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SUMMARY  
The problem addressed in this document is the prediction of individual damage types, for example the 

breakage of water pipes or the cut of electricity or internet cables, during excavation projects using 

machine learning techniques. Previous studies have focused on exploring the reasons behind damages 

or predicting the overall probability of any damage occurring. However, there is limited research 

conducted on predicting individual damage types. 

This research is one of the first to utilize machine learning for predicting individual damage types. The 

unique combined utility registry of excavations and damages of the Netherlands enables this study 

This prediction. , can be a powerful tool to shorten or even avoid outages. This can be done through 

either by warning utility providers to the risk or changing the way the excavation is done.  

The project consists of several main parts. Firstly, the available data is investigated and cleaned to 

ensure its suitability for modeling purposes. The XGBoost machine learning method was selected, due 

to its successful track record in similar problem domains. Two approaches are considered for predicting 

damage types: binary classification and multiclassification. The binary classification approach predicts 

each damage type individually, treating the selected damage type as one class and all excavations 

without the given damage type as another class. The multiclassification approach aims to predict the 

most likely outcome which is either a given damage type or no damage at all. 

After tuning the models, the following results were obtained for the binary classification approach: 

usable predictions with adjustable recall and precision were achieved for damage types of internet 

cable, low voltage electricity, low-pressure gas, and water strikes. To achieve a recall score of around 

0.8, which represents the ratio of predicted real damages to all real damages, the precision, the ratio 

of predicted real damages to all predictions, varies between 0.05 and 0.01. All other damage types 

have a precision of less than 1% and thus not considered usable.  

The multi-class model, predicting the most likely outcome, was less successful.  This is mainly due to 

severe class imbalances.  In most cases it predominantly assumes no damage will occur, and only when 

the excavation site is unusually large, it predicts internet cable manage. The most common damage 

type. 

The most important features of both binary and multi-class models for damage prediction were the 

dimensions of the excavation site, related features such as the number of trees around, and the client 

and excavating companies. The damage types that could be to some extent reliably predicted where 

the most common one, present almost everywhere. Rarer, most dangerous type such as high-pressure 

gas or high-voltage electricity, cannot be predicted even with 1 percent precision. This is mainly due 

to the fact they do occur orders of magnitude less frequent than the common ones like water pipes or 

internet cables, in all cases with less than 1000 registered cases during the 2019 to 2021 period. 

To summarize with the available data, it is possible to predict certain damage types in a useful manner, 

and possible use this prediction to minimize the time and cost of these damages. However, less 

common damage types cannot be predicted even by extending the data collecting timeframe.  
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1. INTRODUCTION  
1.1 BACKGROUND 
The number of different underground utilities has been continuously increasing ever since humanity 

settled down. Underground water and sewage systems have been around for multi-millennia, gas 

pipelines for over two centuries, and in the last 50 years data, electricity cables and heat pipes have 

been put underground too (Orton, 2013).  Consequently, it is not surprising that utility strikes, damages 

to cables and pipelines caused during excavations, are more common than ever. These accidents can 

cause disruption for both consumers and businesses, environmental damage and extra monetary cost 

and time delay for the constructor (Metje, Ahmad, & Crossland, 2015). 

In the Netherlands there are approximately 40000 excavation damages to underground cables and 

pipelines every year, leading to over 25 million euros spent annually fixing these. On top of the cost 

there is also an uncounted number of wasted human hours due to outages. There is an ongoing effort 

to decrease and possibly even prevent these utility strikes. Two government 

agencies, Kadaster and Agentschap Telecom have been collecting and analyzing data on these accident 

for over a decade. The data collection and exchange among service providers and excavator companies 

have been also standardized to make it easier to communicate and prevent accidents in the future. To 

do this, the platform KLIC (Kadaster Kabels en Leidingen Informatie Centrum) was created by Kadaster 

maintaining one single up-to-date database listing all the underground utilities, excavation and 

damages. Since 2013 network providers and the excavation companies are legally obligated to register 

their activities and communicate through this platform. 

1.2 STUDIES CONDUCTED IN THE PAST 
There has been many research done focusing on preventing utility strikes through the use of sensing 

devices. Slightly fewer investigating their causes, among these is the often-cited paper on the ongoing 

research in the UK (Metje, Ahmad, & Crossland, 2015). This outlines many causes for utility strikes such 

as hurried construction, inaccurate maps, incorrect dept given for the different pipelines, contractors 

willingly risking damaging data cables in the hope of saving cost, etc. .  These causes have been 

identified in the UK, but whether they all apply to the Netherlands, or are there any other that has not 

been considered, have not been investigated yet. 

 For predicting future strikes there have been multiple papers testing different models, one of the most 

detailed (Xiang & Zhou, 2021)  used  Bayesian Network models to predict and help to avoid utility 

strikes on energy pipelines in Canada. While their model has been demonstrated to be effective, 

creating it required significant technical expertise, and number of assumptions made. 

The ongoing research (Li, 2023) focuses on creating a prediction model using different machine 

learning methods, and compare their effectiveness to predict the probability of utility strikes.  These 

machine learning methods have the advantage of requiring little to no assumptions made before 

modelling, and easy adoptability to a wide range of problems. This research so far has proved that with 

the available data in the Netherlands, utility strikes can be reliably predicted, but it does not consider 

individual damage types, such as the probability of utility damages related to water, sewage, internet 

or electricity. 
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1.3 RESEARCH OBJECTIVE 
So far there has been no research done in the Netherlands on using machine learning methods to 

predict different damage types during excavations individually. This would be desired by stakeholders 

such as Kadaster, utility providers, consumers as it could be used to avoid, make less expensive or 

shorten outage.  For example, if we know that there is a specific data cable that is very expensive to 

repair or a dangerous high pressure gas pipeline in a certain excavation area, that are likely to be 

damaged due to certain characteristics of location, then it might be possible to avoid it by taking 

precautionary measures like recommending the usage certain more costly but safer excavation 

methods, such as hydrovac. This is when the excavation is done with a high-pressure water jet and a 

vacuum pump collecting the ‘excavated’ soil - water mixture in a tank. 

Thus, the research objective is to use the available processed data and information gathered for 

damage prediction to create a new model that predicts the probability of different damage types to 

occur in a certain location for a given excavation.  

To accomplish this, a statistical model must be selected. Given the limited amount of time, one 

machine learning model, XGBoost classification has been chosen for its many advantages. It can be 

trained to create a vector output containing the probabilities of the different damage types for the 

parameters of an excavation as inputs. XGBoost is a proven, reliable gradient boosting method, relying 

on the optimization of decision trees for classification. Its main advantage over other methods for the 

project is the fact that feature selection is not necessary when starting the training process, and thus 

one can achieve reasonably good results even when the user has little initial understanding on what 

are the important features or when causal relationships are too complex to use traditional statistical 

methods. It is also more efficient than most other models, which makes it faster to train and iterate.  

There are numerous other sub-objectives: 

• Identifying the main causes of different damage types: while this is not necessary for creating 

the model or making the predictions, this can explain why certain damage type can or cannot 

be predicted. 

• Exploring if different damage types often occur simultaneously, and if they can be grouped 

together: if two damage types can be grouped together and thus grouped together the 

modelling process can be sped up by creating one model instead of many  

• Exploring if different feature often occurs together , and can be grouped together: by 

grouping features together the model tunning times can be shortened. 

• Evaluating the different XGBoost modelling options: because more than one damage can 

simultaneously occur, standard single outcome multiclass that would normally be used cannot 

be applied without consideration. 

• Presenting the final model and other findings in a manner that they can be used by others 

The following methodology (Figure 1) has been designed to accomplish the research objectives. 
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Figure 1 Methodology to answer the research questions 
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2. DISCUSSION 
2.1 USED DATA AND ITS PREPARATION 
Given that this project heavily relied on the research done by (Li, 2023), most of these data had already 

been combined into one database and cleaned, and only the specific damage types had to be added. 

Then, this combined database was cleaned from missing or incorrect values (e.g., incorrect damage 

type, mismatch between excavation registry and damage registry). In order to use XGBoost 

classification, the different damage types also had to be given individual columns with zeros and ones, 

showing if, in the case of an excavation, a certain type of accidents happened or not. If during a utility 

strike, multiple damage types occurred, they had to be registered under two or more columns. 

The two main proprietary databases used, are graafmelding (excavation data), and schaderapport 

(damage data), listing of all recorded damage instances. Other databases, providing other, likely less 

relevant features such as the soil and the land use types, and tree density in the area are provided by 

opensource databases (BRO soil map, Bestand Bodemgebruik, Bomen in Nederlans).  

The following data is available about the location of the excavations (both from KLIC and other 

sources): 

• Information about the location of utilities nation wide 

• The type of excavation that has been carried out, type of the project, its size and duration 

• Soil type 

• The company that carried out the excavation 

• Geotechnical information 

• Information about the surrounding area, land use, number of trees and their density  

On total after one-hot encoding (binary information one a feature presence) there are over a hundred 

such features available. 

As for utility strikes, the following twelve damage type category are in the database. The presented 

numbers are from 2021: 

Table 1 Underground utility damages in 2021 

Damage type 
listed 

What is carried 
Counted 

cases 
Average cost 

[Euro] 

Datatransport internet 25875 3385 

Laagspanning low voltage electricity 11730 1165 

Gas lage druk natural gas (low pressure) 4468 1553 

Water Water 3305 1416 

Middenspanning medium voltage electricity 506 3698 

riool vrijverval gravity sewage 147 974 

riool onder druk pressurized sewage 101 2258 

gas hoge druk natural gas (high pressure) 77 13714 

Overig Other 25 496 

Warmte heat pipe 17 50038 

Hoogspanning high voltage electricity 9 2517 

buisleiding gevaarli natural gas, aviation fuel 5 5 
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As it can be seen in the table, the cases numbers and their costs vary widely. It is also important to 

note that in most cases during a utility strike more than one damage types are registered, whether this 

is because multiple damages occurred or because one damage can be put in multiple category is 

something to consider.  

During the data preparation phase, it also became clear that many of the registered damages are badly 

filled in. Many of these could be used as datapoint for any damage occurring but not for predicting 

specific damage types. Many Klic-number has been registered as 00G000000, 20G000000, or not given 

at all. What is worse is that these registries also tend to have their damage types empty or undefined. 

Upon visual inspection it is clear that most of these are registered by internet providers and 

consequently likely many data cable strikes. Given the questionable quality of this data, and data 

cables already the most numerous category, they were removed from the database. The final count of 

the different damage types between 2019 and 2021 are the following in decreasing order (Table 2): 

Table 2 The number of registered utility strikes in each category after matching databases between 2019-2021 

Damage type Number of registered cases 

datatransport 48970 

Laagspanning 25870 

gas_lage_druk 8956 

Water 6405 

Middenspanning 1057 

gas_hoge_druk 255 

riool_vrijverval 196 

riool_onder_druk 182 

Overig 38 

Warmte 22 

Hoogspanning 21 

buisleiding_gevaarli 7 

landelijk_hoogspanni 3 

Wees 1 

 

After combining the cleaned database used to predict any damages occurring  (Li, 2023) with the 

cleaned damage registry, it became clear that in some occasion not only multiple damage types 

occurred during a single excavation, but in even the same damage types multiple times(Table 3). If the 

same damage type occurred multiple times during one excavation, they are ctonsidered to be a single 

event, if more than 20 of the same damage type occurred that excavation has been discarded as upon 

visual inspection every excavation like that had unlikely Klic numbers(they were made up). 
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Table 3 Example: number of excavations with a certain number of data cable damages 

Number of internet cable damage Number of excavations with this many damages 

0 28456 

1 27236 

2 3481 

3 917 

4 639 

5 232 

6 104 

9 58 

7 55 

8 28 

10 17 

11 13 

16 10 

13 8 

12 5 

14 3 

22 2 

17 2 

2712 1 

3047 1 

15 1 

19 1 

 

After removing duplicates, merging according to Klic numbers and combining identical damage type 

during the same excavation, a total of 64801 usable registered excavation damages occurred during 

2221673 excavations between 2019 and 2021. 

Table 4 Presence  of excavations during all excavations between 2019 and 2921 

Damage type No damage occurring 
At least one damage of this 

type occurring 

datatransport 2191202 30471 

laagspanning 2201626 20047 

gas_lage_druk 2214001 7672 

water 2216384 5289 

middenspanning 2220760 913 

gas_hoge_druk 2221446 227 

riool_vrijverval 2221622 51 

riool_onder_druk 2221542 131 
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2.2 GROUPING DAMAGE TYPES AND FEATURES 

2.2.1 Grouping damage types 

Seeing the relatively low numbers of certain damages, one question that came up is, if they can be 

grouped together. This would have been useful in accelerating the modeling process. To evaluate this 

a Pearson correlation matrix was created(Figure 1): 

 

Figure 2 Correlation among different damage types 

The Pearson’s correlation matrix gives a value between -1 and 1 for each feature combination. A value 

of ±0.3 means weak, ±0.5 medium and greater than ±0.5 a strong correlation. As it can be seen above 

there is little to no correlation between damage types and thus, they cannot be grouped.  

2.2.2 Removing irrelevant features? 

By removing some features that consistently correlate to one another, the XGBoost model could be 

made more efficient, and thus the model training could be sped up. The do this the Pearson’s 

correlation matrix was used again. 

 

Figure 3 Some of the features that show strong correlations to each other 

Features such as the client company- excavation company and the area of the excavation site- polygon 

area – the number of coordinates of the polygon - length of the polygon’s edge correlate to each other. 

This is not surprising giving that regular client- contractor relationships are common, and that certain 

dimensions of an excavation site are related. Ultimately, they were left in the database separately as 

their number was small and XGBoost can do the feature selection by itself.  

2.3 XGBOOST MODEL  

2.3.1 Classification models that have been considered but rejected 

One of the most challenging aspects of this project was choosing the right classification model. Most 

problem can either be solved by binary classification  ( whether something is true of false) or 
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multiclassification where the model has to decide which group a give case fits in the best. In the case 

of modelling damages, there is a possibility, even likely that one case can be correctly classified 

multiple ways. Unfortunately, the later solution is more complicated and have relatively little available 

documentation. Usually, it simplified or divided into smaller parts so they could be solved by the either 

of the first two. To do this, multiple approaches have been considered. Some that have been rejected: 

One utility strike per row 

These means that if during an excavation for example three different type of damages occurred then 

they would be treated as three separate events. This is statistically wrong because theoretically: 

If features a, d  and e cause event x 100%  of the time 

 and the following event has been registered: 

Features a,b,c,d,e caused event x,y,z  

And it is treated as if three individual cases were 

a,b,c,d,e caused event x  

a,b,c,d,e caused event y, 

a,b,c,d,e caused event z 

Then the statistical model will think that the combination of a,d and e only result in 33% of the time in 

x.  

XGBoost ignores both empty cells and false values when runs, only carrying about positive values, thus 

one can delete cells with features values and only cause slightly worse predictions. But if target values 

are removed then the database no longer represents reality.  

Modelling only the damages 

By removing all excavations that have no registered damages the modelling process and iteration time 

could be greatly accelerated, unfortunately this approach decreases the efficacy of the model on new 

data, but at least statistically correct. For example, if the following four excavation has been registered: 

 a, b, e caused x 

a, b,f caused nothing  

b,e,g caused  x 

a, b, g caused nothing  

then it is a logical assumption that feature e causes event x. But if I remove the cases where no x 

occurred: 

a, b, e caused x 

b,e,g caused  x 

the maximum one can say that feature g is likely not necessary condition for event x to occur. If this 

data is used to train the model than it will be significantly worse when tested on a new dataset. 

Removing the less important damage type when there are multiple damage types 
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If x and y that I want to predict, and there are way more damages with x then it seems logical to remove 

x when both x and y occurs during an excavation and then applying a traditional multiclassification. 

2.3.2 Modelling, evaluation and tuning  

Modelling 

The two types of XGBoost models were created in the end. First binary classification models for each 

model individually, and one multi-class classification model to determine the most likely outcome for 

an excavation. The models were written in Python, using the dmlc XGBoost package, and were trained 

with all the available features of the dataset. 

Evaluation 

The models were evaluated by ROC curve (Receiver operating characteristic curve), precision-recall 

curve and analyzed by the feature importance vector. 

ROC is the curve plotted of percentages of the positively classified positives divided by all actual 

positive cases, the true positive rate, on one axis, and the negatively classified negatives divided by all 

actual negative cases, the false positive rate, on the other. The area under the ROC curve is called AUC 

(Area under curve), which could be used to compare the performance of different or used during 

training. 

The recall is the predicted real damages divided by all real damages. The precision is the predicted real 

damages divided by all predictions. The precision-recall curve is created is these two values plotted on 

x and y.   

Both the ROC curve and the precision-recall curve are function of the threshold above which something 

is positively classified. The threshold is on an interval between 0 and 1 , by default it is 0.5 or with other 

words above 50% probability something is classified positive. 

Another important performance factor was the efficiency of the model. This showed how much time 

it took to train the model, which was important given the likely need for many iterations to achieve 

higher accuracy. I did not expect the training time to be longer than ten minutes before results stopped 

improving without manual iteration. If this were not the case, the model should be changed, simplified, 

or subdivided in order to be more manageable. 

Tuning 

When tuning the models, it became clear that tuning the different parameters for so many damage 

types to achieve the best possible results would take very long. The simplest method to tune the 

parameters is one by one and see how the evaluation metric, in this case the harmonic average of 

precision and recall, changes. Then doing this till a point where no more improvement can be observed.  

The most common method to make this faster is to define realistic intervals for the parameters one 

wants to tune, then dived all intervals by a pre-selected number of times and find the combination 

with the best evaluation score. This method is called GridSearchCV, and it also takes quite long because 

the script has to evaluate many combinations that based on previous results could otherwise be 

removed. It also does not find the best combination only the one closest to it.  

To avoid manually having to spend to tuning the model the BayesSearchCV package can be used. This  

creates a statistical model on top of the XGBoost model for parameter tuning and thus only evaluate 

increasingly promising combinations on  smaller and smaller intervals. The entire process is automated 

and does not need manual intervention.  
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One iteration with a manually selected parameter combinations took about 6 minutes for one damage 

type, while finding the best possible combination to get the highest precision-recall score, using the 

BayesSearchCV package, took about 40 minutes for each binary models. For the multi-class model, it 

took about 4 hours. 

 

Figure 4 Parameters of the XGBoost model that have been tuned 
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3. RESULTS 
3.1 MODELLING THE PROBABILITY OF EACH DAMGE TYPES INDIVIDUALLY  
Given the technical simplicity of setting up binary classifications, it was relatively easy to evaluate, 

iterate, and later used to answer questions on for example the acceptable ratio of precision and recall 

based on the cost of different actions. 

3.1.1 'damage_datatransport'  

Internet cable strikes can be reliably matched to about 1.5% of all excavations, or more precisely 30471 

out of 2221673. Unfortunately, about one third of the internet cable damages were unmatchable. The 

overall performance of the model is fairly well matching the model used to predict any damage types 

using the same database (Li, 2023). This is not surprising given that internet cable strikes are the most 

numerous among all registered damage types, making up more than half of all cases. The AUC  and 

recall scores of the two models are almost identical, 0.821-0.829 and 0.64-0.66. The biggest difference 

is the precision, the datatransport model classifying about twice as many false positives 0.05-0.09 

when the cutoff is 50% (at what probability a case is classified positive). This difference in performance 

can be mainly accounted by the number of cases when one can match the damage to the excavation, 

but the damage type is missing. 

 

Figure 5 Different evaluation metrics of the datatransport damage model :  Metrics of any damage prediction model (Li, 

2023) 

The recall and precision scores have been calculated for 50% cutoff, but they do not have to be. Based 

on other factors such as cost and danger other combinations can be read of the curve bellow. For 

example, if correctly classifying only 20% of the damages that happened than the incorrectly classified 

ones are around 80%.  
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Figure 6 Precision-Recall curve of the datatransport model 

All of the top ten most important features for prediction are either related to the dimensions of the 

excavation site or to the companies (client, contractor) involved. This means that per m2, the 

probability of damage is mostly the same, no matter the location and other features like the soil type, 

only the companies involved.  

 

Figure 7 Feature importance of the datatransport model 

3.1.2 'damage_laagspanning' 

There are 20047 matched low voltage electric cable strikes or approximately 1% of all excavations. 

While the precision has decreased the recall increased at 50% cutoff, so ultimately the performance of 

this model is very similar to the internet cable one.  
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Figure 8 Different evaluation metrics of the laagspanning damage model 

 

3.1.3 'damage_gas_lage_druk'  

For low pressure gas pipe damage, there are 7672 matched events. Compared to the previous cases 

this number is much lower, and it is reflected in the precision required to achieve the same 60%-70% 

recall rate. 

 

Figure 9Different evaluation metrics of the gas lage druk damage model 

3.1.4 'damage_water' - 5289   

Similarly, to low pressure electricity, the matched water pipe strikes numbers are much lower than 

internet or low voltage electricity, and thus the precision of the prediction is accordingly lower too. 

Whether these are still usable or not depends on the use case. 
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Figure 10 Different evaluation metrics of the water damage model 

 

3.1.5 'damage_middenspanning' and others damage types with less than 1000 matched 

cases.  

The quality of the predictions for damage types with less than 1000 matched cases are very poor. In 

order to classify over 70% of real damages, more than 100% of the predicted cases are wrong. These 

damage types include high voltage, high pressure, sewer, heat pipes etc. .  

 

Figure 11 Different evaluation metrics of the middenspanning model 

Part of the reason for this low number is likely due to the fact that most of these utilities are also less 

frequent. To prove this point, the most important feature to predict them, is their presence at the 

location, while none of the previous damage type had its matching utility’s existence in their top ten 

features.  
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Figure 12 Feature importance of the model for medium voltage electricity cable damages prediction 

3.2 MODELLING THE PROBABILITY OF EACH DAMAGE TYPES 

SIMULTANIOUSLY 
The other possible useful model type is the simple multiclass classification, predicting the mostly likely 

outcome . This means that for each excavation only one prediction is made as if more than one 

outcome would be impossible. To prepare the data for this, excavations with more than one damage 

types registered has to be removed. Luckily damage types that could not be predicted with binary 

classification can be ignored, decreasing the number of excavations that has to be removed before the 

model training. In this case the possible classes are no damage, data cable, low voltage, low pressure 

gas and water. Unfortunately, even after preparing the model for the severe imbalance between no 

damage and damage and even between damage types by scaling the types and evaluate them 

weighted by the imbalance, the results were poor or more precisely not too useful.  The model 

correctly assumes that no damage is the most likely outcome in most cases. Only for very large 

excavation sites classified the model the damages to internet cables more likely.  

Ultimately the multi-class model does not have any benefit over a series of binary classification, that 

can be better tuned,  other than the elegance of execution. 
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Figure 13 Evaluation of the multi-class classification 
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4. CONCLUSION 
The main objective of the project has been partially accomplished. Damages related to common 

utilities, water, internet, low-voltage electricity and low-pressure gas can be predicted, with 80% recall 

rate for 5-1% precision. Whether this can be used in practice it depends on the given utility and factors 

such as the cost of different interventions and the amount of direct or indirect danger to human life. 

Damage types that could be predicted such as high-pressure gas, high-voltage electricity, etc. have all 

in common that they are not present in most places, and thus the number of registered damages is 

order or magnitudes lower than the ones’ that could be predicted. Given the large size difference even 

including extra years in the process would not help. 

Answers found for the subobjective: Only features related to the size of the excavation site correlate 

and no damage type does to another. Out of all modelling options by far the simplest binary 

classification proved to be the most useful. It is both the easiest to train while provides the most of 

information, while more complex models provided no extra benefit. 

5. RECOMMENDATION 
In order to evaluate the usefulness of the damage prediction of the common utility strikes, further 

research is needed on the possible interventions such as the cost of fixing certain damages, standing 

standby, and what kind of dangers different damages present. 

Many of the registered damages could not be used because the Klic number was wrong, and there is 

no matching excavation in the database. To avoid this Klic numbers could be generated according to 

an ‘secret’ algorithm and then when a damage registered its number could be check if it is at least a 

valid number or not. While this would not allow the prediction of less common damages, but it would 

certainly improve the precision of the common ones. 

The most important features where the ones related to size of the excavation or the companies 

involved. As the size does not affect the probability of damage per unit area, the only thing that can 

be influenced is the companies that were involved. Thus, the companies with the highest and lowest 

damage rates should be investigated to see what do they do different from other that influences their 

performance. 
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7. APPENDIX 
7.1 EVALUATION METRICS OF THE INDIVIDUAL XGBOOST MODELS 

7.1.1 'damage_datatransport'  
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7.1.2 'damage_laagspanning' - 20047 
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7.1.3 'damage_gas_lage_druk' - 7672 
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7.1.4 'damage_water' - 5289   
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7.1.5   'damage_middenspanning'  - 913 and others that do not have enough data 
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7.2 EVALUATION METRICS OF THE MULTI-CLASS CLASSIFICATION  
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