; surroundings; hindrance; beauty;
lighting, and when a link was marked as not being an intersection. This is quite reasonable
considering that the unknown characteristics were almost always applied only to intersections.
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4 Results

The results of the approaches outlined in the methodology chapter will be presented in this
section. It is structured in a chronological manner, where each successive subsection is presented
in the order its approach was used. Note however that many combinations of the methods were
tried and the results presented here are only the most successful ones for that approach. For
each of these subsections, the relevance of the approach in answering the research questions is
given in addition to stating what caused the shift from one approach to another.

4.1 GeoDa regressions

Using GeoDa to do an spatially lagged regression gave the results seen in Table 5. The full
report can be found in Appendix C - GeoDa regression report. Here, the dependent variable is
the traffic residual and the independent variables use the average residual across all links with
a specific characteristic as their attribute. This causes the coefficients to represent the scale of
the impact the average residuals have for a characteristic within a factor. Negative coefficients
imply opposite effects on traffic residuals than what the average residual (characteristic value)
implies.

Table 5: Output of the best GeoDa regression using traffic residuals

Variable Coefficient Probability

Spatial variable 0.5157 0.00000
Constant 520.7160 0.36849
Length -0.0834 0.49786
Speed -12.8649 0.60348

Facility 0.5912 0.00087
Surface 0.5483 0.02150

Environment 0.0175 0.95584
Intersection type -1.3223 0.56464

Max slope 0.7027 0.01220
Water 0.487409 0.77147

Nuisance 0.401715 0.07985
Lighting 0.4986 0.56028
Quality 2.4760 0.45904
Beauty 0.4586 0.19078

Road class -1.9890 0.19944
Crossings 0.745415 0.01785

R2 = 0.3113

At a minimum 90% significance level, only the facility, surface, slope, nuisance, and crossings
were found to be significant. This is reasonable, considering both facility and the surface are
used by the default model to set the speeds. Crossings being significant could be explained as
them being bottlenecks in the network which consistently cause large differences between the
model and reality. These findings are also supported by the literature; the Broach et al., 2012,
paper found both facility and slope to be significant drivers of increasing and decreasing utility,
respectively. Genugten and Overdijk, 2016, found facility, surface, and slope to be the three most
important factors for a cyclist’s route choice.

25



Note that the R2 value of 0.31 indicates a poor fit between the dependent and independent
variables, not the accuracy of the adjusted model. When these coefficients were used to adjust
the link speeds, both R2 and RMSE were far worse than their benchmarks for the model, going
as far as having a negative R2.

Given all that, it would appear this method can indicate what factors are significant but the
valuation of these factors is not appropriate for the purposes of this work. The biggest problem
is believed to be the disconnect between the values being regressed and the target adjustment
of speed; traffic is not 100% dependent on the link characteristics, but rather on the attraction
and demand of areas close to it. To address this, it was decided to move from GeoDa to Excel
and use different variables in future regressions.

4.2 Theoretical speeds in Excel

By moving to Excel, it was possible to use dummy variables for the characteristics instead of
arbitrary weights. This has the regression coefficients directly relate how a specific characteristic
influences the dependent variable. Regarding the concerns over the conversion of the coefficients
into effects on speed, the previously introduced theoretical speed parameter is used as the de-
pendent variable. The best results were found when this theoretical speed was the average per
distinct default speed, rather than a individual theoretical speed per link. Unknown variables
were ignored, due to their high correlation, and the constant in the exponential equation being
fit was set to 1. The outputs significant at a 90% level are shown in Table 6, with the full version
in Appendix D - Excel regression report.

Table 6: Partial output containing significant values from the LOGEST Excel regression

Variable solitary moped path protected moped path protected bike path bicycle street
Coefficient 0.9460 1.0923 1.0686 0.9217

Variable painted gutter normal road service road avg. slope > 4 %
Coefficient 0.6405 0.6287 0.7173 0.3998

Variable max. slope 6-8% max. slope 10-20% below grade crossing
Coefficient 1.3360 1.2134 0.7132

R2 = 0.9493

Notice how values from the factors that were found to be significant in Subsection 4.1 were again
found to be significant here, with the only ones missing being nuisance and surface. For nuisance,
that could be because the average residual for links with this characteristic was relatively high
at -479, causing it to be more valued in the previous approach. Unlike in that method, the very
high R2 here shows that this method is very good at fitting the variables into an exponential
function. Additionally, when the theoretical speeds—the dependent variable in the regression—
are used in the model to check if they would improve the accuracy, significant improvements to
both R2 and RMSE were found with values of 0.69 and 818, respectively. This indicates that
the theoretical speeds do improve the model performance, but with the caveat that this is true
only when manually applied to select links. By using the exponential equation to calculate the
new speeds for all links, the model returns an R2 of 0.23 and an RMSE of 1295. These are both
significantly worse than the benchmark and this was the best result for all regression attempts.

It is believed that a major contributing factor causing this to happen are the differences in the
number of features between the count set and the study area set. Take for example the protected
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moped path characteristic: 8.6% of all links in the study area have this feature, while 27.5%
have it in the count set. Because of the way traffic is distributed over the network—the agent
optimizes their route to minimize cost—changes to link speeds with a particular characteristic
will always have cascading effects on all other links on the network. The same amount of traffic
is always generated going to the same destinations, so changing the speed only affects what path
the traffic takes. And when the regression’s ‘mental model’ differs from the situation its outputs
are being applied to, then the resulting accuracy can never approach the theoretical one. The
clear limitation here appears to be the reliance on count locations. So, the final approach used
the calibrated model to investigate the differences across most of the links in the study area.

4.3 Calibration coefficient adjustments

Using the calibrated model, the CCs were computed for all links where the default model gener-
ated traffic in the study area. Table 7 shows the results of this approach for the facility factor in
the direction of digitization. The full results are in Appendix E - CC per characteristic report.

Table 7: Calibration coefficient statistics of the facility factor

Facility Frequency Median CC ∆ Median CC Mean CC

pedestrian crossing 123 0.562 -0.376 0.919
pedestrian area 137 0.614 -0.324 1.315

protected moped path 3882 0.685 -0.253 0.908
protected e-bike path 70 0.689 -0.249 0.677

service road 477 0.737 -0.201 0.983
ferry 22 0.849 -0.089 1.032

painted bike lane 2916 0.881 -0.057 1.107
on-ramp 1 0.939 +0.001 0.939

normal road 21595 0.946 +0.008 1.374
solitary bike path 2589 1.042 +0.104 1.418

protected bicycle lane 4872 1.088 +0.150 1.313
solitary moped path 692 1.132 +0.194 1.349

unknown 931 1.210 +0.272 1.616
bicycle street 104 1.240 +0.302 1.370

Value across all links - 0.938 σ = 0.222 1.299

From those characteristics which had significant differences in their medians, two were found—
through trial and error—to improve the accuracy when applied to the whole model. These were
pedestrian areas and bicycle streets, and we can confirm their significance by looking at their
frequency plots, seen in Figure 10 and Figure 11, respectively.
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Figure 10: Histogram of the calibration coefficients for links with the pedestrian area feature

For pedestrian areas, there is a clear peak in the CCs below 1, with only 52 of the 137 links
having a CC greater than 1. Bicycle streets have a less clean distribution of coefficients but they
still show a majority of the CCs falling above 1.

Figure 11: Histogram of the calibration coefficients for links with the bicycle street feature

Using a case expression, if a link had either the pedestrian area or bicycle street feature, then its
default speed was multiplied by the relevant CC, thus satisfying the restriction on the method
used to adjust the speeds. By doing this, the following effects on the absolute amounts of daily
traffic were observed within the city centers of Arnhem (Figure 12) and Nijmegen (Figure 14).

28



Figure 12: Total traffic within Arnhem’s city center for the default and adjusted models

In Arnhem, the traffic decreases everywhere where less traffic is expected. All of the links in
this area are appropriately marked as pedestrian areas, which is in line with what is observed in
reality. Figure 13 shows a photo of a street in this area, where you can see how the lack of any
bicycle facilities and narrow streets would make it unappealing for cyclists.

Figure 13: A street representative of the cycling situation in Arnhem’s city center
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However in Nijmegen, there is still a substantial amount of traffic going through the city center.
Checking the facility property of these links reveals them to be marked as solitary bicycle paths,
which is unexpected considering the area. Additionally, some of the links through which the
traffic is being re-routed are sloped at a moderate average incline of 2 to 4 %. Such an incline
is likely too unappealing to have the intensity projected by the adjusted model—recall how the
Broach et al., 2012, paper found slope to significantly decrease the utility of a link.

Figure 14: Total traffic within Nijmegens’s city center for the default and adjusted models

To better highlight where the traffic is being routed, the difference in intensity between the
two models was plotted in Figure 15 for Arnhem and Figure 17 for Nijmegen. In the first of
these, a near-perfect adjustment is revealed; all of the pedestrian areas inside of the center show
decreases, with the traffic being re-routed to the appropriate cycling links circling the city center
where it is expected and observed in reality.

The changes outside of this area are routes which previously used some pedestrian link as a
shortcut. How appropriate these changes depend on the location and the actual cyclist behavior
there, but in general, having cyclists cycling on bicycle links is the preferred outcome of the
model.
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Figure 15: Difference in traffic within Arnhem’s city center

In Nijmegen, the differences in traffic are far less neat. The biggest change shifts the traffic onto
a street one block over, with the streets (called Plein 1944) being near identical in reality, but
one is marked as a pedestrian area, and the other as a solitary bike path, as seen in Figure 16.

(a) A ‘pedestrian area’ (b) A ‘solitary bike path’

Figure 16: Highlighting the differences between reality and the database (Source: Google © 2023)
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Figure 17: Difference in traffic within Nijmegen’s city center

Finally, to check if the bicycle street adjustment had the desired effects, let us look at a long
bicycle street running through the town of Duiven, near Arnhem. This is shown in Figure 18,
and we can see increases along the bicycle street and decreases in the roads around it, which is
in line with expectations.

Figure 18: Difference in traffic for a bicycle street
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4.4 Verification

To confirm that the unexpected traffic distribution in Nijmegen was due to the facility label (and
its subsequently higher speed), the speeds for all pedestrian links was lowered to 5 km/hr from
the adjusted value of circa 9 km/hr. The resulting traffic distribution is shown in Figure 19.
There the traffic becomes concentrated on links labeled as solitary bicycle paths, with some links
having daily intensities (circa 9000 c/day) greater than the two bridges that span the Waal river
(circa 5200 c/day at most)—something that is clearly unreasonable. This distribution of traffic
mirrors that shown in Figure 14, confirming it as a consequence of the different facility labels.

Figure 19: Total traffic within Nijmegen’s city center with speed = 5 km/hr

While using such a low speed value would be representative of cyclists having to disembark and
walk through the city center, that would not be accurate to the real situation, as cycling is still
possible in this area. Indeed, some of the links marked as solitary bike paths in Nijmegen do have
facilities for cyclists, such as lane markings on the ground to separate pedestrians from bicycles.
In Figure 20 an example of these markings is shown. The location of this picture is labelled with
(c) in Figure 17.
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Figure 20: Cyclist facilities within Nijmegen’s city center (Source: Google © 2023)

Here we can see two noteworthy traffic signs: the one in the top-right is the standard footpath
sign (voetpad ; G7), with the added information that cyclists are permitted as well, provided they
stick to the right side of the path. On the left side of the figure, there is what appears to be a
non-standard sign indicating that cyclists and pedestrians should “take each other into account”
(houd rekening met elkaar). There are no clear rules in this situation as to who has the right of
way, with the only legal requirement being that “It is prohibited for anyone to behave in such a
way that [endangers others] or [traffic becomes hindered].” (Wegenverkeerswet 1994, § 1. Art.
5).

Clearly there are accommodations made for cyclists in Nijmegen’s city center, however the default
speeds assigned to the both the pedestrian areas and solitary bike lanes here range between 14
and 15 km/hr, which is far too high when you consider the hindrance posed by pedestrians and
other obstacles. Thus a middle-ground value between the two—as was found with the CC median
intervention—is ideal for representing what likely is the real cyclist speed in this area.

To statistically check if the adjustments improved the accuracy, let us look at the changes in the
accuracy measures from Section 3.3. These are shown in Table 8. All of them (except for the
Wijchen control) show improvements in their values between the default and adjusted model.

Table 8: Changes to the accuracy measures

Measure Initial value New value Change

R2 0.615 0.621 +0.006
RMSE 917 911 -7
CC 0.919 0.941 +0.022

Arnhem c-km/d 1.96 1.10 -0.86
Nijmegen c-km/d 1.86 1.81 -0.05
Wijchen c-km/d 0.79 0.79 -
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The relatively minor changes to R2 and RMSE stem from the fact that there are no count
locations within the city center, so the changes here come from small differences in traffic at
links around the city center, in addition to the changes to bicycle streets. In Arnhem’s city
center, a significant decrease is seen in the c-km/d measure, but much less so in Nijmegen.
This is because of a poor shape selection when marking the borders of the city center, with
it containing many normal roads. Additionally, because a substantial amount of the links in
Nijmegen’s city center are marked as solitary paths, no adjustments were applied to them.

One additional way to validate these results is by comparing the trends here with differences
between different versions of the OmniTRANS Spectrum model. The version that was worked
on during this project was made in 2018, with the newest version being from 2020. In the two
cities looked at, there are large decreases in traffic in the same places as shown in this work.
Unexpectedly however, the bicycle street shown in Figure 18 had a decrease in intensity between
the model versions. This may be because of differing OD-matrices, which would be reasonable
considering during 2020 travel demand was very abnormal.
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5 Discussion

To best discuss the findings it would be good to first remind ourselves what this and any static
traffic model does; they approximate the behavior of people through rules of supply and demand,
with their pathing being decided using optimization algorithms that are far removed from the
reality of human travel. The model has no concept of weather, time of day, or what season it is,
all of which will have an impact on the behavior of cyclists. For example, when it is winter and
it gets darker earlier, cyclists may tend to prefer roads with good lighting but the model cannot
account for this, even through there is a factor related to street lighting.

Furthermore, the model is limited in the motives it can simulate. Specifically how it cannot model
recreational travel. And with recreational cycling being a popular pastime in the Netherlands,
this causes a significant disconnect between the model and reality. Especially as it relates to
count data, because recreational cyclists will still be registered as demand on a counter even if
the model cannot simulate that trip (motive). Another type of trip the model cannot simulate
is last mile trip, where people traveling from a transportation hub to their eventual destination
using a bicycle are not modeled as cyclist agents in the model. That is another significant
disconnect between the model and reality, as it is very common for people who travel with the
train to also use a bicycle at some point during their journey.

And there are disconnects not only in what trips the model can simulate, but also how travel
behavior can vary within a motive. Consider the following situation: a parent with their child
and a young adult both want to cycle to the train station. The parent will prefer to use safer,
perhaps longer routes while the young adult will prefer the fastest route, because he is late for
the train. To the model, these are the same agent, and both with have to optimize their route
based on a single cost value. As such, attempting to adjust that cost by considering features
which may be appealing to one of these people will cause the routing for the other to be distorted
from reality. Recall the 2016 study by Shin where they found how routes to work differed to
those going back home. In its current state, the model cannot account for this.

A difference in cycling behaviors may also be one of the reasons why it is not certain that the
values found in this work will have the same effects when applied to the whole Netherlands. We
saw in the literature review how cyclists perceived certain features differently between the US
and the Netherlands, so it is not unreasonable to think there may be differences between the
cyclists in Gelderland and Groningen, for instance.

Another issue is related to the classification of factors within the Cyclists’ Union database.
Because it relies on community contributors to assign values to the factors, there can and do
arise differences between what is listed in the database and what is present in reality. We already
saw an example of this in Nijmegen, but lets look at another one, shown in Figure 21. Here, the
link is marked as a solitary bicycle path in the database, but, in the opinion of the author, the
link is, at best, a protected bicycle path along a road.

However even then there is a problem: the protected lane is not wide enough for two cyclists
to pass each other comfortably so even this label is dubious. Maybe this protected part is
meant for pedestrians, in which case the facility characteristic would be a normal road with
no accommodations for cyclists. But nothing stops cyclists from making use of the lane so that
would not be representative either. What this should highlight is that the actual cycling situation
on a road can vary greatly even within a single characteristic value.
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Figure 21: A ‘solitary bike path’ near Hengelo

Regarding the failure of the approaches involving regressions, earlier it was introduced that one
of the reasons for this failure was down to the disconnect between the regression’s data set (n =
466) and the network that the outputs are applied to (n = 66783). This is partly because the
distribution of characteristics between the two sets of data differ, but also because of a theoretical
issue; people choose to cycle on a link not because it has a high speed, but because it will get
them to their destination. Thus ascribing through the regression analysis that the resultant
traffic on a link as being due to its features is false.

These approaches were however able to successfully identify features that coincided with the
features found in the existing literature to significantly influence bicycle routing. The type of
facility was found to be a significant driver of cyclist routing in all but one paper that was
looked at, and this significance was confirmed using both GeoDa and Excel approaches. The
type of surface was another factor that both the literature review and GeoDa revealed as being
significant.

In that literature they used regression analyses extensively to attribute a characteristic’s appeal
for cyclists, often through a measure such as the distance traveled (by a cyclist) or the perceived
travel time. The key part here is the use of routes, as it enables you to perform logistic regressions
which return probabilities for an event either occurring or not. This then allows an analysis where
the probability of a cyclist choosing a route can correctly be attributed to the characteristics
along that route. Using solely count data to do this is not possible.

What the count data did allow for was a systematic adjustment of the default speeds that, for
the pedestrian areas, landed perfectly between the too low speed of 5 km/hr and the too high
speed of 15 km/hr at 9 km/hr. These findings were confirmed to be appropriate using both
statistical measures and expert opinions.
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6 Conclusion & recommendations

This paper opened by stating that the research goal was to concretely value the impacts some
characteristics have on the amount of traffic on a link. Having presented the findings, it is clear
that this was achieved: the calibration coefficient approach successfully identified features which
had a significant impact on traffic, it provided the scale of these impacts, and it could be easily
implemented into the model within the restrictions put forth by the client. These adjustments
were found to improve the model using both traditional metrics as well as novel measures de-
veloped specifically to address the limitations related to the different model constructions. And
while the typical metrics only showed minor changes, visual plots of the intensities showed signif-
icant improvement in the traffic situation wherever possible such that it was more representative
of reality.

Ultimately, due to a lack of time, the adjustments could not be tested on the full model of the
whole Netherlands. Doing so would confirm if the adjustments would improve the accuracy for
the whole model, but based on the work done here, we can only be sure that the speeds for
pedestrian areas would decrease and those for bicycle streets would increase. This is because the
CC values are simply representations of the difference between the calibrated and default models
for the study area per some characteristic—they do not give any insight into how appealing a
characteristic is for a cyclist.

To continue investigating the relationship of bicycle traffic and link characteristics, this paper
suggests a number areas where further research could be conducted. The first and most immedi-
ate suggestion is to continue testing what combinations of median CCs is the best, as this project
just took the first combination that gave positive results. That testing could take the form of
some optimization algorithm with the target measures being R2 and RMSE, but trial and error
together with some reasoned guesses would work as well.

Another suggestion that is relatively simple to do would be to improve the accuracy of the factor
labels in the Cyclists’ Union database. We saw how vastly different labels could be assigned to
links with seemingly similar characteristics in Nijmegen, as well as how the cycling situation can
vary within a label in Figure 21. To address the situation in Nijmegen, the characteristic value
for these inner city links should be changed. Marking them as pedestrian areas would be the
obvious solution, however that is not entirely representative; it is still possible to cycle in these
areas and in some cases there even are facilities for cyclists (see Figure 20). But labeling them as
solitary paths is wrong in the eyes of the author—the cyclists still need to interact and give way
to other modes of traffic on these links. It may be best to use some new label like “pedestrianized
street”, where cyclists are permitted to cycle and/or there are some accommodations for cyclists
in the area, but the obstacles present prevent cyclists from going as fast as they would on a
typical bike path. It should be noted that, because this project used a version of this database
from 2018, these issues may already be resolved in newer versions.

The Cyclists’ Union also maintains a web-based route-planner application, in which users can
specify some route preferences and the program returns a path for them to use. This is similar
to the BBBike engine from the Hardinghaus and Nieland, 2021, paper. It may be of interest to
perform a similar cluster analysis to identify what the important factors are for Dutch cyclists
when selecting a route. Alternatively, this data could also be used to identify the groups of
cyclists—and their proportion to the general population—who have distinctly different routing
preferences.

Earlier it was mentioned how optimizing speeds for a feature important to one group of cyclists
will decrease the accuracy for cyclists with different preferences when there is only one cost value
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per link. This could be addressed right now in the model, as it contains multiple OD-matrices
for different groups of attraction and supply. For each of these, a different speed table could be
used, thus optimizing the costs per population group. You could expand this even further and
create multiple speed tables for different situations—such as inclement weather or if someone is
travelling to or from work—to account for the differing cyclist behaviors in these settings. To do
that would require extensive information about the distribution of cycling behaviors across the
demographics modeled, which could be its own research project.

If that information was available however, then more options open up for trying to improve the
model accuracy. One such idea would be to collect the average observed speeds of cyclists as
they cycle, so that you could build a table with the real speeds of cyclists on links with certain
features. This could then be used in a similar fashion to the CC, except now the rate that a
link speed needs to be scaled by would be from observed speeds (over default speeds) instead
of traffic. Alternatively, these observed speeds could be directly put as the speeds for any links
with a given facility plus some modifiers—the same way the model has its default speeds assigned
now.

Another limitation that could be addressed with this demographic behavior data is the issue of
recreational cyclists polluting the count data. Its likely that any method which would record
the trip speeds and locations would also record trip motives, so those which would be labeled
as recreational could be discarded from subsequent analyses, as the model cannot simulate that
trip motive. Should we choose to stick to the count data, then this could also be accounted for
by investigating the distribution of traffic at a count location throughout the day. If we assume
recreational trips avoid the typical morning and evening peaks, then if the traffic distribution at
a count location does not follow the typical two-peak pattern it can be discarded.

Of course, the alternative to filtering out the recreational counts is to incorporate recreational
trip motives into the model. That is easy to suggest, but if it was that easy to do, then it would
have already been done. Keeping with the theme of difficult to implement ideas, another one
would be to change the assignment algorithm so it can consider things like the characteristics of
links between an agent’s origin and destination. However this would again require data about
the distribution of cyclist behavior to identify how many agents should get routed along paths
with more greenery, less traffic nuisance, or some other factor. One paper that was not used in
this work but that is relevant to the topic of large-scale bicycle traffic modeling was by Liu et al.,
2020. There they used the results of the Broach et al., 2012, and Jensen et al., 2018, papers to
create a very detailed traffic model where the preferences of cyclists was incorporated into the
routing algorithm.

To summarize, almost all of the possibilities for further research related to this topic revolve
around acquiring more data about the behavior of cyclists. And as we are interested in their
routing specifically, collecting and analyzing route data should be at the forefront of any future re-
search into the subject matter investigated by this paper. This lack of route data is why the work
described here could not ascertain a relationship between the factors and cyclist preferences—it
lacks the personalized data required to investigate the individualistic choices related to travel
behavior.
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Appendix

Appendix A - Fietsersbond database statistics
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Appendix B - Factor correlation matrix
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Appendix C - GeoDa regression report
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Appendix D - Excel regression report
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Appendix E - CC per characteristic report
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