
BACHELOR THESIS - BIOMEDICAL
TECHNOLOGY

Quality of posture of a humanoid
character in a reactive stepping
animation obtained using inverse
kinematics.

Benthe E.M. Gijzel

Faculty of Engineering Technologies,
Biomechanical Engineering

Examination Committee:
Edwin H.F. van Asseldonk, Dr

Aurora Ruiz-Rodŕıguez, MsC

Rai M.K. MacLean, PhD

Document number:

BE-943

Date:
July 2023

Acknowledgements

I am extremely grateful to Aurora, Edwin and Rai for the amount of support, motivation and
feedback they have provided me throughout the project. I had the pleasure of working under
the wonderful guidance of Aurora, whose positive attitude and kindness kept me in good spirit

and gave me the space and ability to put health before work when needed.

Many thanks to Lotte Hagedoorn for giving up her valuable time to help me record the
reactive stepping motions at the Balance Lab in RadboudUMC Nijmegen and showing me

around the lab.

Special thanks to my family and friends for always believing in me and providing me with the
confidence to keep working.

Furthermore, I would like to thank Sietse Hoekstra at 8D games for telling me about their
work and providing me with their 3D character model.

Lastly, I want to mention the HEROES team for their hard work to improve post-stroke
healthcare.

i

Abstract

ENGLISH:

Introduction - For stroke patients, poor balance is one of the most common medical
complications. The HEROES project aims to prevent falls and related injuries in patients
by designing an exergame to train their reactive responses. The quality of animations
of virtual characters play a key role in game experience. Natural human motions can be
obtained using motion capture, but this requires expensive equipment and can become
time-consuming if multiple takes are required per movement. Inverse kinematics can pro-
vide a faster way of making humanoid animations by finding the bone angles of the knee
or elbow when you set the hand or foot to a target position. However, not all inverse
kinematics methods result in natural body posture. To help animators decide between
motion capture and inverse kinematics, the quality of posture during a reactive stepping
animation obtained through inverse kinematics will be studied.

Research question - What is the effect of using inverse kinematics for animating reac-
tive stepping motions on the quality of a character’s posture?

Method - Reactive stepping motions in 5 different directions were recorded with a sin-
gle subject through motion capture: forwards, diagonally forwards, sideways, diagonally
backwards and backwards. The recorded motions were retargeted to a character. The
reactive stepping motions were then replicated using inverse kinematics in Blender, an
open-source 3D design software. The posture obtained through inverse kinematics was
compared to that obtained through motion capture. Differences between both methods
were defined by root-mean-square errors (RMSE) and correlation coefficients.

Results and discussion - The largest differences in posture of the leg were found in the
x-direction for all stepping movements, with a mean RMSE between 1.60 and 2.26 cm
and mean correlation coefficients between 0.68 and 0.96. Furthermore, the spine showed
the largest differences in the upper-spine, neck and head joints in y-direction for the back-
wards, diagonally backwards and/or sideways movements, with a mean RMSE ranging
between 1.29 and 2.92 cm and a mean correlation coefficient of 0.35 to 0.81. However, the
differences between the characters in the spine, neck and legs were found small enough
to partly disappear in the mesh of the character when the animation is viewed from a
distance, as it will be when used in the exergame.

ii

NEDERLANDS:

Introductie - Evenwichtsproblemen zijn een van de meest voorkomende complicaties na
een beroerte. Het HEROES project probeert de kans op een val te verminderen door het
evenwicht te trainen met hehulp van een exergame. De kwaliteit van de animaties is erg
belangrijk voor de ontwikkeling van de exergame. Motion capture is een manier om natu-
urlijke bewegingen real-time vast te leggen en deze kan worden omgezet tot een animatie,
maar dit process kan tijdrovend zijn en vereist speciale apparatuur. Inverse kinematica is
een manier om sneller animaties te maken door de houding van een lichaamsdeel wiskundig
te bepalen aan de hand van de positie van de hand of voet. Het nadeel van inverse kine-
matica is dat het niet altijd natuurlijke houdingen oplevert. Deze studie probeert inzicht
te werven in de kwaliteit van de houding van het virtuele karakter tijdens de animatie
van een reactive stap gemaakt met behulp van inverse kinematica.

Onderzoeksvraag - Wat is het effect van inverse kinematica op de houding van een
karakter indien gebruikt voor het animeren van reactieve stappen.

Methode - Tijdens een opnamesessie is de beweging van een reactive stap in vijf ver-
schillende richtingen vastgelegd met behulp van motion capture: voorwaarts, schuin voor-
waarts, zijwaarts, schuin achterwaarts en achterwaarts. Deze bewegingingen zijn omgezet
tot verschillende animaties. Deze animaties zijn vervolgens nagebouwd met toepassing
van inverse kinematica in Blender, een 3D ontwerp software. De houdingen tijdens de
animaties verkregen na de motion capture en na toepassen van de inverse kinematica zijn
met elkaar vergeleken. Verschillen werden gedefinieerd met behulp van het kwadratisch
gemiddelde (RMSE) en de correlatiecoefficient.

Resultaten en discussie - De grootste verschillen in houding van het been zijn gevon-
den langs de x-as voor alle stappende bewegingen, met een gemiddelde RMSE tussen de
1.5 and 2.5 cm en een gemiddelde correlatiecoefficient tussend de 0.679 and 0.956. Daar-
naast zijn grote verschillen gevonden in het bovenste gedeelte van de ruggengraat en het
hoofd langs de y-as tijdens de achterwaarts, schuin achterwaarts en zijwaarts stappende
bewegingen, met een gemiddelde RMSE tussen de 0.849 and 2.2919 cm en een gemiddelde
correlatiecoefficient van 0.348 tot 0.991. Dit verschil zal minder op te merken zijn als het
karakter’s mesh is toegepast en de animatie van een afstand wordt bekeken, zoals bij de
exergame gebeurt.

iii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Background 4
2.1 Character design and animating . 4
2.2 Inverse kinematics . 4
2.3 Motion capture . 5
2.4 Animation software . 5
2.5 Related work . 6

3 Methods 7
3.1 Animation: MOCAP . 8

3.1.1 Recording motion capture . 8
3.1.2 Processing the MOCAP data . 10
3.1.3 Animation retargeting . 12

3.2 Animation: Inverse Kinematics . 13
3.2.1 Preparing the rig for IK . 13
3.2.2 Applying the bone constraints . 14

3.3 Quantitative analysis . 15
3.3.1 Finding the 3D position data of the joints 15
3.3.2 Finding ∆x, ∆y, ∆z, the root mean square error and correlation

coefficient . 16
3.3.3 Finding the worst-case-scenarios . 16

4 Results 18
4.1 General observations . 18
4.2 ∆xr, ∆yr and ∆zr . 18
4.3 RMSE and correlation coefficient . 19
4.4 Visualizing the worst-case-scenarios . 19

5 Discussion 21

References 23

Appendices 25
Appendix I: Marker placement used during motion capture 25
Appendix II: AIM-model generation details 26
Appendix III: Copy transform bone constraint input settings 27
Appendix IV: A summary of the snapping method in Blender and how

it was used to obtain the joint data. 28
Appendix V: The joint naming system and hierarchy used by Blender

and an overview of the bone lengths. 29
Appendix VI: An overview of the axis definitions in Blender. 30
Appendix VI: Lineplot of ∆xr, ∆yr and ∆zr for a backwards stepping

movement. 31

iv

1 Introduction

As the population is aging, the number of patients suffering from cardiovascular diseases is
rising. With the recent COVID-19 pandemic increasing the chance of strokes in patients
with cardiovascular diseases, a large group of patients is currently seeking post-stroke
healthcare [1]. An increase in stroke incidence of 70% was found in the period from 1990
to 2019 [2]. Gait and balance disorders are very common in patients suffering from strokes
[3],[4]. Moreover, a stroke patient shows a 2-4 times higher incidence of fractures in case
of a fall compared to a patient without a history of strokes [5]. Hence, restoring balance
plays an important role in post-stroke care. Balance rehabilitation focuses on training
a patient’s reactive stepping. Reactive stepping is a stepping motion made to counter a
temporary imbalance to prevent a fall. These personalized rehabilitation programs are
costly, lengthy and often located inconveniently to patients. This can decrease the motiva-
tion of patients to start or continue with their rehabilitation program. Exercise intensity
has been linked to an increase in patient recovery [6]. Moreover, lack of physiotherapy
can lead to permanent disabilities. Motivation for and enjoyment of these exercises are
therefore of key importance.

The HEROES project is designing a video game to provide patients with a home-based
rehabilitation program, so that they can remain motivated while training their reactive
stepping. The concept of the game is as follows: it displays a character on a raft making
reactive responses to stay in balance [7]. The player follows the stepping motions to train
their reactive stepping and their movement is tracked to allow visual feedback. The game
therefore consists of three main components: a character playing the stepping animations
on screen, motion tracking and the real-time feedback. A previous study has been per-
formed to explore different types of (optical) motion trackers and their advantages and
disadvantages [8]. This study will focus on the movement in the character animation
shown on screen.

Animating a character is based on one of two methods: forward kinematics (FK) and
inverse kinematics (IK). A character has a skeleton, or armature, with multiple bone
chains (legs, arms, spine e.g.) consisting of bones that can rotate. In FK, all angles
between two bones in a chain are adjusted individually to change the character’s posture.
With IK, only the position of the end-effector (such as a hand or foot) is changed manu-
ally, forcing the intermediate bones to change angles accordingly. There are often multiple
combinations of joint angles possible to get to the same end-effector position due to the
many degrees of freedom, as shown in Figure 1. Some of these combinations give unnatu-
ral posture. IK methods take this into account by using rotational constraints. However,
the mathematical equations used in IK are often not solvable, because there are no or too
many solutions. Moreover, research shows that in using it for character animations, there
is always a trade-off between computational costs and quality of posture [9],[10].

1

Figure 1: Example of two different arm configurations that result in the same end-effector
position.

When there are many bones present in the character, manually rotating each joint be-
comes tedious. These animations can be created using motion capture (MOCAP). During
MOCAP, the movement of a subject is recorded in real-time. Although many human mo-
tions have already been recorded and are freely available on platforms such as Mixamo1,
specific movements require separate recording. High quality motion capture takes time,
requires expensive equipment and does not allow for much flexibility. To design characters
therefore, using IK methods would be preferable. However, for the rehabilitation game
it is important that the character moves smoothly and copies natural body movement
closely, which is easier to achieve using the MOCAP method.

To let the game developers make an informed decision on which method to use, the goal is
to study the quality of posture in a reactive stepping animation made using
inverse kinematics. For this, the IK-based stepping animations will be compared to
the same stepping animations created using motion capture. To make a valid comparison,
there is one important criterion for the IK animation: the joints in the start and end of
the bone chains must make the exact same movements as those in the MOCAP animation.

First, a general introduction to character design is given. Next, an overview of differ-
ent inverse kinematics methods was created to get an insight in how they perform in an
animating environment. Different methods of recording and processing MOCAP data
and different types of animation software were explored in order to set up a well-designed
experiment (see chapter 2).

The methods used in this study are divided into three parts and can be found in chap-
ter 3. The first section describes how the MOCAP recording and data processing was
performed and how the MOCAP animations were obtained. In the second section, the
making of the IK animations in Blender is presented. The last section introduces the
quantitative analysis, where the location of each joint in the MOCAP and IK armatures
is obtained and a difference in joint position between that of the MOCAP and IK arma-
ture is calculated. The root mean square error (RMSE) and correlation coefficient (CC)
is then calculated to define how well posture of both characters match throughout the
animations. Furthermore, the ‘area under the curve’ of each bone chain is calculated to
find the ‘worst-case scenario’s’. The results of this quantitative analysis can be found in
chapter 4). The findings from the results are presented and discussed in chapter 5. A list
of all citations can be found under References. The appendices are given at the end of
this document and show further details about different parts of the methods used in this
research.

1Mixamo is a platform owned by Adobe that offers a library of full-body animations.
Link: https://www.mixamo.com/#/

2

Figure 2: Flowchart showing an overview of the different chapters document.

3

2 Background

2.1 Character design and animating

A virtual character can be designed using any 3D software, such as Blender, Cinema 4D
or Wings3D. A character consists of two main components: the mesh and the armature.
A mesh gives shape and texture to the character. The armature allows movement of
the character and is required for animating. An armature, or rig, is a simplified skeletal
structure consisting of bones intersected by joints and is attached to the mesh through
parenting. The hierarchy of the bones play a key role in animating. For example, when
you rotate the shoulder joint, the rest of the arm moves with it. When you rotate the wrist,
only the hand moves with it, but not the shoulder. The shoulder is therefore considered a
parent to the elbow and wrist. Any rotation of a parent will result in movement of a child.
The reverse is also true: for the hand to move, its closest parents needs to move too. This
is the basic principle of inverse kinematics. The root bone is defined as the start of the
hierarchy and controls the position and rotation (transform) of the entire character.

2.2 Inverse kinematics

Over the years, many inverse kinematics methods have been introduced, each with their
own advantages and disadvantages. Following are a few examples:

In robotics, the Jacobian method is often used to determine what forces and torques
are acting on a joint when the end-effector moves to a target position with a certain
velocity, but it can be used for animating as well. It uses a matrix consisting of par-
tial derivatives, called the Jacobian matrix, to find a linear approximation to the IK
problem [10]. Methods include the Jacobian Transposed, the Pseudoinverse method and
the Damped Least Squares (DLS) or Selectively Damped Least Squares (SDLS) methods
[11],[12],[13],[14]. The Jacobian Transposed method gives fast but poor results, while the
DLS methods gives better results but works slower. Disadvantages of these methods are
their high computational costs, which make them often unsuitable for real-time applica-
tion, and occurrence of singularity problems.

Another method used in robotics and animation is the cyclic coordinate descent (CCD)
method [15],[16]. This method approaches the IK solution with one degree of freedom
(DoF) at a time, which makes the equations more simple and leads to faster computa-
tions. A disadvantage of this method is that it results in unnatural poses of joints close to
the end-effector, but improvements have been put forward to make the human animations
look more natural [17],[18],[19].

More recently, a research group proposed a method that trains the model to learn a
set of predetermined poses [20]. “Given a set of constraints, the system can produce the
most likely pose satisfying those constraints, in real-time”. Training session have to be
held separately, but once recorded it can be used for multiple game scenarios. A disad-
vantage is that the poses are limited to those studied by the models during the training
session.

A research group working for the university of Cambridge came up with a method that
gets around the use of rotational angles [9]. The Forward And Backward Reaching In-
verse Kinematics (FABRIK) “finds each joint position via locating a point on a line”.
This method was tested against the CCD and Jacobian methods in multiple scenarios,
including the use of multiple end-effectors and in real-time. The results show faster com-

4

putation, better tracking accuracy and more consistency in natural body posture. It can
also be combined with MOCAP, where only the end-effector position needs to be tracked.
A disadvantage of this method is that applying constraints to the bones is hard to imple-
ment in a code for amateurs and extensions for animation software using this method are
expensive.

2.3 Motion capture

There are different methods of recording motions currently in existence. Inertial systems
use sensors directly on the body. They measure the relative positions and angles of the
sensors, but require additional systems to measure their positions in space. Mechanical
systems use mechanical motion capture skeletons to track the actor’s joint angles directly.
Optical motion capture systems measure the positions in 3D space of specific markers
placed on the moving body. Optical systems are generally more accurate and more freely
available than the other systems.

The markers used in optical motion capture can give light themselves (active), or re-
flect incoming light (passive). A minimal of two cameras is required to receive data in
3D. Sometimes during recording a motion, a body part can hide one or more markers from
the cameras view. Moreover, if the targets are in close proximity to each other, a camera
might not be able to distinguish them. Using multiple cameras can therefore increase
measuring accuracy. Additionally, accuracy of the cameras can be negatively influenced
by lighting, colors and objects in the background [8]. High-quality MOCAP therefore
requires a special environment that minimizes light reflection in the background.
The data obtained during optical motion capture consists of the positions of each indi-
vidual marker in 3D space. This does not equal the positions of the joints, as the markers
are not directly placed on the joint, but on different parts of the body. The data will
therefore need to be processed before using it for the character animation. Companies
such as Qualisys and Vicon specialize in motion capture and offer software that helps
with the data processing, such as gap-filling and skeleton solvers.

Applying the recorded animation to a character is called animation retargeting. The
skeleton generated by the MOCAP processing software will almost always be different in
shape and composition to the character’s armature. During animation retargeting, each
bone of the source armature (the skeleton fitted to the MOCAP data) is matched to those
of the target armature (the character’s armature), to account for the differences in size
and orientation of the bones between the two armatures.

2.4 Animation software

Designers often use Blender for character animations, as it is open source and contains
many design and animation features. Blender offers two types of IK: the inverse kinemat-
ics bone constraint and the spline IK bone constraint. The Blender manual2 (Animation
& Rigging > Armatures > Posing > Bone Constraints > Introduction) does not explain
what method of IK is used in the standard IK, but it implies that some form of Jacobian
method is used [21] through the second paragraph. The IK uses two inputs: a target bone
and a pole bone. The target bone is used to steer the end-effector to a target location,
while the pole bone is used to control the direction in which the bone chain bends. Spline
IK is used to bend the bone chain along a predetermined curve and can be used to ani-
mate spines and tentacles. It is not known if this method uses a specific IK method either.

2Link: https://docs.blender.org/manual/en/latest/animation/armatures/posing/bone constraints/inverse kinematics
/introduction.html (june 2023)

5

Unity Real-Time Development Platform, or Unity in short, is a game development plat-
form. It offers different ways of applying inverse kinematics. Their standard method
consists of writing basic IK parameters, such as the target orientation, using a C#-script
applied to the character [22]. Another way is to use the Animation Rigging package in
Unity to give the character an armature [23]. It applies IK via the Two Bone IK constraint
and the Chain IK constraint. The Two Bone IK constraint allows IK control via a target
and a hint object, similar to Blender’s IK bone constraint [24]. The Chain IK constraint
uses only a target object and is said to implement the FABRIK solver. Lastly, a whole
set of assets can be found in the Unity asset store for implementing inverse kinematics.
They all have different uses, and some of them require payment.

Animation retargeting can be performed in Blender and in Unity. Unity matches both
the target and the source rig to a standard rig and naming system implemented by the
software. Blender requires a Rokoko Studio Live extension for animation retargeting,
which uses an automatically or manually generated bone list to match the source bones
directly to the target bones.

2.5 Related work

Most studies involving IK are in the field of robotics. However, with the rise in game
development and animated movies over the last 20 years, the use of IK in animation has
been studied increasingly. Some evaluate the IK method based on how well it reaches
the target, while others focus more on computational costs or try to obtain more natural
movement [9],[16],[19]. Research also differs in the type of body movement targeted. For
interacting with the (virtual) environment, hand and arm movement are of key impor-
tance. Most of the research therefore choose to simulate arm, hand or finger movement
[25],[26],[27],[28]. Combining IK of each part of the body for full-body control has also
been proposed [9],[29]. Using IK for lower-body movement, such as walking or running,
has been studied less. One study proposes a momentum-based IK method to simulate
reactive responses. [30]. However, this method could be too sophisticated for your goal.
By researching the quality of posture through reactive stepping animations based on an
IK method that is more widely available, we hope to provide enough insight so that a
well-informed decision can be made about using IK methods instead of motion capture.

6

3 Methods

This chapter describes the methods used to obtain the MOCAP and IK animations and
perform the quantitative analysis. The chapter is divided into three sections. The first
section describes how the MOCAP recording and data processing was performed and how
the MOCAP animation was obtained. In the second section, the method of obtaining the
IK animation in Blender using bone constraints is explained. The last section introduces
the quantitative analysis, in which the location data of each joint in the MOCAP and IK
armatures was obtained using a Python script. The location data was then used to find
the difference in position of each joint between that of the MOCAP and IK armature.
The root mean square error (RMSE) and correlation coefficient (CC) for each joint along
each axis were calculated to define how well the two armatures match throughout the
animations. Furthermore, the ‘area under the curve’ of each bone chain was calculated to
find the ‘worst-case scenarios’ (WCS). The following flowchart shows an overview of the
method section.

Figure 3: Flowchart showing the different parts that form the methods chapter.

For this study, 8D Games B.V. kindly allowed the use of the character designed for the
HEROES exergame in Blender, see figure 4. Here, the mesh is shown in grey and the
armature in black. The pelvis-bone is marked as the root-bone. The axis in the Blender
file were defined as follows: the positive y-axis points backwards, the positive z-axis points
upwards and the positive x-axis points towards the right as seen from the front.

7

Figure 4: The HEROES of the sea adventurer’s character presented in Blender as shared by
8D Games B.V.. The character’s mesh is shown in grey, while the black lines represent the
character’s armature.

3.1 Animation: MOCAP

The process of making the MOCAP-based animation can be separated into 3 main steps:
First, the MOCAP data was recorded. Secondly, the collected data was processed so that
it can be used to build the character animation. Lastly, the animation was retargeted to
the character. The reactive stepping motions were recorded using optical motion capture.
The data was processed using QTM software by Qualisys. The animation retargeting
was performed in Blender, as it was found better equipped for retargeting the armatures
obtained by the Qualisys software and allowed more control over linking individual bones.

3.1.1 Recording motion capture

Experimental setup
The motion capture took place in the balance lab of the RadboudUMC Nijmegen, which is fully
equipped for recording reactive stepping motions. The room contained a balance platform on
ground level and a Vicon camera system (Vicon Motion Systems, United Kingdom). Eight Vicon
Vero cameras were placed around the platform on the walls and ceilings, facing the middle of
the platform marked by a white mat (see figure 5). The Vicon Vero cameras send infrared light
and record the reflection from the markers. One Vicon Vue camera was also placed on the wall,
facing the white screen diagonally from the left, to record the room setup.

8

To record data from the cameras, Vicon Nexus software (version 2.10.03) was installed on the
computer connected to the cameras. Platform Motion software was used to instruct the platform.
Calibration was performed before recording to account for background reflections and to define
the workspace. The calibration also determined the coordinate system as follows: the y-axis
faces away from the white screen, the z-axis upwards and the x-axis towards the left (as seen
from figure 5). The origin is defined at the middle-back side of the platform at platform level.

Figure 5: A photo of taken of the motion capture setup used during the recording session. Shown
are some of the Vicon Vero cameras, the white screen facing the balance platform and the white
mat representing the middle of the platform.

Passive markers were placed on the body according to the Qualisys Animation Marker Set, see
figure 6. For naming and further details of the marker placement, see Appendix I. A combination
of non-reflective one-sided and double-sided tapes was used to secure the markers on the subject’s
body. Three reference markers were placed on a corner of the balance platform.

Figure 6: Photo of the marker placement on the subject used during the MOCAP session, as
instructed by the QTM animation marker set (see Appendix I). Left: front view of the subject.
Right: back-view of the subject

9

Recording the movements
The Vicon Nexus software is not compatible with the Qualisys animation set. Therefore, the
markers could not be labeled beforehand. According to the Qualisys manual and tutorials [31],
an AIM-model is required for automatic labelling of the markers and skeleton calibration in
the QTM software later on. Therefore, an AIM-trial was recorded first: the subject started
in a T-pose position and then performed head, arm and leg rotations and lunges. Next, the
movement trials were recorded. During each recording, the subject started in a T-pose before
moving to a rest pose (A-pose). This allows for recalibration of the skeleton later on. Next, the
platform was instructed to move, forcing the subject to make a stepping motion in the opposite
direction to regain balance. Afterwards, the subject moved back in position. The subject
made stepping movements in five different directions: forwards, diagonally forwards, sideways,
diagonally backwards and backwards. Each of these five movements was recorded three times
to ensure that usable data was obtained. During all movement trials, the subject started at the
center of the platform (white mat) and was facing the screen, or negative y-direction. Reactive
stepping was always performed by the right foot. All trials were recorded at 100fps.

3.1.2 Processing the MOCAP data

For processing the MOCAP data, Qualisys Track Manager (QTM) software was used. The
software is specialized for animating purposes and includes a skeleton solver [31]. The skeleton
solver is trained to fit a skeleton to the complete set of measured markers that can be used
for animation retargeting. The QTM software also offers an AIM-model feature for automatic
identification of the markers. The AIM-model is trained to recognize the animation marker
positions on a subject using the aforementioned AIM-trial. To fill the gaps in the positional
data as a result of hidden markers, Qualisys offers multiple gap-filling methods for different gap
sizes and types. All aforementioned methods are explained in detail in the QTM manual [31].

The recorded trials were each exported as .c3d files and imported into QTM. Upon opening
a .c3d file, a 3D view and a list of trajectories appeared, see figure 7. A trajectory is the mea-
sured path of a single marker. Each trajectory is split into parts that contain the measured data
and are separated by gaps if any are present.

Figure 7: The standard overlay of the QTM software, containing a 3D view of the markers, a
trajectory list and trajectory editor, as obtained when opening the Aim03.c3d file.

10

Preparing the AIM-model
First, the markers in the AIM-trial needed to be labeled correctly. For this purpose, all tra-
jectories labelled as numbers by the Vicon software were unidentified and the old trajectory
names deleted. Next, 51 new trajectories were added to the trajectory list and renamed to the
48 markers from the QTM animation marker set and the three reference markers of the balance
platform. The unidentified trajectories were individually inspected and labeled using the new
trajectory list. Markers that switched name within a trajectory were separately identified. When
all trajectories were correctly identified, a B prefix was added to the 48 animation markers to
tell the software those belong to the same subject.

Next, any gaps in the data resulting from hidden markers were removed using the gap-filling
methods offered by QTM. All small gaps of ≤ 100 frames were filled with the polynomial type
that uses interpolation. When the gaps were separated by one frame, as in figure 8, or were
present at the beginning or end of the trajectory, the gaps remained unfilled, since interpolation
is then impossible. These gaps were filled instead using the linear type, followed by the kine-
matic type, which fills the gaps based on the movement of the skeleton segment. The current
frame number was set such that all trajectories were tracked and the subject was in a T-pose
position and the skeleton was calibrated before performing the kinematic gap-filling.

Figure 8: A graph showing the x-, y- and z-coordinates of the LHeelBack trajectory plotted
against the number of frames. This is an example of a gap that remains unfilled after polynomial
gap-filling is applied.

The file is now ready for generating the AIM-model. For this, the 48 trajectories were selected
and a new AIM-model was generated from the selection. For further details, see Appendix II.

Processing the movement trials
The data from the movement trials was processed in a similar way to that of the AIM-trial, but
instead of manually labelling the markers and creating the marker connections, the AIM-model
was applied to the data so that it labels automatically. Before filling the gaps, each trajectory
was inspected and adjusted if needed to ensure correct marker identification. To finish up, the
skeleton solver was reprocessed to ensure the skeleton was fitted to the completely gap-filled
data. The resulting skeleton is shown in figure 9. While processing the data, it was found that
one of three recorded diagonally-backwards movement trials was accidentally overwritten.

11

Figure 9: An image of the skeleton (in orange) created by the QTM skeleton solver software to
fit the marker data (the green dots).

3.1.3 Animation retargeting

For animation retargeting, it is easier if the bone hierarchy of the source armature matches that
of the target rig. When comparing the character’s armature to that generated by the QTM
software, it was found that the rig’s do not match around the shoulder and neck area, so either
the source or the target armature needed to be adjusted to match the other. The easiest option
was to build a new armature in Blender. For this, the original armature was replaced by a basic
human meta-rig offered by Blender’s rigify add-on. The two breast bones and the 5th spine bone
of the new armature were removed before editing the bones to match the character’s mesh. The
character’s rest-pose was set to a T-pose. Figure 10 shows the old and new armatures.

Figure 10: Capture of the character’s armature in Blender in rest-pose before (left) and after
(right) adjustments were made in preparation of animation retargeting.

Animation retargeting was performed in Blender (version 3.3.0), as it allowed direct control over
the bone matching. To prepare the MOCAP files in QTM for export, the timeline control was
adjusted to limit it to the reactive stepping motion only. The data files of each of the movement
trials were then exported as .fbx file in binary format, including only the skeleton and time code.

12

The .fbx files containing the MOCAP data were all separately imported into Blender using
automatic bone orientation, force connect children and Z-forward/Y-up orientation. The re-
sulting source armature was then scaled and re-positioned so that the head (start joint) of the
root bone (pelvis bone) of both armatures matched. Each animation was then retargeted using
the Rokoko Studio Live extension (version 1.4.0). For this, auto-scaling was deselected and the
target armature put into rest-pose (T-pose).

3.2 Animation: Inverse Kinematics

The IK-based animations were made in Blender, as it represents a wider community of animators
and is more compatible with the obtained character. The file in which animation retargeting
was performed (see chapter 3.1.3) were used as the base file and a second character was created
through duplication to represent the IK character. The animating process can be divided into
three steps: First, both armatures were adjusted in preparation of the IK. Second, a set of
constraints was used on the IK character to meet the IK criterion (matching the locations of the
start and end of each bone chain). Finally, Blender’s standard IK was applied to all the chains
through the IK constraint.

3.2.1 Preparing the rig for IK

For IK to be used in Blender, a separate target and pole bone needed to be added to each bone
chain. The character consists of 5 chains: each of the arms, the spine and the left and right legs.
However, for the analysis of reactive stepping only the (stepping) leg and spine bone chains are
important. Target bones were therefore extracted from the shin bones in y-direction and from
the head bone in y-direction.

Pole bones were extracted from the thigh bones (at the knee) and 2nd spine bone (around
the navel), in y-direction and pointing away from the bending direction of the chain. They were
moved away from the armature in y-direction to allow room for bending. See figure 11 for the
resulting armature.

Figure 11: Capture of the character’s rig in Blender after it was adjusted in preparation of
applying IK. The IK target bones are shown in yellow, the IK pole bones in blue.

13

3.2.2 Applying the bone constraints

As the target and pole bones (non-deform bones) are all parented to parts of the MOCAP rig,
they move with the armature during the animations. To make the IK-based animation com-
parable to the MOCAP-based animation, the position and rotation data (transform) of these
bones must be copied to the same bones in the IK-character throughout the animation. For
this, the copy transform bone constraint was used (see Appendix III for more information).

The copy transform bone constraint was applied to the pelvis bones, thigh bones and all non-
deform bones in the IK character (see figure 12) to ensure that the joint at the start and end of
each bone chain are in the exact same position as in the MOCAP character. The complementary
bones in the MOCAP character were set as the target and local with parent space definitions
were used.

The inverse kinematics bone constraint was used to apply IK to each bone chain as follows:

• The IK bone constraint was added to the shin bones and the head bone.

• The target and pole inputs were set to the correct target and pole bones.

• The pole angle was set to −90° for the legs, and to 90° for the spine.

• The number of iterations was set at 500 as by default.

• The chain length of the legs were set to 2, and that of the spine to 6.

• Use tail was selected, stretch was deselected and influence was set to 1 for all chains as by
default.

All non-deform bones were de-parented from the rest of the rig to make the IK constraint work
properly. Note that the foot bones are not influenced by the inverse kinematics of the leg.

Figure 12: Capture of the character’s rig in Blender showing the bones to which the bone
constraints were applied: the inverse kinematics bone constraint is colored yellow and the copy
tranform bone constraint is colored green.

14

3.3 Quantitative analysis

With all MOCAP-based and IK-based animations ready, a quantitative analysis could be per-
formed. The analysis was limited to the right leg (stepping leg) and spine bone chains and
focused only on the reactive stepping movement. First, the location data was obtained from
Blender using a Python script in Blender’s text editor. The location data was then analyzed
further in Microsoft VS code using Python. The parameters used in the quantitative analysis
are:

• RMSE and CC: the root mean square error and the correlation coefficient

• ∆xr, ∆yr, ∆zr: the difference in x-, y- and z-positions of each joint between the IK and
MOCAP character’s armatures, compensating for the increasing error carried through the
bone chain.

• ∆Sxz,leg, ∆Sxz,spine, ∆Syz,leg, ∆Syz,spine: the area under each bone chain w.r.t the global
axis in the xz- and yz-plane.

The maximum values of ∆S were used to find the animation and keyframe numbers of the
worst-case-scenario’s (see also figure 3). All parameters were obtained using a Python script.

3.3.1 Finding the 3D position data of the joints

For the analysis, all bones in the arms and left leg as well as the two pelvis and heel bones
were removed from each armature in a new file, so that only the bones that play significant
part in the reactive stepping remain. The characters were then re-scaled equally on all axes
until it measures 1.69m in the z-direction, to match the length of the test subject. Lastly, the
character’s mesh was hidden from the Viewport, so only the armature is visible.

The global location and rotation data of the joints can not be directly obtained in Blender,
as bone movement is always defined with respect to the bone’s parent and not to the global
world. To go around this problem, empty objects were added into the scene and placed at the
position of each joint throughout the animation. Global position data of the joints could then be
obtained from the empty objects instead. To place an empty object at the joint, the snapping
tool in Blender was used. For more information about how this tool is used, see Appendix IV.
As the snapping tool can only snap the empties to the head (start) of each bone, the endpoint of
each bone chain would normally be left out of the analysis. The head of the spine target and toe
bones were used to obtain these positions. Obtaining the locations of the start and end of each
chain allows to check if they are indeed the same in both animations (IK criterion), otherwise
the animations can not be compared to each other.

Manually snapping an empty object to each individual joint for all keyframes would be time
consuming and tedious. Therefore, a Python (v3.10.8) script was written using Blender’s text
editor to obtain a matrix containing the x,y and z-positions of all of the joints. For more in-
formation about this Python code and how to use it, see Appendix IV. The location data was
expressed in meters.

15

3.3.2 Finding ∆x, ∆y, ∆z, the root mean square error and correlation coefficient

Before performing the analysis, each cell in the location data Excel file was multiplied by 100 so
that it was expressed in centimeters. The following parameters were found using new Python
script (v. Python 3.9.13) in Microsoft VS code. The column order in each sheet was changed
to fit the Python file.

∆x, ∆y, ∆z (cm) were found by subtracting each data point in the MOCAP data from the
corresponding data point in the IK data. These errors were then used to find the root mean
square error (RMSE) for each animation, each joint and each axis. Additionally, a correlation
coefficient (CC) was calculated. As there are multiple animations of each of the five reactive
stepping motions (backwards, diag. backwards, diag. forwards, forwards and sideways), a mean
RMSE and CC was calculated for each of those five stepping motions, for each joint and axis
separately.

RMSEj,x =

√∑
∆xj

2

n

CCj,x =
n
∑

xmxik −
∑

xm
∑

xik√
(n

∑
xm2 − (

∑
xm)2)(n

∑
xik2 − (

∑
xik)2)

With j the joint, x the axis and n the number of data points, or keyframes, xm the x location of
the joint in the MOCAP armature (cm) and xik the x location of the joint in the IK armature
(cm).

As the error carries through to the bones further on in the chain, extra calculations were required
to find the real ∆x, ∆y and ∆z of each individual joint. These can show behaviour of each joint
more clearly. The following formula was applied:

∆xi,r = ∆xi −∆xi−1,r

Where i represents a joint in the character’s armature following the bone hierarchy in each bone
chain (see Appendix V for an overview of the joint names and hierarchy). Note that this formula
is only applied to the intermediate joints.

3.3.3 Finding the worst-case-scenarios

To visualize how Blender’s inverse kinematics method behaves at it’s worst, the animation and
keyframe number associated with the worst-case-scenarios needed to be found first. The worst-
case-scenario was defined as the point in the animation where the difference in summed area
(2D) under a bone chain (w.r.t the global z-axis) between that of the MOCAP and IK armature
is the largest. This was seperated into four situations, as there are two bone chains (leg & spine)
and two planes (xz & yz). The surface S (cm2) created by each individual intermediate bone in
a bone chain was calculated as follows:

For xi > xi+1:
Sx,i = (0.5 · dz · dx) + (xi+1 · dz)

For xi < xi+1:
Sx,i = (0.5 · dz · dx) + (xi · dz)

Where i represents a joint in the character’s armature following the bone hierarchy in each bone
chain, and dx the difference between xi and xi+1 (see figure 13).

16

The individual surfaces were summed to find the total surface under each bone chain. Next,
∆S was calculated by subtracting the S found in the MOCAP character from that found in
the IK character. Finally, the maximum ∆S for the right leg chain and the spine chain in xz-
and yz-plane and the corresponding frame number and name of the animation were obtained
through the Python code.

Figure 13: Simplified schematic of the surface created by each bone with respect to the z-axis.
Shown are the parameters x, y, dx, dy and dz. Here, i represents the joint number in the
character’s armature following the bone hierarchy of each bone chain (see Appendix V).

17

4 Results

4.1 General observations

After closer inspection, the snapping method used by the python script in Blender did not snap
the empty objects center to the exact center of each joint (see figure 14). Instead, it has a slight
offset that is not equal in direction or magnitude over each joint. It also appears to differ in
magnitude and direction throughout an animation. The offset magnitude is estimated to be
maximally 2 mm in total length (hypotenuse). However, the offset occurring when the object is
snapped to a joint in the MOCAP armature is the same as when it is snapped to the same joint
in the IK armature, so ∆x, ∆y and ∆z remain the same.

Figure 14: Images of the knee joint (green lines) and the knee empty object (red circle) in
Blender in the yz-plane. Left: MOCAP armature. Right: IK armature. The white stripe
represents the offset between the center of the joint and the center of the empty object. The
white bar in the bottom right corner indicates 1 cm.

Before observing the results of the quantitative analysis, it was checked if the locations of the
start and end of each bone chain was indeed equal for both characters throughout all animations.
The ∆x, ∆y and ∆z for the hip, spine and head tip all neared 0 throughout the animations.
However, the ankle joint showed generally larger ∆x, ∆y and ∆z than the other joints. It’s ∆x,
∆y and ∆z remained under 0.003 cm throughout all animations.

4.2 ∆xr, ∆yr and ∆zr

The ∆xr, ∆yr and ∆zr of each joint were plotted against the progress of the animations (in
keyframes). As each data point of the MOCAP dataset was subtracted from the corresponding
data point of the IK dataset, the x-axis serves as a baseline representing the MOCAP data with
each of the curves showing how the IK dataset deviates from the MOCAP dataset. A negative
value for ∆x, ∆y and ∆z means that the joint in the IK armature is located more in negative
x, y or z-direction with respect to the same joint in the MOCAP armature. See Appendix VI
for the definitions of the axis in Blender.

The |∆zr| always remained under 0.8 cm for all of the joints and was noticeably smaller than
|∆yr| and |∆zr| under all circumstances (see figure 23). The |∆xr| of the knee joint was larger
then any of the spine joints throughout all animations, during peak movement (where the foot
makes an arch). Furthermore, ∆xr,knee remained negative throughout all animations, while
∆yr,knee stayed positive. The other joints did not show the same behaviour. The neck joint
showed the largest |∆yr| of all spine joints throughout all animations, followed by the upper-
spine joint. An example line plot of ∆xr, ∆yr and ∆zr showing these behaviours can be found
in Appendix VII.

18

4.3 RMSE and correlation coefficient

The joint at the start and end of each bone chain showed an RMSE of near 0 and correlation
coefficients of near 1 for all axis. The bar plots in figures 15 and 16 present the mean RMSE
and correlation coefficients over each stepping movement for each intermediate joint in x- and
y-direction. The mean RMSE and correlation coefficients of all joints in the z-direction were
found as 0-0.5 cm and close to 1.000 respectively.

The largest mean RMSE values and smallest correlation coefficients were found for the knee
joint in the x-axis for all stepping movements (mean RMSE: 1.60-2.26 cm, mean CC: 0.68-0.96)
and for the upper spine, neck and head joints in the y-axis for the backwards, diagonally back-
wards and/or sideways stepping movements (mean RMSE: 1.29-2.92 cm, mean CC: 0.35-0.81).

Figure 15: Bar plot showing the mean RMSE over each stepping movement for each joint and
axis. See for calculations chapter 3.3.2.

Figure 16: Bar plot showing the mean correlation coefficient over each stepping movement for
each joint and axis. See for calculations chapter 3.3.2.

4.4 Visualizing the worst-case-scenarios

The maximum values of ∆Sxz,leg, ∆Syz,leg, ∆Sxz,spine and ∆Syz,spine were found within the
diagonally backwards, backwards and sideways reactive stepping animations, with values 132.14
cm2, 34.65 cm2, 133.09 cm2 and 119.53 cm2 respectively. See for the axis definitions Appendix
VI. Figure 17 show the armatures of the IK and MOCAP character in Blender during these
worst-case scenario’s.

19

Figure 17: Images taken from the MOCAP (red) and IK (green) armatures in Blender (in wire mode) to
show the worst-case-scenarios. A) Shows the worst-case scenario for the leg bone chain in the xz-plane, as
found in a diagonally backwards stepping animation. B) Shows the worst-case scenario for the leg bone
chain in the yz-plane, as found in a backwards stepping animation. C) Shows the worst-case scenario for
the spine bone chain in the xz-plane, as found in a sideways stepping animation. D) Shows the worst-case
scenario for the spine bone chain in the yz-plane, as found in a sideways stepping animation.

20

5 Discussion

The outcomes of this research have provided insight in the quality of the inverse kinematics
methods used by the Blender animation software when applied to animating reactive stepping
motions. Overall, the IK performed well in the leg chain, with a mean RMSE of the knee joint
between 1.60 cm and 2.26 cm and a mean correlation coefficient between 0.68 and 0.96 for the
x-axis, and a low mean RMSE and high correlation for both the y- and z -axis. The images taken
of the MOCAP and IK armatures at the moment of worst-case scenario’s show a small difference
for the knee joint of the IK armature when compared to that of the MOCAP armature in the
yz-plane and a small difference in the xz-plane.

As the error carries through the chain towards the end-effector, the errors are generally the
largest in the joints closer to the target joint. It is therefore not surprising that the IK per-
formed less well in the (upper part of the) spine bone chain, as it also contained more bones.
Where the mean RMSE is generally low (< 1 cm) and mean correlation coefficient is high (> 0.8)
for the spine joints in the x - and z -direction, the joints in the upper part of the spine (upper-
spine, neck and head joints) show bad correlation between the MOCAP and IK armatures in the
y-direction for the backwards, diagonally backwards and sideways stepping movements (mean
RMSE: 1.29-2.92 cm, mean CC: 0.35-0.81). This corresponds to the line graphs of ∆yr. The
difference in posture of the spine between the IK and MOCAP armature in the worst-case sce-
nario’s is noticeable, but not very large, in both xz- and yz-plane.

When both armatures are reapplied to the character, the differences are less noticeable as the
error is ’hidden’ partly in the mesh enveloping the armatures. On its own, the IK character’s
posture looks natural throughout the reactive stepping animations. When put into practice, the
character animation is seen by the player from far away, as they stand in front of the screen.
Depending on the size of the screen, the differences may become negligible from that distance.
The inverse kinematics method is therefore expected to provide good enough posture to use in
the exergame environment.

As the specific IK method used by Blender is unknown, it is hard to compare the results to
relatable research. Given the comparison between MOCAP and the FABRIK, CCD, Jacobian
transposed and DLS methods for human poses3, the Blender inverse kinematics method seems
to show slightly worse posture quality than the FABRIK and CCD methods and better than
the Jacobian transposed and DLS methods [9].

As mentioned under ’general observations’ in Results (see chapter 4.1), the snapping method
shows a small offset between the empty object’s location and the joint’s true location. As the
offset is always the same over the IK and MOCAP armatures for the same joint, it has no effect
on ∆x, ∆y, ∆z, RMSE or CC. Yet, the offset is different in magnitude and direction throughout
the animation, between the different animations and between the joints, which does influence
∆xr, ∆yr, ∆zr and ∆S. Furthermore, it makes comparisons between the the joints less accu-
rate. However, as the offsets is estimated as < 2 mm in length (hypotenuse), its influence on
these parameters is limited. No corrections were therefore applied to these calculations. One
way to work around this problem is to perform coordinate transformations instead of using the
snapping method. By using coordinate transformations, you can find a joint’s location expressed
in the global coordinate system by using the joint’s location expressed in its local coordinate
system and the definitions of that coordinate system.

3FABRIK: A fast, iterative solver for the Inverse Kinematics problem, chapter 5.2.

21

Another observation is that the ∆x, ∆y, ∆z of the ankle are larger then those of the hip, spine
and head tip. Although it is small enough (< 0.003 cm) to fulfil the IK criteria, it is worth
mentioning. Perhaps the multiple bone constraints around the joint (on the shin, IK target and
foot bones) and/or the unusual bone hierarchy could have interfered with each other.

As mentioned in the Method chapter (3.2.1), the placement of the pole bone can influence
the way the bone chain bends. If it is placed too close to the armature, it presents in weird
spine or leg posture or it makes the chains bend the other way, as there is no ’room’ for proper
bending. The pole bones where therefore placed well outside of that zone. The pole bones also
control the general direction in which the bone chain bends, so this may feel like it is ’cheating
the system’. However, the pole bone acts similar to rotation limits on joints used by other IK
methods: it does not force the knee to point exactly to its location, but more to its general
direction. The existence of a ∆x, ∆y, ∆z in the knee joint proofs this too.

Noticeably, the knee joint and the joints in the upper part of the spine showed lower corre-
lation and higher RMSE between the IK and MOCAP armatures for the backwards, diagonally
backwards and sideways stepping movements compared to the forwards and diagonally forwards
stepping movements. However, as the mean RMSE and correlation coefficients were taken over
a maximum of 3 datasets per stepping direction this could be down to chance. Further investi-
gation is required to see if the same effect can by found for larger datasets.

Furthermore, the knee joint showed higher RMSE and lower correlation between the MOCAP
and IK armatures in the x-coordinates compared to the y-coordinates. This is expected for an
IK chain with only two bones. Given that the x- and y-coordinates of the joint at the start and
end of the chain are restricted and the bone lengths can not change, the y-coordinate of the
knee joint is restricted too. However, the knee can be freely moved along the x-axis without
causing bone deformation or changing the position of the start- and end of the bone chain. For
the joints in the upper part of the spine chain, it showed the opposite behaviour. As there
are more bones in the spine IK chain, movement along the y-axis of the intermediate joints in
the IK is less restricted than in the knee joint, while rotation of the bones around the z-axis is
more restricted in the spine bone chain then in the leg bone chain. However, as the data is only
recorded in duple or triplo, it can not be concluded that the correlation between the IK and MO-
CAP armatures in the x-coordinates for the upper spine joints is always lower than that in the
y-direction. Further research can study if this behaviour can be found for larger datasets as well.

This research focused on reactive stepping movements only. Results can differ when the motion
is changed, for example, to running or jumping. It only represents the workings of the IK meth-
ods used by Blender, not those of other animation software. It would be interesting to follow up
on this research and see how the results would compare to IK methods used by other animation
software, such as the final IK extension in Unity. It is known that for animating humanoid
characters using IK methods, there is always a trade-off between quality of posture and high
computation. Another follow-up research could therefore study the difference in computation
time of Blender’s IK method compared to other IK methods, which is especially important for
games using real-time input.

It was found that the upper part of the spine bone chain performed the worst. One way of
improving the spine posture could be to separate the head from the spine IK to shorten the
length of the IK chain. The rotation between the head and neck could then be limited using
rotational constraints. Perhaps using spline IK instead of standard IK could give even better
posture.

22

References

1. Qureshi AI, Baskett WI, Huang W, Shyu D, Myers D, Raju M, Lobanova I, Suri MFK,
Naqvi SH, French BR, et al. Acute ischemic stroke and COVID-19: an analysis of 27 676
patients. Stroke 2021; 52:905–12

2. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J,
and Lindsay P. World Stroke Organization (WSO): global stroke fact sheet 2022. Interna-
tional Journal of Stroke 2022; 17:18–29

3. Li N, Li J, Gao T, Wang D, Du Y, and Zhao X. Gait and balance disorder in patients with
transient ischemic attack or minor stroke. Neuropsychiatric disease and treatment 2021;
17:305

4. Inness EL, Mansfield A, Lakhani B, Bayley M, and McIlroy WE. Impaired reactive stepping
among patients ready for discharge from inpatient stroke rehabilitation. Physical therapy
2014; 94:1755–64

5. Ramnemark A, Nyberg L, Borssén B, Olsson T, and Gustafson Y. Fractures after stroke.
Osteoporosis International 1998; 8:92–5

6. Langhorne P, Wagenaar R, and Partridge C. Physiotherapy after stroke: more is better?
Physiotherapy Research International 1996; 1:75–88

7. HEROES of the sea: home-based exergame for enhancing resistance to falls after stroke.
Available from: https://www.4tu.nl/health/poster-gallery/posters/03/
[Accessed on: 2023 Jun 1]

8. Nieuwenhuys WW. The comparison of the accuracy of camera-based skeleton trackers
during the stepping response for recovering balance in a home based environment. MA
thesis. University of Twente, 2022

9. Aristidou A and Lasenby J. FABRIK: A fast, iterative solver for the Inverse Kinematics
problem. Graphical Models 2011; 73:243–60

10. Buss SR. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and
damped least squares methods. IEEE Journal of Robotics and Automation 2004; 17:16

11. Wolovich WA and Elliott H. A computational technique for inverse kinematics. The 23rd
IEEE Conference on Decision and Control. IEEE. 1984 :1359–63

12. Whitney DE. Resolved motion rate control of manipulators and human prostheses. IEEE
Transactions on man-machine systems 1969; 10:47–53

13. Phuoc LM, Martinet P, Lee S, and Kim H. Damped least square based genetic algorithm
with Gaussian distribution of damping factor for singularity-robust inverse kinematics.
Journal of Mechanical Science and Technology 2008; 22:1330–8

14. Buss SR and Kim JS. Selectively damped least squares for inverse kinematics. Journal of
Graphics tools 2005; 10:37–49

15. Wang LC and Chen CC. A combined optimization method for solving the inverse kinematics
problems of mechanical manipulators. IEEE Transactions on Robotics and Automation
1991; 7:489–99

16. Song W and Hu G. A fast inverse kinematics algorithm for joint animation. Procedia
Engineering 2011; 24:350–4

17. Shin HJ, Lee J, Shin SY, and Gleicher M. Computer puppetry: An importance-based
approach. ACM Transactions on Graphics (TOG) 2001; 20:67–94

18. Kulpa R and Multon F. Fast inverse kinematics and kinetics solver for human-like figures.
5th IEEE-RAS International Conference on Humanoid Robots, 2005. IEEE. 2005 :38–43

23

https://www.4tu.nl/health/poster-gallery/posters/03/

19. Muller-Cajar R and Mukundan R. Triangualation-a new algorithm for inverse kinematics.
2007

20. Grochow K, Martin SL, Hertzmann A, and Popović Z. Style-based inverse kinematics.
ACM SIGGRAPH 2004 Papers. 2004 :522–31

21. Blender 3.3 Manual. Available from: https://docs.blender.org/manual/en/
latest/index.html [Accessed on: 2022 Oct 5]

22. Unity Manual - inverse kinematics. Available from: https://docs.unity3d.com/
Manual/InverseKinematics.html [Accessed on: 2022 Nov 28]

23. Working with Animation Rigging. Available from: https://learn.unity.com/
tutorial/working-with-animation-rigging [Accessed on: 2022 Nov 28]

24. Unity Manual - animation rigging: constraint components. Available from: https://
docs.unity3d.com/Packages/com.unity.animation.rigging@1.1/manual/
ConstraintComponents.html [Accessed on: 2022 Nov 28]

25. Parger M, Mueller JH, Schmalstieg D, and Steinberger M. Human upper-body inverse
kinematics for increased embodiment in consumer-grade virtual reality. Proceedings of the
24th ACM symposium on virtual reality software and technology. 2018 :1–10

26. Kallmann M. Analytical inverse kinematics with body posture control. Computer anima-
tion and virtual worlds 2008; 19:79–91

27. Hoyet L, Ryall K, McDonnell R, and O’Sullivan C. Sleight of hand: perception of finger
motion from reduced marker sets. Proceedings of the ACM SIGGRAPH symposium on
interactive 3D graphics and games. 2012 :79–86

28. Aristidou A and Lasenby J. Motion capture with constrained inverse kinematics for real-
time hand tracking. 2010 4th International Symposium on Communications, Control and
Signal Processing (ISCCSP). IEEE. 2010 :1–5

29. Peinado M, Herbelin B, Wanderley M, Le Callennec B, Boulic B, and Thalmann D. Towards
configurable motion capture with prioritized inverse kinematics. Tech. rep. 2004

30. Komura T, Ho ES, and Lau RW. Animating reactive motion using momentum-based inverse
kinematics. Computer Animation and Virtual Worlds 2005; 16:213–23

31. Qualisys Track Manager manual. Available from: https://docs.qualisys.com/
getting-started/content/getting_started/introduction.htm [Accessed
on: 2022 Dec 1]

24

https://docs.blender.org/manual/en/latest/index.html
https://docs.blender.org/manual/en/latest/index.html
https://docs.unity3d.com/Manual/InverseKinematics.html
https://docs.unity3d.com/Manual/InverseKinematics.html
https://learn.unity.com/tutorial/working-with-animation-rigging
https://learn.unity.com/tutorial/working-with-animation-rigging
https://docs.unity3d.com/Packages/com.unity.animation.rigging@1.1/manual/ConstraintComponents.html
https://docs.unity3d.com/Packages/com.unity.animation.rigging@1.1/manual/ConstraintComponents.html
https://docs.unity3d.com/Packages/com.unity.animation.rigging@1.1/manual/ConstraintComponents.html
https://docs.qualisys.com/getting-started/content/getting_started/introduction.htm
https://docs.qualisys.com/getting-started/content/getting_started/introduction.htm

Appendices

Appendix I: Marker placement used during motion capture

The following marker placement was used during the MOCAP session. This marker set is specific for the
Qualisys Track Manager software.

Figure 18: Schematic representation and description of the marker placement used during the MOCAP
session, as provided by the Qualisys Track Manager software in the installment.

25

Appendix II: AIM-model generation details

After generating a new AIM-model from the AIM-trial, a window pops up allowing verification of the bones
in the AIM-model, see figure 19. There are no connections going across skeleton segments, so no ‘bones’
(red lines) needed to be deleted.

Figure 19: Verification of the AIM-model’s bones upon generating an AIM model from 48 animation markers
of the processed Aim03.c3d file.

26

Appendix III: Settings used in the copy transform bone constraint

The copy transform bone constraint in Blender can be used to copy an object’s transform (position and
rotation) to another object. In this project it is used to obtain the IK-based animation. The constraint
can be found in the bone constraint properties menu. It takes multiple inputs. The target and bone input
requires the rig and bone whose transform needs to be copied. With the head/tail input you can set the
copied movement of the bone to the head or tail of the owner. The target and owner inputs determine how
the owner will move with respect to the target. The input settings used in this project are shown in figure
20.

Figure 20: An overview of the inputs of the copy transform bone constraint in Blender

27

Appendix IV: A summary of the snapping method in Blender and how it was used to obtain
the joint data.

The locations of the joints in the armature can not be obtained directly from Blender. Instead, by placing
an empty object at the exact same place as the joint, the location of the joint can be found from the location
of that empty. A method called snapping was used to place an empty object at a bone’s tail. The following
list shows a summary of the snapping method:

1. An empty (sphere) object must be added into the scene first.

2. The interaction mode must be set to pose-mode with the armature of choice selected to be able to
select an individual bone. With the bone selected, the cursor is snapped to the bone’s head using:
pose > snap > cursor to selected.

3. The interaction mode must be set back to object-mode to select the empty object. The object is then
snapped to the cursor using: object > snap > selected to cursor.

4. The empty object is now placed at the exact same position as the bone’s head and it’s global transform
is shown in the transform menu.

A Python code was written, that loops through each bone in the armature and snaps an empty object
(sharing the name of the bone) to a bone’s head and places its global position data in a location matrix.
The code then repeats these steps for each joint and at each keyframe in the animation. Finally, it prints
the results to the console window in a way it can be easily copied to an Excel file.

Before using the snapping code, a new collection was created in the ViewLayer called Joint objects. A
separate script called make empties was used to create the set of empty spheres with a radius of 0.05m and
rename them to each of the bones in the armature.

To obtain the location data, a MOCAP-based animation was linked to the MOCAP character’s arma-
ture and the keyframes of the start (foot-off) and end (foot-on) of the reactive step were entered at the top
of the snapping.py code and the active rig was set to MOCAP-rig by commenting out the rig = ‘IK-rig’
line. The code was executed and the data was copied from the system console to an Excel file. Next, the
active rig was set to IK-rig by commenting out, rig = ‘MOCAP-rig’ instead. The script was executed again
and the results were copied to a new worksheet in the Excel file. All [,] and ′ symbols that were present in
the console window were removed from the data in the Excel sheet.

The result of the Python code is an Excel file containing 2 × 14 sheets: four movements were recorded
in triplo and one in duplo (see chapter 3.1.1 and 3.1.2), and for each recorded movement the location data
of the joints in both IK and MOCAP character were obtained. Each sheet consisted of a header in row 1
and the location data was spread over a total of 44 columns: 4 columns per bone (keyframe and x-, y- and
z-positions) for 11 bones in total (6 spine bones, 3 leg bones and the extra head and foot bone). The number
of rows depended on the amount of keyframes defining the reactive stepping movement in the animation.
The location data was expressed in meters.

28

Appendix V: The joint naming system and hierarchy used by Blender and an overview of the
bone lengths.

The bone hierarchy in Blender is determined by the parent-daughter connections. It usually follows the
chain in head-to-tail order. The hierarchy in the leg and spine bone chains is therefore as follows: Hip >
Knee > Ankle > Foot > Toe; Spine > Spine001 > Spine002 > Upper spine > Neck > Head > Head tip.
Figure 21 shows the position of each of these joints in the character’s armature.

Figure 21: Image of the character’s armature in Blender, showing the names of each joint.

The following table presents an overview of the length of each (deform) bone in the character’s armature
and the joint they control.

Bone List

Bone name Associated joint Bone length (cm)

Foot Foot 7.64
Shin Ankle 43.16
Thigh Knee 36.58

Root/1st spine Spine001 13.00
2nd spine Spine002 11.67
3rd spine Upper spine 14.76
4th spine Neck 16.45
Neck Head 4.75
Head Head tip 18.31

29

Appendix VI: An overview of the axis definitions in Blender.

The axis were defined in Blender as follows:

Figure 22: An image showing the axis definitions as defined in the Blender files used during this project.

30

Appendix VI: Lineplot of ∆xr, ∆yr and ∆zr for a backwards stepping movement.

The following line graphs show the progress of ∆xr, ∆yr and ∆zr throughout the backwards stepping
movement. It shows that ∆zr is smaller than ∆xr and ∆yr for all joints. The |∆xr| of the knee joint is
larger then any of the spine joints, during peak movement. Furthermore, ∆xr,knee stays negative, while
∆yr,knee stays positive. This is representative for all stepping movements. The other joints did not show a
similar behaviour for all movement. The neck joint showed the largest |∆yr| of all spine joints throughout
all animations, followed by the upper-spine joint.

Figure 23: Three graphs showing the progress of ∆x (above), ∆y (middle) and ∆z (below) for each joint
during the backwards stepping animation. A negative value means the joint in the IK armature is positioned
towards the negative axis with respect to the same joint in the MOCAP character. These graphs show the
data of only one of the backwards stepping animations (backwards.04)

31

	Acknowledgements
	Abstract
	Introduction
	Background
	Character design and animating
	Inverse kinematics
	Motion capture
	Animation software
	Related work

	Methods
	Animation: MOCAP
	Recording motion capture
	Processing the MOCAP data
	Animation retargeting

	Animation: Inverse Kinematics
	Preparing the rig for IK
	Applying the bone constraints

	Quantitative analysis
	Finding the 3D position data of the joints
	Finding x, y, z, the root mean square error and correlation coefficient
	Finding the worst-case-scenarios

	Results
	General observations
	xr, yr and zr
	RMSE and correlation coefficient
	Visualizing the worst-case-scenarios

	Discussion
	References
	Appendices
	Appendix I: Marker placement used during motion capture
	Appendix II: AIM-model generation details
	Appendix III: Copy transform bone constraint input settings
	Appendix IV: A summary of the snapping method in Blender and how it was used to obtain the joint data.
	Appendix V: The joint naming system and hierarchy used by Blender and an overview of the bone lengths.
	Appendix VI: An overview of the axis definitions in Blender.
	Appendix VI: Lineplot of xr, yr and zr for a backwards stepping movement.

