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ABSTRACT

This research investigates the feasibility of using discrete-time Markov
chains (DTMCs) and Markov Decision Processes (MDPs) to model the be-
havior of players in board games, which will allow for further analysis of
the models. The analysis will be performed using the model-checking tool
Prism, which supports a range of probabilistic models (including MDPs
and DTMCs) but also the analysis of models (including automated metrics
computation and strategy generation). This research paper will be focusing
on analyzing the board game Incan Gold (in which players explore a temple
trying to collect as many gems while avoiding hazards) as well as the Combat
Dice Roll mechanic from the Hobbit Adventure board game (where the aim is
to roll a high number using three dice in three rounds). The paper will focus
on answering interesting questions regarding the 2 games, such as: "What
is the probability of a roll resulting in a value > x where x is a possible
roll value?" (Combat Dice Roll) or "At which point is the player encouraged
to withdraw from the game?" (Incan Gold) but also try and answer more
general questions about modeling board games as MDPs.

Ultimately, this paper aims to show how to model and analyze board
games as MDPs to investigate interesting properties of the games (such
as optimal strategies and important metrics) but also to conclude some
limitations of the model in regard to more complex games.

Additional Key Words and Phrases: Probabilistic board game, Markov Chain,
Markov Decision Process (MDP), Incan Gold, Combat Dice Roll, Prism,
Prism-games, The Hobbit Adventure board game

1 INTRODUCTION

Board games have been a popular form of entertainment and so-
cial interaction among different cultures for centuries. However, in
recent years, they have also become the focus of research. Besides
being an excellent form of entertainment, board games can also
be used as learning environments as they are an excellent way to
improve one’s cognitive abilities such as logical and mathemati-
cal thinking [2]. For example, board games can be used to model
important daily life concepts or events, such as taking a risk [7].

From a scientific perspective, modeling and analyzing board
games as mathematical frameworks is interesting for multiple rea-
sons. First of all, some board games are very good examples of
stochastic games which can be transitioned into stochastic models.
Scientists who create model checkers often need good real-life exam-
ples to test their tools, and simplistic board games with predictable
results are perfect examples that can be modeled to test these tools.

Another good reason to design board games as stochastic models
is to ensure that a game is balanced. This is useful when trying
to implement a new board game or trying to make sure that an
existing aspect of a board game is balanced, which can be important
in probabilistic gambling games such as Poker and Blackjack.
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Lastly, modeling a board game into a probabilistic mathematical
framework can provide useful insight into understanding player
behavior. By modeling the game as a stochastic model we can not
only predict player behavior in different scenarios but also derive
good strategies that can be used in those scenarios. This can be
particularly helpful when designing new game mechanics or trying
to improve upon existing ones.

One of the possible ways in which a board game can be modeled
and analyzed is through an MDP. An MDP is a mathematical frame-
work that can be used to model decisions of a process in which the
outcome of the decision is random, for example, the outcome of
rolling a die or flipping a coin. The main advantage of MDPs which
make them suitable for this research is that it is possible to evaluate
and find an optimal solution, which makes them an excellent frame-
work that can be used to analyze the optimal strategy of any board
game that can be modeled as an MDP.

This research aims to discover ways in which probabilistic board
games can be modeled as MDPs and analyze the resulting stochastic
models using the probabilistic model checker tool Prism. While
work regarding modeling and analyzing different boards games has
already been done, we will specifically focus on the probabilistic
game mechanic Combat Dice Roll used in the board game The Hobbit
Adventure board game, as well as the probabilistic board game Incan
Gold. Analysis concerning these games has yet to be performed in
the research space. In the process of modeling these games, we will
focus not only on answering game-specific questions such as "What
is the expected value of a roll" (Combat Dice Roll) or "When is the
player encouraged to leave the temple" (Incan Gold) but also more
general and less researched questions such as:

(1) How can the application of MDPs to board game analysis aid
in identifying optimal strategies, evaluating game balance, or
predicting the outcome of games?

(2) How does the complexity of a game impact the resulting size
of the created model?

2 RELATED WORK

With regard to modeling a board game into Markov Decision Pro-
cesses or Markov Chains, work has been done for popular probabilis-
tic games such as Blackjack [14], Monopoly [1], Game of Goose [4]
and more. Research for the board game RISK has been done by Barig
Tan [13] in which the author has answered 2 research questions
related to the game, with the use of Markov Chains, mainly: "What
is the probability that an attacked territory will be captured?” as
well as "What is the expected loss of soldiers based on the number
of troops that the enemy territory has?". Other interesting work has
been done for the game of Monopoly [1], where Ash and Bishop
have analyzed which are the most profitable provinces based on
the assumption that a player stays in jail until they rolled double
or 3 turns have passed. In [4] the authors describe the steps taken
as well as the tools used in analyzing the Game of Goose for 2, 3,
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4 or 5 players. In [14] Michael B. Wakin and Christopher J. Rozell
describes some steps that can be taken when modeling the game of
BlackJack as a Markov Chain, where the author also implements
well-known BlackJack strategies and compares them. Within the
space of the University of Twente, research with regard to modeling
and analyzing board games as probabilistic models has been done
by Vishva Sundarapandian Raani [11] who modeled and analyzed
the game of Snakes and Ladders as well as the Game of Goose where
the student tried to answer interesting questions such as "Does the
game end within 30 moves" (Snake and Ladders) or "What is the
probability of the game ending in a draw” (2-player Game of Goose).

The above work also helps us get a better insight into what to
expect out of the general research questions mentioned in the intro-
duction. For example, the analysis of the Game of Goose presented
in [4] mentions that the paper did not expand beyond 5 players due
to the complexity of the resulting models and that, as the model
was expanded upon, different tools and approaches where required
to analyze the results. The Game of Risk analyzed in [13] presented
results with regard to the possible outcomes of battles depending on
the number of troops involved and in the analysis of BlackJack in
[14], the paper specifies comparing different well-known BlackJack
strategies.

Concerning the games that we will analyze in this research, no
current study on how to model them as Markov Chains or Markov
Decision Processes or any other probabilistic analysis has been
found.

3 PRELIMINARIES
3.1 Markov Decision Processes

Markov chains or Discrete-time Markov chains (DTMC for short) are
one of the simplest probabilistic models [8]. A DTMC contains 2
key elements, states and transitions. Every single state has outgoing
transitions to other possible states which indicate a change from a
state to another. Every single transition also has a probability at-
tached to it and every single state’s outgoing transition probabilities
sum up to 1. Formally, we can define a Markov Chain as:

Definition 3.1 (DTMC). The tuple (S, so, P) where:

(1) S is the set of reachable Markov states from some initial state
sg € S.

(2) P is the transition probability function, P: S xS — [0,1]
where P(i, j) represents the probability of reaching state j
through state i, where i, j € S and 3} ;e P(jli) = 1.

S is the set of reachable Markov states from some initial state sq
€ S. P is the transition probability function, P: S XS — [0, 1] where
P(i, j) represents the probability of reaching state j through state i,
where i, j € S and 3 jes P(jli) = 1.

A Markov Decision Process (MDP for short) extends Markov Chains
with the introduction of non-determinism. In a DTMC the next state
is chosen according to the probability distribution of the current
state, however, in an MDP, a state may have more than 1 possible
distribution, indicating that the resulting state is not only depen-
dent on the current state but also on the choice of the distribution
(known as policy) [8].

Daniel Mocanu

Formally, an MDP extends a Markov Chain [12] as:
Definition 3.2. The 4-tuple (S, so, A, P, R) where:

(1) As before, S is the set of reachable Markov states from some
initial state sg € S.

(2) A is the set of actions available to a state, where the set of
actions for different states need not be the same.

(3) Pisthe state transition probability where P(i, a, j) denotes the
probability of reaching j from i given actiona € A, i, j € S.

(4) R is the transition reward where R(i,a, j) > 0 denotes the
reward achieved in a transition from i to j given action a € A,
ijest

As noted, one of the unique characteristics of an MDP is a policy
(also known as strategy or adversary). A policy determines the action
which will be taken by some existing state s. Formally, a policy is a
function 7 mapping a state to a resulting action 7: S — A. It should
also be noted that a policy influences the reward system of a model.
In general, a policy could be used to minimize or maximize a reward,
however, the reward is determined based on the action taken at
every single state, which in turn is determined by the policy.

3.2 Prism and Prism-games

Since modeling an MDP based on a board game can quickly become
very large, tools which can aid with the creation of such MDPs are
necessary. To model a board game into an MDP, the probabilistic
model checker Prism [9] version 4.7 as well as Prism-games [10]
version 3.0 were used. Prism provides a simple state-based language
that can be used to construct a variety of probabilistic models includ-
ing Markov Decision Processes. The main advantage of using Prism
is the broad support for constructing Markov Decision Processes,
Prism helps keep track of the intended relevance of states and lets
the user automatize the creation of states and relations. The tool
also allows for probabilistic model checking which means that the
user can analyze the behavior and outcome of an MDP. An addition
to the tool which allows for a more in-depth analysis of a model is
the tool Prism-games.

Prism-games is an extension of Prism that can incorporate com-
petitive or collaborative behavior, modelled as stochastic multi-
player games. Unlike Prism, Prism-games also supports strategy
generation and strategy analysis which is crucial for some of our
research questions. The tools will be helpful to us in analyzing the
mentioned board games to find an answer to our research questions.
Based on this information, we can then model and analyze Markov
Decision Processes using the Prism modeling language. The analysis
of the created models will be done using Prism’s property specifi-
cations [9] support as well as Prism-games’ strategy generation
[10]. For property specification with regard to discrete-time models
such as MDPs and DTMCs, a quantitative property specification
that subsumes Probabilistic Computational Tree Logic (PCTL) is used.
Applying Prism properties, the user can ask non-trivial questions
about the model:

(1) P=1[F "reach G" ] - Is the probability of reaching G (from

the inital state) equal to 1?

1in the model description, we use both states and transition rewards, the only difference
is that state rewards are collected at the state itself rather than on the transition.
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Prism will return either True if the property holds or False (as well as
a counterexample) if the property does not hold. Properties can also
be used to determine the probability of reaching G (P=? [F "reach
G"]) which will return the probability of reaching G from the initial
state. We then can build strategies based on defined properties using
Prism-games. The tool will generate the best strategy to be used to
achieve the probability of reaching G, mainly the property Pmax=?
[F "reach G"].2

4 COMBAT DICE ROLL

In this chapter, we will be looking at the Combat Dice Roll mechanic
from the Hobbit Adventure board game. We will explain the game
rules, the established research questions, the methodology for build-
ing the model and the results to the defined research questions.

4.1 Game Rules

Information about The Hobbit Adventure board game as well as the
game rules of the Combat Dice Roll mechanic can be found in [5]
(Last Access 02.07.2023).

The Combat Dice Roll mechanism in the Hobbit Adventure game
is composed of 3 identical D6s (6-sided dice). Three of the six sides
of the dice contain numbers 1 through 3: (1], (2], (3]. The other three
sides of the dice contain some pips 1 through 3: (-], (J, (). The player
first rolls all 3 Combat Dice. The player then separately sums up
the value of the dice containing numbers and the dice containing
pips. The value of the roll is the absolute difference between the
sum of numbers and the sum of pips. If the roll results in 3 sides
with only numbers or only pips, the player adds up the resulting
number which will represent the value of the roll. Some example
Combat rolls could be:

(1) A roll of (1], (2], [J results in a value of 1.
(2) A roll of (7, (1), (2] results in a value of 0.
(3) A roll of 7, (7, (2] results in a value of 4.
(4) A roll of [, (), ) results in a value of 6.

After the first roll, the player can decide to re-roll 1, 2, or 3 of the
Combat Dice, the values of the dice which are not re-rolled are kept
in the re-roll. After the first roll, the player can re-roll up to 2 times
following the rolling procedure mentioned above.

The goal of the game is either to maximize the resulting combat
roll value or to obtain a combat value higher or equal to a given
value.

4.2 Research Questions

With regard to the Combat Dice roll mechanic present in the Hob-
bit Adventure game we will be answering the following research
questions (with the usage of the optimal strategy):

(1) What is the maximal probability (over up to 2 re-rolls) that
the roll will result in a value > x, for x € {1,2,...8,9}?

(2) What is the maximal expected value which will result from
the roll (for up to 2 re-rolls) and how does this value change
based on the number of re-rolls?

’Note that Pmax is a property specification available only for models with non-
determinism and cannot be used for Markov Chains. Conversely we cannot use P=? to
ask questions about the probability of Markov Decision Processes since MDPs do not
contain a fixed probability distribution for every state prior to fixing a strategy.
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(3) Which dice is the player encouraged to re-roll to achieve the
optimal results?

4.3 Model

All further explanations are based on the Prism code used to model
the mechanic that can be seen in Figure 1.

mdp

//# possible re-rolls of the game
const int k;

module Dicel
dl @ [-3..3] init o;
//The first roll is required

[firstRoll]l r = 0 -> 1/6 : (d1' = -3) + ... + 1/6 : (d1' = 3)
//Subsequent rolls are optional
[reRolll r > 0 & r < k => 1/6 : (d1' = =3) + ... + 1/6 : (d1' = 3)

[reRolll r > 0 & r < k -> true;
//After k rolls
[end] r = k -> (d1'=0);
endmodule
module Dice2 = Dicel [dl = d2] endmodule
module Dice3 = Dicel [dl = d3] endmodule

module Roll
ro: [0..k+1] init 0;
[firstRolll r = @ -> (r' = 1);
[reRolll r >0 & r < k -> (r'
[end]l r = k -> (r' = k+1);
endmodule

=ro+;

// |d1+d2+d3|

rewards
r=k:

endrewards

pow(pow(d1+d2+d3, 2), 0.5);

Fig. 1. Combat Dice roll code

To define the model of the game, we constructed 4 different mod-
ules in the Prism language, 3 of the modules represent the 3 different
dice that need to be rolled with a variable indicating the value that
was rolled. The values of the dice range contain values from the set
{-3,-2,-1,1,2,3} where the values 1, 2 or 3 are the values corre-
sponding to a numerical roll from 1 to 3, and the values —1, —2 or
—3 are the values corresponding to dots being rolled from 1 to 3.
The 4" module represents the number of the roll (first, second or
third roll). Therefore, every unique state in the model is defined by
4 values, the resulting rolls of the 3 different dice, and the number
of the roll. Every single module contains several actions which each
represent one of the possible rolls (one, two or three). The model
also contains non-deterministic choices which represent a player’s
decision. The non-deterministic choice is only available for 2nd op
3" roll and the 2 different choices (per dice) are to either re-roll
the dice or keep its current value. To ensure that the rolls are done
simultaneously, we also use synchronization actions on all the dice
rolls and the roll number. This ensures that all the dice are rolled
simultaneously, therefore a state in which one of the Dice has the
value 0 (other than the initial state) does not exist. Last, but not least,
another important aspect of our model is the use of rewards. This is
useful when calculating the maximal expected value that the player
can anticipate after 3 different rounds of rolls. Overall, the model is
composed of 650 unique states (out of which 1 is the initial state and
1 final state) and a total of 148609 transitions.

To test our model and derive the answer to the research questions,
we used Prism’s property support. To answer the first 2 research
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questions which ask about the probability of obtaining a desirable
roll as well as the expected value of the roll, we defined 2 properties,
mainly:
(1) What is the maximal probability of obtaining a roll value > x?
(2) What is the maximal expected roll value which will result
after kK number of re-rolls?

This is equivalent to the following Prism properties:

(1) Pmax=? [F v/(d1+d2 +d3)2 > x&r = k] 3

(2) Rmax=? [Fr=k+1]
where d1, d2 and d3 are the resulting values rolled for Dicel,
Dice2 and Dice3, r is the variable representing the current roll num-
ber and x and k are the constants representing the desired value and
the maximal number of rolls respectively. In the properties, we are
looking for the maximal probability as well as the maximal reward,
this way, the tool will give us the highest possible result based on
the optimal choice of non-determinism.

The third research question which focuses on the optimal strategy
of obtaining a desirable result cannot be answered with the sole
use of the Prism tool. For this research question, we need to change
our model so that it can be used with Prism-games which extends
to strategy generation (unlike Prism). For this reason, the model
needs to be extended with the specification of a player as well as
the module and the actions that the player controls. The model
declaration also needs to be changed from MDP to SMG (Turn-based
stochastic multi-player game). The SMG model can be viewed as a
generalization of an MDP and acts the same way as an MDP [10].

To generate a strategy with regard to the newly declared player,
we also need to change the first property to specify that we are
trying to maximize the probability of rolling a desirable value x. The
updated property: "«1» Pmax=? [F 1/(d1 +d2 +d3)? > x&r = k]"
indicates that the generated strategy will maximize the roll of the
first player.

4.4 Results

The results for the first research question "What is the probability
(over up to 2 re-rolls) that the roll will result in a value > x, for x €
{1,2,...8,9}?" can be viewed in Figure 2 where all the probabilities
corresponding to roll values from 0 through 9 have been plotted.

From the results we can see that for the first 2 values the prob-
ability of rolling at least 1 or 2 is close to 1 (0.9996 and 0.9878
respectively). This probability decreases drastically for the last 2
values, where the probability of obtaining a roll value of 8 or 9 is
0.2959 and 0.1207 respectively.

Just like the first research question, the second question "What is
the expected maximal value which will result from the roll (for up
to 2 re-rolls) and how does this value change based on the number
of re-rolls?" can also be answered with the use of experiments. The
results can be viewed in Figure 3 where all the expected values
corresponding to the number of rounds ranging from 1 to 20 have
been plotted.

From the results we can see that one can expect that the resulting
value from the first roll is approximately 3. The expected value

3Prism does not have a way of representing the absolute value of a mathematical

expression, therefore we have to use Va? = |a|
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Fig. 2. Probability results for obtaining > x (under the strategy of maximiz-
ing getting at least x)
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Fig. 3. Expected Value based on round #

however increases with the number of allowed re-rolls. Within the
rules of the game, being allowed up to 2 re-rolls that is, the player can
expect a roll value of 5.655. However, when the number of allowed
re-rolls is increased, the expected outcome slowly reaches a value
close to 9, the expected value of up to 19 re-rolls is approximately
8.868.

The third research question, mainly: "Which dice is the player
encouraged to re-roll to achieve the optimal results?" was analyzed
by creating a strategy for the aforementioned player1 property,
the resulting strategy can then be analyzed using Prism’s model
simulator where the user can either choose to generate a random
path or a path from an existing state.

Since it would be time-consuming to look at every single possible
strategy for all values 0 through 9, we analyzed the tool’s proposed
strategy for obtaining the value 9. According to the generated strat-
egy, the player should keep all 3] or -] and re-roll all the other values
unless a 3) and a (-] have both been rolled. If only a single (3] and a
single (-] have been rolled, the player can re-roll either of the 2 dice
as well as the third die. If there is a majority of rolls of (3] or (7, the
remaining die should be re-rolled.
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5 INCAN GOLD

In this chapter, we will be looking at the Incan Gold board game. We
will explain the game rules, the established research questions, the
methodology for building the model and the results to the defined
research questions. However, due to some limitations with regard
to memory issues caused by the size of the models but also because
of some limitations of Prism, we will only be analyzing the game
for only 1 player and a single round.

5.1 Game Rules

Information about Incan Gold as well as the game rules can be found
in [3] (Last Access 02.07.2023).

Incan Gold is a board game for 3-8 players who explore a temple
and whose goals are to maximize the treasure which the player
takes out from the temple over the course of 5 rounds. Before the
beginning of a new round, a card (picked out of a set of 5 Artifact
cards) is added into the playable card deck. Only 1 new Artifact
card may be added to the deck and the 5 artifact cards correspond
to the 5 rounds that need be played. The deck of cards contains 30
cards (excluding the 5 Artifact cards) out of which 15 are Treasure
cards each card indicating a value of treasures divided amongst the
players and the other 15 are Hazard cards (3 copies each of 5 unique
hazards). The total value obtainable by all the players combined is
124 gems (excluding Artifact cards).

At the start of each round, the Artifact card corresponding to the
round is shown to all players and then shuffled into the deck of
playable cards. If the Artifact card is not found by the end of the
round, it is kept in the deck for the next round. Every round consists
of a variable finite amount of turns. Before a new card is drawn, each
player is faced with a decision. They can decide to either continue
exploring the temple or bail out the temple, the decisions are made
simultaneously. After all the decisions have been made, a card is
drawn from the deck of cards and is revealed to all players.

Three possible cards can be drawn from the deck:

(1) A treasure card - Indicates that the players have found a
treasure of a given value. The treasure is split (rounded down)
according to the number of players that are still exploring
the temple.

(2) An artifact card - If an artifact card is found, the artifact is
left on the path back from the temple.

(3) A hazard card - If the type of hazard card is drawn for the
first time, nothing happens. If this is the second time that the
same hazard type was drawn, however, the current round is
over and all the players who are still exploring the temple
have to give back all the treasure that they have found while
exploring the temple (for the current round only). The last
drawn hazard card is also removed from the deck for all
further rounds.

If the round is not over, the players repeat the turn procedure until
either the round ends because of a hazard card, or all the players
have bailed out of the temple. When a player leaves the temple, they
collect all the current treasure that they have obtained as well as
the treasure left on the way out of the temple. If 2 or more people
leave the temple at the same time, the treasure left on the way out
is split according to the number of players leaving. Any remainder
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as a result of division is left on the path. If there is also an artifact
on the way out of the temple, the artifact can be collected if and
only if a single player is leaving the temple. This means that if 2
players leave the temple at the same time, none of them can claim
the artifact and it is left on the path. If an artifact left on the path is
not collected by the end of the round, it is lost forever and removed
from the game. The first 3 Artifacts to leave the temple are worth 5
treasure points, the latter 2 being worth 10 treasure points.

At the end of the game, all the treasures are counted and the player
with the highest amount of treasure points wins. The tiebreaker
between 2 players with the same amount of points is decided by the
number of artifacts collected, if this is again tied, another round of
the game should be played (but for the simplicity of this analysis,
we will assume that the game ends in a draw).

Depending on the version of the game the cards in the deck might
differ. For this research we will be using the following deck of cards:

o 5 different types of hazard cards - 3 of each
o Gem cards valued at 1,2,3,4,9,13,14,15,17 - 1 of each
e Gem cards valued at 5,7,11 - 2 of each

5.2 Research Questions

With regard to the Incan Gold board game, we will have the research
questions split into two different categories. In this research, we
will try to answer the following research questions:

(1) With regard to the Game Logic:
(a) What is the expected number of cards that will be drawn
in a single round?
(b) What is the total expected number of gems in a single
round?
(c) What is the probability of drawing at least x amount of

cards without finishing the game, where x € {1,2,3, ..., 20, 21}?

(2) With regard to a Single-Player version of the game:

(a) What is the maximal expected number of gems that a single
player can collect under a generated optimal strategy?

(b) Given the strategy of maximizing the expected reward for
a single player, what is the probability of achieving each
possible reward value?

(c) What is a general strategy which can be used by a player
to maximize the amount of gems they attain?

5.3 Model

The approach to the MDP model of the Incan Gold board game
is very different from the one of the Combat Dice roll mechanic
described above.

The general model is composed of multiple parts which each have
been constructed as distinct modules of the model. Below we will
show the different modules that we build and also discuss 2 different
models that we created to answer the above research questions, a
game logic model and a single-player model.

5.3.1 Game Logic. The Game Logic model is composed of a single
distinct module, namely the Board module which contains all the
game logic with regard to the board game itself. This includes vari-
ables corresponding to all the unique types of cards in the playable
deck (where the value of the variable indicates the number of cards
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of that type that has been drawn) as well as the logistics and con-
straints (in the forms of Prism commands) equivalent to the property
of drawing a card or the condition of the game ending via player
withdrawal or by drawing the same type of hazard card more than
once. The model also contains 2 distinct reward types, "steps” and
"gems" which are used to define important properties about the
model. A snippet of the Prism code used to build this model can be
seen in Figure 4. *

dtmc

formula totalCards = 31-h1-h2...-gl17-d;
formula notGameOver = (h1<2)&...&(h5<2);
formula rewardFormula = gl+2%g2...+17%g17;

module Board
//Hazard Cards
h1 @ [0..3] init o;

hs5 : [0..3] init 0;
//Treasure Cards
gl : [0..1] init o;

g7 : [0..1] init 0;

endGame : bool init false;
//Artifact
d : [0..1] init 0;

//CardDraw or GameOver
[cardDraw] notGameOver = true & endGame = false -> (3-h1)/totalCards :
(h1'=h1+1) +...+ (1-gl17)/totalCards : (g17'=g17+1)
[endGame] notGameOver = false -> 1 : (endGame '=true) & (h1'=0) &...&
(g17'=0) & (d'=0);
endmodule

rewards "steps"
[cardDraw] true : 1;
endrewards

rewards "gems"
notGameOver = false :
endrewards

rewardFormula;

Fig. 4. Board Game Logic

To answer the above research questions with regard to the Game
Logic, we also introduced several properties that will provide help
with that matter. In the research questions sub-section, we ask 3
main questions which are of interest to us. To answer this, we define
the following properties:

(1) What is the expected number of steps after which a single
round of the game will end?
(2) What is the expected total number of gems obtainable in a
single round of the game?
(3) What is the probability of drawing at least x without losing
the game?
Which are equivalent to the following properties defined in Prism:
(1) R{"steps"}=? [ C ]
(2) R{"gems"}=? [C]
(3) P=? [ F "drawnCards" & notGameOver=true |
where the condition >drawnCards” checks whether the number of
drawn cards is > x. The 3 properties correspond to the research
questions 1a, 1b and 1c stated above (in the corresponding order).

“In this module of the GameLogic, the player withdrawal condition is not added to the
transition logistics. Also it should be noted the Artifact card is not counted towards the
total reward formula since it might or might not be collected when there are multiple
players involved. Both of these will be taken care of in the models discussed further
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The results of these properties will be discussed in the next sub-
section.

5.3.2 Single-Player. The Single-Player model includes both the
Game Logic as well as a Single-Player added along. All the changes
explained below can be seen in Figure 5.

Firstly, we have the same game logic module mentioned in the
sub-section above. However, this module now takes into account the
player withdrawal condition for the single player in the game. Next
to this, we introduce 2 new modules, mainly the Playerl module and
the Controller module.

As per the rules of the game, before a card is drawn (except when
the first card is drawn), each player is faced with a decision that
needs to be done simultaneously, that of leaving or staying in the
temple. The decision of the player is modeled as a non-deterministic
transition where p1 = 0 indicates that the player is still exploring
the temple and p1 = 1 that the player is leaving/left the temple. To
ensure that the sequence of moves between a player making a choice
and a card being drawn is respected, we also define a 3td module
named Controller which contains 2 distinct transitions that are each
synchronized with the actions "cardDraw" and "playerChoice" of the
Board and Player modules respectively. Another important note is
the change in the gems reward system, which has now also been
modified to only reward the player if they have managed to leave
the temple in time>.

mdp
formula notGameOver. ..

module Board...
//CardDraw or GameOver
[cardDraw] notGameOver = true & endGame = false & pl = 0 ->
(3-h1)/totalCards : (h1'=h1+1) +...+ (1-gl17)/totalCards : (g17'=gl17+1)
[endGame] notGameOver=false | pl=1 -> 1 : (endGame'=true) & (h1'=0) &...&
(g17'=0) & (d'=0);
endmodule

module Playerl
//Player state(playing or not)
pl ¢ [0..1];
[playerChoice] p1=0 -> true;
[playerChoice] p1=0 -> 1 : (p1'=pl+1);
endmodule

module Controller
//0rder of action
c: [0..1];
[cardDraw Jec
[playerChoice] ¢
endmodule

@ -> (c'
1 -> (c'

rewards "gems"
[endGame] notGameOver
[endGame] notGameOver
endrewards

false : 0;
true & pl = 1 :

rewardFormula;

Fig. 5. Single-Player logic

To answer the research questions stated above we also define the
following property to aid in finding solutions to those questions:

(1) What is the expected number of steps after which a single
round of the game will end(this time, the player withdrawal
condition is taking into account)?

Which is the equivalent of the following Prism property:
(1) R{"gems"imax=? [ F endGame=true ]

5In this model, the reward formula was adjusted to contain the Artifact card as well,
mainly +5 * d
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As with the Combat Dice Roll model, to generate effective strategies,
we need to slightly modify the model in Figure 5. As before, the
only addition required is that of changing the model type to an SMG
as well as specifying the commands that the player has control of.
Similarly, the identifier «1» needs to be added in front of the defined
property to enable the user to generate a strategy. The results of the
analysis is described in the next sub-section.

5.4 Results

5.4.1 Game Logic. The results to the first two research questions
with relation to the game board logic, mainly "What is the expected
number of cards that will be drawn in a single round?" and "What
is the total expected number of gems in a single round?" can be
answered simply by verifying the first and second property defined
in the model section.

According to the model we have build, a single round of Incan
Gold with the deck defined above lasts an expected number of 7.656
turns, which means that a game is expected to end via the drawing
of 2 of the same type of hazard card between the 7" and 8 card
drawn in the game. Next to this, in a single round of the game, a
player can expect a total of 29.668 gems.

The results of the third research question "What is the probability
of drawing at least x amount of cards without finishing the game,
where x € {1,2,3,..., 20,21} can be seen in Figure 6.

1 e e e e e = s
0.9} a
0.8 |- a
0.7 |- a
0.6 |- a
0.5~ n

Probability

0.4 n
0.3 - n
0.2 |- n
0.1 n

| | 0-0-0-6
9-0-0-0

N N S Y B
012345678 9101112131415161718192021

# of Cards

Fig. 6. Probability results for drawing at least x cards

As we can see from the results presented in the graph, between
the 7 and the 8™ card drawn, the represented probability has a
value slightly below 0.5, confirming the results of the first research
question stating that the round is expected to end on the 7th or gth
turn. We can also see that after the 151 card drawn, the chance that
the game will not end approaches the value 0 indicating the unlike-
lihood of the round lasting more than 15 turns, where the likelihood
of the event drops below 1%.

5.4.2 Single-Player. The first research question, mainly "What
is the maximal expected number of gems that a single player can
collect without losing the game?" can be easily answered by verify-
ing the results of the defined property. According to the model, the
expected number of gems a player single player can expect to obtain
(using the best strategy) is 17.92 gems per round, which differs from
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the value showed in the previous section (that of 29.668) since the
player is more likely to lose at that point in the game. This then
helps us answer the second research question which asks about the
probability of obtaining all the possible reward values and about
their probabilities. The results to this research question can be seen
in Figure 7

1T e e s s |
— Strategy maximizing Player reward | |

0.9 N

No Strategy Involved
0.8 -

0.7 |-
0.6 |-
0.5 |-

Probability

0.4 |-
0.3 |-
0.2 |-
0.1}

0 L L L l L L L L I I
05 15 25 35 45 55 65 75 85 95 105115 12530

# of gems

Fig. 7. Probability distribution of obtaining every possible amount of gems

As we can see from the graph, the probability of obtaining at least
x amount of gems for the given strategy decreases in probability
quicker than just the probability of obtaining at least x gems. Which
indicates that the player should withdraw sooner and is less likely
to achieve higher amounts of rewards while trying to minimize the
risk of losing.

The results to the second research question can also be comple-
mented with the results to the last research questions: "What is a
general strategy which can be used by a player to maximize the
amount of gems they attain?". The results where obtained by run-
ning several different scenarios that might affect the choices that an
individual player might take. We have run different scenarios based
on the probability of a player loosing the game which is equivalent
to the unique types of hazard cards currently on the board. Accord-
ing to the generated strategy, the following results can be observed
based on the number of types of hazard cards on the board:

o If there is not a single hazard card on the board, the player
can just keep on acquiring gems.

e For a single type of hazard card, the player should leave at
the point they have achieved 43 gems

o for 2 different types, the player should leave when they achieved
26 gems

o for 3 different types, they should leave after 18 gems.

o for 4 different types, 15 is the lowest number of gems that the
player should leave after

o If there are 5 different hazard types, the player should leave
after achieving 12 gems.

This also explains the drop in probability indicated in Figure 7 but
also the initial overlap in probabilities since the player is never
encouraged to leave before achieving 12 gems (for 5 different types
of hazards).
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6 CONCLUSION

In this paper, we have investigated how board games such as Incan
Gold or the Hobbit Adventure game can be modeled as MDPs and
further analyzed using the model-checking tool Prism. This was
done, to further try and answer the general research questions about
modeling board games as Markov Decision Processes established
in the Introduction. This section will focus on showing how the
analysis of the aforementioned board games helps us answer the
general research questions stated at the beginning of the paper.

RQ1: How can the application of MDPs to board game analysis aid
in identifying optimal strategies, evaluating game balance, or predict-
ing the outcome of games? As we saw from the Combat Dice Roll
mechanic, as well as the single-player model of the Incan Gold board
game, modeling a board game into an MDP resulted in the ability to
define interesting properties of the model. Such properties included
the generation of optimal strategies for maximizing a probability or
a reward.

RQ2: How does the complexity of a game impact the resulting size
of the created model? Although this research question cannot be
directly answered based on the models shown in the paper, for the
board game Incan Gold, creating a model and generating a strategy
which included more than 2 players or more than 1 round proved to
be expensive both in terms of memory and generation time required
to build the model and generate the strategies. The complexity of
the Incan Gold board game showed that the resulting sizes of the
model can be in the order of billions of states and transitions.

To summarize, we have shown that board games can be mod-
eled as Markov Decision Processes and then analyzed to answer
important properties of the model, but the process of generating
and analyzing the model depends on the complexity of the game.
While some simplistic board games could be fully modeled as MDPs,
other games are limited by the capacity of the tools used for the
analysis.

7 LIMITATIONS AND FUTURE WORK

While building and analyzing the model, we encountered some
limitations with regard to the board game Incan Gold. The main
limitations were caused by the size of the model that the tool Prism-
Games was able to support. When trying to extend the model to
contain more than 1 player, the tool constantly run into memory
issues due to the large size of the model which caused it to crash.
This problem would not only appear during model generation but
also when trying to generate or import a strategy for the model.
As a result, we did not expand the model to contain more than
a single player or more than a single round and were unable to
generate a suitable strategy for more than a single player due to the
limitations of Prism with regard to model generation and properties
specification. In particular, while between 2 players the generation
of a game and strategy is limited just by the size of the models, for
more than 2 players another limitation that comes into play is the
strategy generation. Some attempts at expanding the model beyond
a single player were done using a simplified model of the game,
however, even for 2 players, trying to expand the original model
proved to be unfeasible because of constant memory issues which
led to the app crashing when trying to load the model. However,
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there are still possible improvements or adjustments which can be
done to try and incorporate most of the aspects of the game:

First of all, the model could be simplified such that it only contains
a single variable describing all the gem cards. This variable could
represent the average value of all the gem cards combined.

Another possible solution is to use a different tool to build and
analyze the model. One of the short-comings of the Prism tool is
that the model did not support strategy generation, for which Prism-
games had to be used, however, Prism-games has limitations in
itself as it only supports a limited amount of models as well as some
limitations in defining the properties with regard to more than 1
player in the game. For future research, other tools such as Storm
[6] could be used to overcome the limitations mentioned above.

Another limitation of the project where the resources used to run
Prism. Stronger hardware in terms of RAM and processing speed
would greatly increase the model-building speed process, however,
this does not ensure that memory issues would not arise while
trying to handle larger models.

Finally, probabilistic board games could be analyzed to answer
the general Research Questions this paper tried to address, however,
because of the limitations of Prism and Prism-games, not every
probabilistic board game is suitable to be analyzed with the tool.
Simple board games such as Snake and Ladders, the Game of Goose
or Across the Board whilst more complicated board games where
large models are required, such as Monopoly, 7 Wonders or Catan are
more challenging to model and analyze which would be interesting
to analyze in the future.
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