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Management summary 
Context 

Nedap livestock management is a part of Nedap N.V., a Dutch technology company. One of Nedap 

livestock management’s key products is the SmartTag. The SmartTag is a monitoring device for cows, 

attached to a collar, which provides valuable insights into their health and behavior. For our research 

we focus on the inventories of the production process of the SmartTag. Since all configurations of the 

SmartTag are produced at Nedap in two steps, we are dealing with a multi-echelon multi-item 

inventory/production system. 

   

Currently, Nedap has little insights into good inventory management for their situation. Their 

production system provides multiple positions to place inventory. However, currently no safety stock 

is kept apart from a month of demand at the component level. This decision is solely based on the 

experience of employees and not on analysis. Therefore, we conduct our research to answer the 

following research question:  

How can the inventory be optimally managed for the production process of the SmartTags? 

Method 

We have built a model to simulate the production process on a tactical level. Our simulation model 

evaluates the performance of different base stock levels placed on different echelon levels. Moreover, 

by adjusting parameters such as lead time, demand (mean and standard deviation), and production 

capacity, we created opportunities to assess the effect of the base stock levels on various scenarios. 

Our objective is to minimize the average inventory on stock while maintaining a certain service level.  

 

We have found multiple models from literature which provide a method to determine base stock 

levels: Two versions of the model suggested by Chopra & Meindl (2007) and the guaranteed service 

model (GSM) by Graves & Willems (2003). Additionally, we used the current safety stock Nedap uses 

to determine a set of base stock levels and we evaluate a scenario in which no safety stock was kept 

at all.  

 

Next to these five models, we also proposed an optimization model of our own. This model uses 

simulated annealing (SA) in combination with our simulation model to optimize the base stock levels.  

Results 

With the help of our simulation, we determined the objective values of the different models. The SA 

algorithm was able to obtain the lowest average inventory while maintaining a service level above 

95%. When we compare our optimization model with Nedap’s current model in terms of average 

inventory, we see a decrease of 30.7%. Moreover, not only does the average inventory becomes lower, 

but the service level also experiences a noticeable increase, reaching 96.3% compared to the previous 

88.4%, respectively. 

 

Furthermore, our analysis indicates that the current system is limited by the availability of the 

components rather than the production capacity. This suggests that the production capacity is 

sufficient to fulfill the expected demand. From our sensitivity analysis we found that an increase of 

more than 40% in demand or a decrease of more than 20% in production capacity leads to overloading 

the current system. Therefore, shifting the limiting factor from component availability to production 

capacity. 
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Conclusion 

We created an optimization model which is able to outperform Nedap’s current model and standard 

benchmark models obtained from literature. Outperforming these models is possible due to the 

effective placing of the base stock levels. Unlike these other models, our simulation model 

incorporates production constraints, which is crucial in determining the optimal base stock levels. Our 

model uses both echelon levels to account for the production constraints, which results in better 

objective values. Furthermore, with the support of our simulation model we are able to optimize and 

evaluate different decisions. This simulation is not only useful for optimizing the current base stock 

levels, but the simulation can also be used by Nedap to simulate future scenarios. Hence, our 

simulation model can advise Nedap to take and evaluate tactical decisions. 

 

When conducting our sensitivity analysis, we found that the lead time has a great impact on the 

performance of the base stock levels. Therefore, Nedap has to make sure this lead time is known and 

accurate. In addition, the current production utilization showed that the system is currently not limited 

by the production capacity. From our analysis we were able to determine that a 40% increase in 

demand, makes the production capacity the limiting factor.  

 

Furthermore, we recommended Nedap to implement the base stock levels into their ERP system. 

Additionally, we encourage Nedap to increase their KPI monitoring. Especially, the inventories and 

service levels are of importance, since they represent the performance of our decisions (base stock 

levels). The supplier lead time should also be monitored closely in order to make sure that the 

simulation model has accurate lead time values. The more accurate information is put into the 

simulation the more accurate information comes out. Therefore, it is of the essence that the input is 

as accurate as possible, which requires adequate monitoring.  

 

Finally, our research provides two main opportunities for future research. The first opportunity is to 

evaluate other options to optimize the base stock levels. Machine learning algorithms or other 

(meta)heuristic are alternatives for optimizing the base stock levels. The second opportunity is to 

include more stochasticity in the model, especially stochastic lead times are interesting to incorporate 

in the simulation model, since we concluded that the effect of the lead time is significant.   
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1. Introduction 
This introduction provides an overview of Nedap, a Dutch technology company. In particular the 

business unit livestock management. One key product from livestock management is the focus of this 

thesis, the SmartTag. We place our focus on the supply chain of the SmartTag. From this, we state the 

research problem together with the research question and the sub-questions. Finally, we discuss the 

scope of the research. 

1.1. Background information 
The research for this master thesis is conducted at Nedap. Nedap is a technology company which 

provides hardware and software solutions for people in order to improve their work experience. Nedap 

consists of multiple business units: livestock management, healthcare, security, and more. This 

assignment is part of livestock management. Livestock management supports professional livestock 

farmers, both cow and pig farmers, in order to provide them with tools to run a profitable and 

sustainable business. This is done by enabling farmers to automate daily tasks and take decisions based 

on individual animal data. This empowers the livestock farmers to fulfil the increasing demand in 

protein, again, while maintaining a profitable business and meeting sustainability and animal welfare 

standards.  

One way of achieving these goals is with the use of Cow Control. Cow Control is one of the propositions 

within livestock management that maximizes performance of livestock while reducing time, labor, and 

costs. An example of a product that contributes to this proposition is the SmartTag, this device hangs 

around the cow’s neck and collects data from that cow. The data supports the farmer with information 

about the health, fertility, identification, and location of the cows. This SmartTag is sold on the global 

market and has a wide range of configurations due to customer-specific labelling and tag functionality. 

The SmartTag is produced by Nedap SMART, which is the production facility of Nedap. Although it is 

part of the Nedap group, Nedap SMART is considered a separate supplier. Livestock management 

places orders at Nedap SMART for their SmartTags. This process is the same for the other parts of the 

Cow Control solutions Nedap offers. Livestock management places orders at the suppliers for their 

products. The one key difference is that Nedap SMART is located at the same place at the headquarters 

of livestock management, which makes communicating decisions accessible. Also, Nedap SMART is 

part of the Nedap group, this results in a cooperation in which decisions are made in harmony. These 

decisions include safety stock levels, production quantities, demand forecasts, and the production 

planning/process. Because of this cooperation it is possible to have a significant impact on the entire 

supply chain. A more detailed description can be found in Chapter 2, in which the current system is 

analyzed.  

At the moment, there are a lot of factors influencing the supply chain of the SmartTag. One of these 

factors is the worldwide microchip shortage, which resulted in an increased backlog. Together with the 

shortage there is also an increase in lead times, which makes it difficult to create and maintain 

inventory. Moreover, the microchip shortage is applicable to one key component of the SmartTag. 

Because this component cannot be delivered, the SmartTag production could not produce at its 

maximum rate anymore. These factors forced the production to be make-to-order, which is currently 

performed as follows. First, the expected demand in the form of a forecast is entered into the 

Enterprise Resource Planning (ERP) system, which is the foundation for the planning. This forecast is 

then used in a Material Requirement Planning (MRP) to output planning propositions. These 

propositions are reviewed and executed on a weekly basis. After the operational purchase is 

completed, a production planning is created based on the current planning parameters. Finally, when 

the production of the SmartTag is completed, it is shipped to the warehouse, in which orders are picked 
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and shipped to the intended destination. Currently, the lead time for the entire process is set to twenty 

weeks.  

Although the past years have been a challenging time in terms of supplies and lead times, the future 

is expected to be promising. Suppliers should be able to deliver their supplies on time and in the right 

quantities. Furthermore, an additional production line is on its way to increase production capacity. 

Also, a second version of the same SmartTag will be created to reduce the risk of supplies 

complications. This second version has the same functionality but requires different components, 

which means that risks are spread. Finally, a search for an additional supplier is in place with the goal 

to increase the component availability. 

1.2. Problem identification 
At this moment, a lot is unclear about the inventory, production, and forecast of the SmartTags. First 

of all, there have been few to no possibilities to build up any stock in the last period. This is primarily 

due to the unexpected increase in lead time of components. This unexpected increase forced the 

production strategy to be make-to-order (MTO), rather than make-to-stock (MTS). Moreover, an 

attempt to accomplish an MTS strategy is exceedingly difficult right now due to the limited production 

capacity and a high number of back orders. However, it is expected that the future creates possibilities 

in the form of lower component lead times and an increased production capacity. Furthermore, small 

production gaps currently occur in the planning, which create possibilities for transitioning to an MTS 

strategy. Currently, Nedap lacks knowledge about the SmartTag’s inventory management and 

production. No evident inventory levels are set, lead times to customers cannot be promised, and 

there is no clear plan on how the future changes should be handled. From interviews with the 

employees, it became clear that everyone would benefit from a structured inventory management. 

Thus, the goal is to find how the inventory management of the SmartTag can be improved.  

1.3. Research problem 
In general, Nedap is not able to create a structured planning for producing the SmartTag. Currently, 

decisions are made based on experience and gut feeling. Being able to provide a more data-driven 

approach will enable Nedap to create a more intelligent planning. A good planning will help them to 

provide customers with shorter lead times and a higher reliability. Also, Nedap can directly profit from 

a better planning in terms of costs. Optimal safety stock levels and order sizes can lead to a significant 

decrease in inventory cost. Based on these problems, a set of research questions is established, which 

are explained in Section 1.4. 

1.4. Research questions 
The main research question is stated as follows: 

How can the inventory be optimally managed for the production process of the SmartTags? 

In order to be able to answer this question, other research questions with sub-questions should be 

answered. In Chapter 2, the basis of the process is mapped in order to be able to create a suitable 

solution. This results in the first research question: 

How is the supply chain of the SmartTag currently orchestrated at Nedap? 

From this question the following sub questions are derived. 

• How does the general process of selling a SmartTag look like? 

• How does the production of the SmartTag look like? 

• How is the bill of material (BOM) from the SmartTag structured? 
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• Which insights can be obtained from the historical data? 

 

After that we consult the literature to conduct research in Chapter 3, with the purpose to obtain 

knowledge on how to improve the current situation. Therefore, the second research question is: 

What literature is available concerning the optimization of inventory management in a production 

environment? 

From this question the following sub questions are derived. 

• How does the safety stock placement influence the inventory management? 

• How can optimal safety stocks levels be calculated? 

• How does the production process influence the safety stock levels? 

• Which methods exist for optimizing inventory-production problems?  

 

When the knowledge of the literature is acquired, the next step is to convert this knowledge to a 

method. This is done in the Chapter 4, which presents the third research question: 

Which method is able to improve the inventory management for the current system? 

From this question the following sub questions are derived. 

• Which input is required by the method? 

• How can solutions be generated and evaluated? 

• Which output variables should be provided? 

 

Next to that, we want to evaluate how our method performs. Moreover, the impact of the input on 

the output should be evaluated. In Chapter 5, the output and the effect of the input are examined to 

answer the fourth research question:  

How does our method perform and how does the input relate to the output? 

From this question the following sub questions are derived. 

• What is the optimal output for the given situation? 

• How do the different inputs affect the output? 

• How do assumptions impact the output of the model? 

Finally, in Chapter 6 we conclude the research and provide recommendations to Nedap. In addition, 

we discuss the limitations and impact of the research.  

 

1.5. Scope 
This research focusses solely on the supply chain of SmartTags. The demand, inventory decisions, 

production and purchases of the components of the SmartTags will all be included in the scope. Thus, 

the shipment of the products from and to the warehouse are excluded. In order to focus on the best 

planning, it is important to focus on a single crucial item for Nedap, the SmartTag. However, orders are 

highly likely to include more different items than just SmartTags. Also, because the SmartTag is the 

only product that is produced in-house, it is chosen as the focus of this research. Moreover, the 
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SmartTags can be seen as the bottleneck due to the components shortages it faces. With this 

knowledge, the goal is to provide a solution for the SmartTag, with the opportunity to adapt that 

solution for other products within livestock management. Furthermore, the current situation (extreme 

scarcity of components) is such a unique and temporary scenario, which is why we do not use these 

values for our method. It makes more sense to focus on a future scenario, in which values are far more 

reasonable. Therefore, we assume that this future scenario will have “normal” values and we use this 

future scenario to base our method on. This means lower lead times, ample possibilities to generate 

stock, no shortages and no more backlog. The goal is to provide a method which evaluates multiple 

scenarios based on these expected parameters. Also, since no forecast model is provided, demand is 

estimated based on the historical data and expectations from the sales team.  
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2. Current system analysis 
In this chapter, the supply chain of the SmartTag is explained in more detail. This answers the research 

question on how the supply chain is orchestrated. First, in Section 2.1 an overview of the general 

process is provided. This process includes the steps from a customer order to delivery. Second, in 

Section 2.2 we explain the production process of the SmartTag. Next to that, the product layout is 

discussed in Section 2.3. Furthermore, in Section 2.4, data is gathered in order to gain quantitative 

information about the SmartTags and its production. Finally, Section 2.5 concludes the current system 

analysis.  

2.1. General process 
In order to gain an understanding of how the SmartTags are currently processed, an overview is 

provided in Figure 1. The first step in this process is the arrival of an order from a customer. The 

customers are business partners from Nedap, who use Nedap’s products for their projects. Nedap 

takes this order in and returns a confirmation with an expected shipping date. Currently, this expected 

shipping date is more than twenty weeks after the intake of the order. This means that Nedap, 

currently has a lead time of over twenty weeks for the SmartTags. However, this is largely due to the 

shortages from the last few years. Before this, the lead time was close to five weeks. After this, the 

MRP plans the items and generates purchase orders to the supplier. All of this is part of the process 

when an order has been received. Next to that forecast, Nedap creates its own forecast in order to 

predict demand for the MRP. The general/forecasted orders together with Nedap’s forecast form the 

input for the MRP. The output of the MRP is used as input at the supplier. In this case the supplier of 

Nedap livestock management is Nedap SMART and although it is part of Nedap, they are treated the 

same way as the other suppliers. Furthermore, Nedap SMART has their own MRP system which sends 

orders to their suppliers and creates a production planning. When the planning is fixed and the 

products are available, the production process can start. After this, the products are shipped to an 

external warehouse (grey box in Figure 1). The products stay at the warehouse until the shipping date. 

Finally, the customer receives the product together with the packing list. 
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Figure 1. Overview general process at Nedap 

Now that we have provided a general overview of the process, we explain the individual processes in 

more detail. First, we explain which actions are taken when the sales orders come in. Second, we 

discuss the forecast. After that, the purchase orders and warehouse deliveries are explained in more 

detail. In addition, the production process itself is explained separately in Section 2.2. 

2.1.1. Incoming sales orders 
The first step in the process is the incoming sales orders, in other words, the purchase orders from the 

customers. The key action in this process is deciding on when the order is ready to be produced and 

shipped. In the ERP system, the earliest possible shipping date is provided, based on the MRP. Nedap 

aims to ship the SmartTags within five weeks to the customer. Moreover, some customers work on 

project basis, which means that they place orders far in advance, because they know when SmartTags 

are needed for a project. Therefore, some planning in advance can be done.  

2.1.2. Forecast products 
Another input for the MRP is Nedap’s own forecast of the SmartTags. A forecast is produced for every 

individual end product. However, the forecast is inaccurate at times, since the demand on end product 

level consist of many irregularities. Another reason for an inaccurate forecast is wrong historical data, 

because of the shortages of the previous years. The forecast is based on the sales orders which are 

actually shipped. And although the data showed a dip in sales, the demand was still there, but could 

not be delivered. These irregularities make the forecast unusable, which is the reason that the current 

forecast program is discontinued. Furthermore, Nedap currently relies on the predictions from the 

sales team. At this point, the products are forecasted, based on these predicted values. These values 
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are predicted with the assistance of experts and can therefore be assumed as an accurate forecast for 

the coming period.   

2.1.3. Purchase orders 
The incoming sales order and forecast are used by the MRP to generate purchase proposals. These go 

from Nedap livestock management to SMART and from SMART to their suppliers. The suppliers decide 

together with SMART on product lead times and order quantities. Next to that, SMART decides on their 

lead times and production capacity with livestock management. The corresponding values are 

provided in Section 2.4.  

2.1.4. Warehouse delivery 
Nedap uses an external warehouse to arrange the storage of their end products. Suppliers send their 

products together with the packing list to this external warehouse. The party that is in charge of this 

warehouse sends a confirmation to livestock when the products arrive. This information is used to 

confirm the shipment to the customer. The last step in the entire process is to ship the products from 

the warehouse to the customer’s location, with the packing list.  

2.2. Production  
The SmartTag is one of the only products within livestock management which is still produced in-

house. The entire production can be divided into two parts: the first part is about the housing with the 

printed circuit board (PCB), the second about labeling and covering the housing to make it a usable 

tag. The first production step of the first part is the potting and testing of the PCB. After that, the PCB 

is put into a housing and casted in special material, after which the housing is closed via mirror welding. 

The last step of the first production part consists of programming the tag and lasering the housing. 

After this, a small container with a PCB is ready to be used. However, this small container is not ideal 

to place around the cow’s neck. That is where the second production process comes into place. This 

part has two purposes, one is to frame the tag in such a way that the cow has the least amount of 

discomfort, another is to cover/label the tags for the right customer. This last purpose is important, 

since some customers have their own color and logo on their tags. This is because business partners 

sell the tags under their name. Nevertheless, some smaller customers do not have customized tags 

and use the general Nedap SmartTags. In addition, not all customers demand all different tag types, 

some customer order only one type of SmartTag. For the current analysis it is irrelevant which 

customers order which type of SmartTag. 

The production process of SmartTag creates three places to place stock: at the component level (the 

PCBs), at the half fabric/assembly level (housing without cover), and at the end product level (SmartTag 

with customer specific cover). The first production part (casting) is the most restrictive production step 

in terms of capacity. The second production part (covering) is able to cover roughly 20% more than the 

casting. Furthermore, the casting is always done in a fixed batch size and the covering is done in 

variable batches sizes. Finally, Figure 2 shows an example of how these SmartTags are produced. 

[CONFIDENTIAL] 

Figure 2. Overview production SmartTag (example) 

2.3. Product lay-out 
As can be seen in Figure 2 there is a wide range of configurations of the SmartTag. In order to get a 

better understanding on how the configurations differ from each other, an illustrative example of the 

BOM of a SmartTag is provided in Figure 3. This figure shows the three echelon levels of the production. 

At the component level four different components exist. Moreover, these components results in six 

different half-fabrics.   
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Figure 3. Example BOM SmartTag (HF 3) 

2.4. Historical data  
Now that we know how the supply chain, production, and BOM look like, we obtain quantitative data. 

This quantitative data consists of historical demand data and key performance indicators (KPI). The 

historical demand tells us about the distribution/importance of the products and customers. The KPIs 

provide insights into the performance of the current situation. 

2.4.1. Demand data 
The demand of the different SmartTags is not evenly distributed. Some tag types are more popular, 

and some customers demand more tags than others. In order to get a better understanding of which 

products are critical, demand information is required. Moreover, a distinction is made between 

fourteen different customers. In Table 1, an overview is created about the demand shares per product. 

This data is based on the last two years, since this time span represents the most accurate ratio 

between the products of the current situation. From this table it becomes clear that certain products 

are requested more than others.  

Table 1. Demand share per product 

[CONFIDENTIAL] 

Next to that, Nedap currently uses different safety stock values for various components, based on their 

demand. Furthermore, Nedap has closer contact with some large customers, in order to provide a high 

service level for those customers with high demand. This contact results in a larger planning 

horizon/forecast from the customers. Since these customers have a higher demand, they plan their 

orders ahead of time. This is done to increase the chance that their order is delivered on time. When 

a sales order is planned early, Nedap has time to plan ahead and order the components early. 

Otherwise, components have to be purchased on the basis of a forecast, which comes with some 

uncertainties. 

Besides deviation of products and customers, it is also interesting to see how product demand evolved 

over the years. In Figure 4 the demand from the individual and aggregated demand from the past two 

years can be seen. No clear trends or seasonality can be seen from Figure 4 

[CONFIDENTIAL] 

Figure 4. Demand Neck Tags last two years 
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2.4.2. Relevant parameters and KPIs 
In addition to the demand data, we discus relevant parameters and KPIs. These include, lead times, 

safety stocks, and (minimum) order quantity. These values are provided on three distinct levels. 

Component, half-fabric and end product level.  

Component level 

The components are bought from external suppliers and each component has different values for 

parameters, which can be seen in Table 2. The lead time is supposed to be 6 weeks. Also, Nedap aims 

for a safety stock of roughly a month of demand. Finally, there exists a minimum order quantity which 

depends on the supplier and a fixed order size. 

 

Furthermore, the customer specific covers are also components, although they are used on the second 

production part. Nedap SMART orders the covers from an external supplier, however, since they are 

cheap, have a short lead time, and are supplied by reliable suppliers, the covers are not evaluated 

within the process of the safety stock placement.  

Table 2. Overview parameters of the components 

Component Lead time Safety stock Minimum order quantity 

Comp 1 6 weeks [Confidential] [Confidential] 
Comp 2 6 weeks [Confidential] [Confidential] 
Comp 3 6 weeks [Confidential] [Confidential] 
Comp 4 6 weeks [Confidential] [Confidential] 

 

Half-fabric and end product level 

Next to that, the half-fabrics are all produced by Nedap SMART from the components; hence all half-

fabrics have the same lead time and batch size. The current safety stock for each individual half-fabric 

is zero, since Nedap decided not to stock any half-fabrics apart from the work in progress inventory. 

The end products are also produced by SMART and have a short production time and variable batch 

size. Finally, there is also no safety stock for the end products, since there has been no capacity for 

producing safety stock for the end products.  

 

2.5. Conclusion current system analysis 
In conclusion, the SmartTag has a wide range of configurations, which are made from four different 

components and colored covers. These SmartTags are produced in two steps. The demand of the 

individual SmartTags is difficult to estimate, however, we did find that the demand on half-fabric level 

was more predictable. Also, we argued that the covers are not a bottleneck, since the covers are cheap, 

have a short lead time, and have reliable suppliers. However, knowing that the covers are not the 

bottleneck is not a reason to eliminate the entire second production part. Therefore, we are dealing 

with a multi-echelon multi-item inventory system problem in a production environment. Hence, we 

need to conduct research on how we can approach this problem.   
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3. Literature review 
In this chapter, literature is reviewed with the goal to gain more insights into multi-echelon multi-item 

inventory problems in a production environment. First, we need knowledge on the different 

production processes, see Section 3.1. Next to that, Section 3.2 is about the placement of safety stocks, 

with the focus on multi echelon safety stock placement in production. Moreover, in Section 3.3 the 

influence of capacitated production plannings on inventory decisions is discussed. Furthermore, 

Section 3.4 is about the application of simulation and heuristics in inventory optimization. Finally, 

Section 3.5 concludes our literature review by summarizing our key findings.  

3.1. Safety stock placement 
We are dealing with a multi-echelon system, which means we have multiple options to place safety 

stocks. In the case of Nedap there are three echelon levels. We have to determine which echelon level 

provides the best point to place safety stock. This depends on the decoupling point. From this 

decoupling point, a manufacturing strategy is derived.  

3.1.1. Decoupling point 
In order to decide on the most fitting production process, information is required on what distinguishes 

the different strategies. The key difference between the strategies is the placement of the safety stock. 

This is known as the customer order decoupling point (CODP), which is the point in the production 

process where the product is assigned to a customer specific order. Some papers refer to the CODP as 

the order penetration point (OPP) (Mihiotis, 2014). This determines essentially the production 

planning type, meaning if the production is MTS, MTO, Assemble-to-Order (ATO) or Engineer-to-Order 

(ETO). A general rule in this case is that the CODP needs to match the most important stock position 

(Olhager, 2010). 

The CODP represents the point where customer order-driven activities are separated from the 

forecast-driven, see Figure 5.  This influences the part in the supply chain that follows a push-strategy 

or a pull-strategy (Mason-Jones & Towill, 1999). The placement of the CODP comes down to finding a 

balance between cost and lead time. On the one hand, moving the CODP upstream results in a longer 

and less reliable lead time for the customer. On the other hand, moving the CODP downstream means 

that there will be higher stock costs, due to the increase in variety and longer Make-to-Stock time. 

Furthermore, van Donk (2001) provided four product and market characteristics to determine the 

decoupling point. These four points are the required delivery reliability, required delivery time, 

predictability of demand, and the specificity of demand. First, when the required delivery reliability is 

high, the decoupling point should be downstream in the supply chain. Placing stocks close to the 

customers promises high reliability, since there is less chance of disruption. Secondly, if the required 

delivery time is low, the decoupling point should also be downstream. Maintaining stock downstream 

the supply chain results in lower lead times, because no time is spent waiting for the production or 

supplies. Thirdly, if the demand is very predictable, the stock is also better kept downstream the supply 

chain. Keeping stock downstream the supply chain asks for an accurate and predictable forecast. When 

this is not the case, keeping stock more upstream results in reducing the risk of an inaccurate forecast 

by being order-driven rather than forecast-driven. However, keeping stock upstream the supply stream 

is only possible if the production times are acceptable. Fourthly, a large number of different end 

products asks for a more upstream decoupling point. When a great variety of products exists, it is 

better to keep stock upstream the supply chain with the purpose of reducing the risks, when product 

commonality is applicable (Hillier, 1999). 
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Figure 5. Customer order decoupling point 
source: Olhager (2010) 

3.1.2. Manufacturing strategies 
Figure 5, shows four different manufacturing strategies, i.e., MTS, ATO, MTO, and ETO. Smart Tags are 

already engineered the same way for all customers, and because ETO means that customers order 

something that would be engineered to their liking, ETO is not relevant for this case. Therefore, we are 

only researching the remaining strategies: MTS, ATO, and MTO. Moreover, we also research hybrid 

options, hybrid options are for example combining MTS and MTO (Olhager & Prajogo, 2012; 

Rajagopalan, 2002; Zaerpour et al., 2008). 

First of all, Meisel & Bierwirth (2014) point out that MTO is a great strategy for dealing with stochastic 
demand. When order arrivals and sizes are difficult to predict, it is beneficial to wait with production 
until an order actually arrives. However, producing according to a MTO strategy is only possible if the 
production time allows it. I.e., the production time should not exceed the lead time promised to the 
customer. Moreover, the production capacity should also be capable of handling demand without 
extending this promised lead time.  
 
Second, MTS is considered a proactive strategy, in which items are pushed to the stock. Because it is 
not precisely known how much should be pushed, it is also called a speculative process (Chopra & 
Meindl, 2001). Applying MTS requires some decisions to be made about inventory policies, safety stock 
levels, order sizes, etc. Most of these decisions are based on the forecasts of the products. According 
to Köber & Heinecke (2012), especially companies that sell products with a high demand volume, 
standardized products, and low coefficient of variation can profit from an MTS environment. 
Furthermore, Nel & Badenhorst-Weiss (2010) make a distinction between functional and innovative 
products. Functional products result in a stable demand with a low uncertainty and the opposite holds 
for innovative products. Hence functional products suit an MTS environment better, and innovative 
products fit better to MTO. This is due to the characteristics of the products, as mentioned above. 
 

Next to that, ATO can provide a balance between the MTS and MTO strategy. This is supported by the 

paper of Ghrayeb et al. (2009), who concluded that the ATO strategy inherits the strengths and 

conceals the weaknesses of both the MTS and MTO strategy. The ATO strategy has the customer order 

decoupling point in the middle of the production process. This means that the production follows a 

push strategy until the decoupling point and is pulled by customer orders after the decoupling point. 

This is especially beneficial in cases where assembly is not considered an intensive task and customers 

expect some form of customization (Du et al., 2005). 

Finally, hybrid options exist where each product has its own manufacturing strategy. A common hybrid 

solution is the combination of MTO and MTS. There is a lot to be gained by combining these two 
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strategies (Peeters & van Ooijen, 2020). Especially in situations where different products have different 

characteristics. Moreover, Sun et al. (2008) conclude that there is a trade-off between the maximum 

manufacturing efficiency that the MTS operations provides and the minimum inventory investment 

that comes with MTO operations, while maintaining a high service level.  

 

3.2. Safety stocks 
When the CODP is chosen, safety stock placement should be in line with this decoupling point. 

However, safety stock is not the only option to incorporate safety, this can also be done by 

incorporating safety time. Both safety stock and safety time build a buffer to handle the variation in 

demand. Safety stock does that by stocking more items than expected to account for the variability. 

Safety time however, adds more time than expected to account for the demand variability. Both 

methods are similar, one accounts for safety with stocks, the other with time. According to Iannone et 

al. (2022), safety time is favored over safety stock when the uncertainty is mostly in the timing of 

demand or replenishment. However, safety stock is favored over safety time in case the uncertainty 

lies particularly in the quantity of demand or supply. In the current situation uncertainty in demand is 

more applicable than the timing. Moreover, Grasso & Taylor (2007) argue that safety time is never 

preferred over safety stock. Hence, the safety stock is the focus of this research. Therefore, we conduct 

research on how to determine safety stock levels, after we researched the risk pooling effect.  

3.2.1. Risk pooling 
Grouping suppliers, products, or facilities in order to reduce the standard deviation of the demand is 

considered risk pooling. Hillier (1999), shows that commonality of products can have a great impact on 

the total inventory cost, which is considered risk pooling. Although risk pooling knows many more 

applications, the key concept remains the same: reducing deviation. Sobel (2008) summarizes this idea 

as follows: “The standard deviation of a sum of interdependent random demands can be lower than 

the sum of the standard deviations of the component demands.”. This is done with the goal to reduce 

business risks and uncertainties. Furthermore, the paper of Benjaafar et al. (2005) examined inventory 

pooling in production-inventory systems. This showed the impact of utilization, demand and process 

variability, control policy, service levels, and the structure of the production on the safety stock level. 

Most results of Benjaafar et al. (2005) are in line with those of Eppen (1979). Eppen’s research shows 

that a pooled system yields a lower cost when compared to a distributed system. Also, the risk pooling 

effect (of a pooled system) increases when the variance of demand increases. The opposite holds for 

the increase in correlation between demands. He uses the following formula, see Eq. (1), to calculate 

the pooled standard deviation with correlation, assuming normally distributed demand, in which the 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 is the standard deviation of the pooled demand. This standard deviation of pooled demand is 

constructed by taking the square root of the sum of all the standard deviations of the products 𝑖 that 

are included in the pooled demand and the correlation between the items. If there is no (significant) 

correlation between the different products, Eq. (1) can be rewritten as Eq. (2).  

𝜎𝑝𝑜𝑜𝑙𝑒𝑑  =  √∑ 𝜎𝑖
2𝑛

𝑖=1 + 2∑ ∑ 𝜎𝑖𝜎𝑗𝜌𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1     

( 1 ) 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑  =  √∑ 𝜎𝑖
2𝑛

𝑖=1    

( 2 ) 
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3.2.2. Safety stock level 
In order to determine safety stock levels placed at the selected safety stock locations (in the supply 

chain), multiple formulas exist. Two common variations of deterministic safety stock formulas are 

assessed. The first one is from Chopra & Meindl (2007), see Eq. (3), this is considered as the basic safety 

stock calculation, which takes into account the following parameters of product 𝑗; the safety factor 𝑧𝑗, 

the standard deviation of the demand 𝜎𝑗
𝐷, and the lead time 𝐿𝑗. 

Chopra & Meindl model: 

𝑆𝑆𝑗  =  𝑧𝑗𝜎𝑗
𝐷
√𝐿𝑗 

( 3 ) 

Second, Graves & Willems (2003) took another approach to determine the safety stock levels. This 

approach is called the Guaranteed Service Model (GSM). The GSM tries to find the ideal location and 

level of safety stock by evaluating the service times. For instance, when a product should be sent to 

the next stage in week 4, the outbound service time 𝑠𝑗
𝑜𝑢𝑡 is 4. When the product (ideally) arrives in 

week 2, the inbound service time 𝑠𝑗
𝑖𝑛 is 2. In the formulation of the GSM the (production) lead time 

𝑃𝐿𝑗 is also taken into account, this is the lead time or production time at the current stage. With this 

information together with the safety factor 𝑧𝑗 and the standard deviation of the demand 𝜎𝑗
𝐷, the safety 

stock can be determined by Eq. (4).  

GSM by Graves & Willems: 

𝑆𝑆𝑗 = 𝑧𝑗𝜎𝑗
𝐷√𝑠𝑗

𝑖𝑛 + 𝑃𝐿𝑗 − 𝑠𝑗
𝑜𝑢𝑡    

( 4 ) 

From this formula it can be seen that if the inbound service time is the same as the outbound, the lead 

time is the only factor in the square root, and thus reduces to the C&M model. Moreover, the inbound 

and outbound service times are both decision variables in a minimization problem. By minimizing the 

inventory costs, the optimal service times are decided and thus also the safety stock levels. The GSM 

is a non-linear problem, which means that it is more difficult to solve because not all equations are 

linear. 

3.3. Capacitated production planning 
Inventory in a capacitated production system is impacted by variables such as production batch sizes, 

maximum production, and production times. When production time increases, total lead time 

increases as well, which will have an effect on the safety stock. Also, maximum production can 

influence lead time and thus the inventory level (Sitompul et al., 2008). For example, if the production 

capacity is reached by the demand, production is moved to the next period. This leads to increased 

lead time and thus also increased safety stock. Furthermore, batch sizes can influence the average 

inventory level. Larger batch sizes result in a higher average inventory and thus the total holding cost 

increases. Finally, Kumar & Aouam (2018) also show that reduced setup costs result in lower lead times 

and lower safety stocks. 

Another model is provided by Kapuściński & Tayur (1998), who used a simulation-based approach in 

order to evaluate stock levels with respect to production capacity. The simulation followed a sequence 

of events. Each period starts with either inventory or backlog. Based on this value, production is 

executed, within its capacity limitation. After the start of production, the demand arrives, which 



20 
 

concludes the period. Three basic insights were found according to the simulation study. First, an 

increase in demand results in an increase in the order up-to level. Second, a decrease in capacity 

caused the order up-to level to increase. And finally, an increase in demand variance also increases the 

order up-to level.  

 

3.4. Inventory-production problem 
As discussed in Section 3.3, production constraints have a significant impact on inventory decisions. 

Therefore, we conduct research about existing methods for the inventory-production problem, which 

incorporates both inventory and production constraints.  

3.4.1. Inventory-production methods 
Inventory-production models are considered NP-hard, which means that the optimal solution cannot 

be obtained in polynomial time (Bylka & Rempala, 2007). Therefore, different simulation models, 

machine learning algorithms and heuristics exist in order to obtain (near-) optimal values for safety 

stock values and other decisions variables (Jung et al., 2004).  

Taleizadeh et al. (2016) consider an approach to a three-level distribution network problem. Their 

paper consists of a production-inventory model, which includes backlogging and the possibility of 

rejected production batches. A heuristic algorithm is used to minimize the total cost of the problem. 

Next to the heuristic algorithm, the literature also provides us with machine learning algorithms. 

Pirhooshyaran & Snyder (2020), apply deep neural networks (DNN) to optimize inventory decisions in 

multi-echelon supply chains. According to their research, their application is able to outperform 

alternative methods in many complex supply chains. In addition, Zhao & Sun (2010) provide a multi-

agent reinforced learning (RL) model to optimize inventory levels, which in most cases is able to obtain 

better results than genetic algorithms (GA). Another algorithm that is commonly used for inventory-

production problem is simulated annealing (SA). Haddock & Mittenthal (1992) investigated the 

feasibility of using SA in combination with a simulation model. Also, in the paper of La Fata & 

Passannanti (2017), SA is applied to an inventory optimization problem. This paper shows the 

application of simulated annealing, in combination with a Monte Carlo simulation, on inventory 

profiles.  

3.4.2. Simulated annealing 
Applying the SA algorithm effectively requires a sufficient understanding of the parameters involved, 

since these parameters influence the performance of the algorithm. Therefore, we require more 

information about the effect of the SA parameters. For this information we consult the paper of Brusco 

(2014). The first decision which is discussed in the paper, is the generation of the initial solution. 

Simulated annealing needs an initial solution in order to be able to create a neighbor solution. This 

initial solution can be generated completely randomly, or according to a certain heuristic. Secondly, 

the start temperature 𝑇(1) and end temperature 𝑇(𝑄) are discussed. The temperature determines 

the balance between exploring and exploiting. In this context exploration is about extending the search 

area in the solution space, whereas exploitation is about focusing on the current solution and 

improving it. Simulated annealing might accept worse neighbor solutions in order to escape local 

optima and explore different areas. Whether a worse solution gets accepted is determined by the 

Metropolis rule. This rule accepts the solution based on a randomly generated number, the difference 

in solution values, and the current temperature. Choosing the right temperature is important, because 

temperatures which are too high only explore and never converge to an optimal value. However, 

temperatures which are too low, most likely get stuck in a local optimum. Next to that is the cooling 

scheme, this determines how quickly the temperature decreases (with a factor 𝑐). The cooling schemes 
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discussed by Brusco (2014) are the linear, exponential, reciprocal, and logarithmic approach. The 

cooling scheme in combination with the temperature range determines the number of iterations 𝑄. 

Another key decision is the Markov length 𝑚, this determines how many neighbors are examined for 

a single temperature. Increasing the Markov length results in a longer run time, but a higher chance of 

finding a better solution, since more (different) solutions are evaluated. Finally, the last key decision is 

how the neighbors are selected. This decision depends heavily on how solutions are determined in the 

first place. An overview of the simulated annealing algorithm is given in Figure 6. 

 

Figure 6. A flowchart of the simulated annealing algorithm 
source: Zhou et al. (2018) 

 

Brusco (2014) has conducted two computational studies in order to test different settings. From these 

studies it can be derived how the settings performed, which form a basis for our settings. First of all, 

according to the computational studies no initial subset was superior to the other, therefore no best 

settings can be selected. Secondly, the best initial temperature is given by the average difference 

between the current and neighbor solution’s objective value. Next to that, the best end temperature 

is given by the start temperature divided by the log value of the total iterations. The study is designed 

to produce 500,000 iterations. Furthermore, there was no cooling scheme which always outperformed 

another. However, exponential cooling schemes are considered one of the most popular cooling 

schemes, hence we choose this one. In Table 3 a summary of the selected settings can be found. 

 

Table 3. Simulated annealing settings 

Setting Value 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: 𝑄 500,000 
𝑆𝑡𝑎𝑟𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒: 𝑇(1) avg. Δ𝑓(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
𝐸𝑛𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒: 𝑇(𝑄) 

 
𝑇(1)

log𝑄
 

𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟: 𝑐 
𝑒𝑥𝑝(

𝑙𝑜𝑔(𝑇(𝑄)) − 𝑙𝑜𝑔(𝑇(1))

𝑄 − 1
) 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑡 𝑡. 𝑏. 𝑑. 
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3.5. Conclusion literature 
The literature knows many models to determine where safety stock should be placed and how high 

these stocks should be. We are evaluating the performance of models suggested in Chopra & Meindl 

(2007) and Graves & Willems (2003). Both models can be used without making any assumptions. 

However, these models do not include all of the constraints relevant for Nedap’s situation. The most 

important factor that is left out is the production limitation. Sitompul et al. (2008) provide a model 

which does account for production capacity; however, this is only limited to serial systems. Since the 

supply chain at Nedap is a network, this does not apply. Finally, Kapuściński & Tayur (1998) propose a 

simulation-based approach to optimize the safety stock placement in a multi-echelon multi-item 

system. Therefore, a simulation is used to optimize the safety stock placement and thus the base stock 

levels. Moreover, simulated annealing promised to be a suited metaheuristic which works well in 

combination with simulations. In order to get a better understanding of the effect of the different 

hyperparameters of the SA algorithm, we used the computational studies from Brusco (2014) to 

determine our settings. 
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4. Method 
The goal of this thesis is to provide a method which can optimize the decisions regarding inventory 

management in a multi-echelon supply chain. In order to achieve optimal inventory parameters, a 

simulation is created to evaluate the performance of different approaches. Moreover, multiple 

assumptions and settings regarding the simulation model are discussed. After the framework of the 

simulation is created, different models derived from literature are discussed in more detail. Next to 

that, a simulation optimization framework is provided in order to optimize the inventory parameters 

for the SmartTags at Nedap. With the simulation model, the existing models are evaluated together 

with the proposed simulation optimization.  

4.1. Simulation model  
The first step is to create a simulation model which represents the current process on a tactical level. 

By simulating the different events that occur and the corresponding decisions that follow, it becomes 

possible to evaluate certain decisions (input). Since the scope of the simulation is on a tactical level, 

certain assumptions are made, and operational decisions are left out. In this section the framework of 

the simulation, together with the input/output and the assumptions is discussed. Also, an overview of 

some terms within the context of this simulation for Nedap are explained in Table 4. This additional 

explanation is required because the meaning of these terms is not straightforward in this context. 

Table 4. Explanation of specific terms 

Term Explanation 

Order Generated demand for a single type of end product 𝑘 
Inventory order An order to produce inventory on half-fabric level 
Evaluated order An order that has been already evaluated in the current week 
Unfulfilled order list A list with all unfulfilled orders (demand) 
Cover capacity The capacity for the covering of the half-fabrics (second step in the 

production process) 

Half-fabric requirements The required number of half-fabrics as a result from the orders minus 
the on-hand inventory 

 

4.1.1. Simulation description 
In this section the decisions regarding the simulation model (analyses and evaluation) are explained. 

This simulation can be divided into four parts. The first part is generation of the demand and updating 

of the orders and variables such as inventory. The second part is evaluation of the demand that can be 

met from the half-fabrics directly (production step two). The third part is evaluation of the number of 

batches that should be created from components to half-fabrics (production step one). The last part 

evaluates the possibilities to create additional batches with the goal to create inventory at half-fabric 

level. Every week these four parts are evaluated sequentially. When the last part is evaluated, the first 

part of the next week is evaluated. This process is repeated until the run length of the simulation is 

reached. A more detailed overview of the entire process can be found in Appendix B. 

 

4.1.2. Input/start 
When the simulation model is initiated, all relevant variables and parameters are initialized. In short, 

this step determines how many weeks the simulation runs, which values the parameters take, and 

what the base stock levels are. The output at the end is generated based on these inputs, which is why 

careful assessment of which inputs are taken into account is necessary. In Table 5, Table 6, Table 7, 
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and Table 8 an overview is provided of all relevant sets, parameters, and (decision) variables, 

respectively. 

Table 5. Overview sets 

Sets Explanation 

𝑖 ∈ {1,2,… ,𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑚𝑝} Component 𝑖  
𝑗 ∈ {1,2,… ,𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐻𝐹} Half-fabric 𝑗 
𝑘 ∈ {1,2,… ,𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐸𝑃} End product (Covered half-fabric) 𝑘 

𝑧 ∈ 𝐼 ∪ 𝐽 Element 𝑧 of set of components 𝑖 and half-
fabrics 𝑗 

𝑤 ∈ {1,2,… , 𝑅𝑢𝑛𝐿𝑒𝑛𝑔𝑡ℎ} Week number 𝑤 
𝑚 ∈ {1,2} Machine 𝑚 
𝑝 ∈ {1,2} Production step 𝑝 (1: component 𝑖 to half-fabric 

𝑗, 2: half-fabric 𝑗 to end product 𝑘) 

 

Table 6. Overview parameters 

Parameters  

𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑚𝑝 ∈ ℕ  Number of different components 
𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐻𝐹 ∈ ℕ  Number of different half fabrics 
𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐸𝑃 ∈ ℕ  Number of different end products 
𝑅𝑢𝑛𝐿𝑒𝑛𝑔𝑡ℎ ∈  ℕ Number of weeks the simulation runs. 

𝑊𝑎𝑟𝑚𝑈𝑝𝑃𝑒𝑟𝑖𝑜𝑑 ∈ ℕ  Number of weeks the simulation warms up (not 
including output) 

𝑃𝑟𝑜𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚,𝑝 ∈ ℕ The production capacity of machine 𝑚 for 
production step 𝑝 

𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 ∈ ℕ The batch size 
𝐴𝑖𝑗 ∈ {0,1} Indicator variable, which equals 1 if component 

𝑖 is required for half-fabric 𝑗 and 0 otherwise. 
(Values derived from BOM) 

𝐵𝑗𝑘 ∈ {0,1} Indicator variable, which equals 1 if half-fabric 𝑗 
is required for end product 𝑘 and 0 otherwise. 

𝐷𝑘,𝑤 ∈ ℕ Demand follows from a normal distribution 
(rounded to integer) for week 𝑤 for end product 
𝑘 with 𝜇𝑘  and 𝜎𝑘 

𝜇𝑘 ∈ ℝ Mu (mean) for end product 𝑘 
𝜎𝑘 ∈ ℝ Sigma (standard deviation) for end product 𝑘 
𝜇𝑧 ∈ ℝ Mu (mean) for component / half-fabric 𝑧 
𝜎𝑧 ∈ ℝ Sigma (standard deviation) for component / half-

fabric 𝑧 
𝐶𝑆𝐿𝑧 ∈ [0,1] Target cycle service level for component / half-

fabric 𝑧 
𝑆𝑆𝑧 ∈ ℕ Safety stock for component / half-fabric 𝑧 
𝐿𝑖 ∈ ℕ Lead time for component 𝑖 

𝑀𝑂𝑄𝑧 ∈ ℕ Minimum order quantity for component / half-
fabric 𝑧 

𝑃𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝐿𝑒𝑎𝑑𝑇𝑖𝑚𝑒𝑘 ∈ ℕ The lead time for end product 𝑘 set by Nedap 
that is promised to the customer 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑒𝑣𝑒𝑙𝑘 ∈ [0,1] Achieved service level for end product 𝑘  
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Table 7. Overview variables 

Variables   

𝐸𝑣𝑎𝑙𝑊𝑒𝑒𝑘 ∈ 𝑊 The week number that is evaluated 
𝑈𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑘,𝑤 ∈ ℕ The number of end products 𝑘, which are still 

unfulfilled in week 𝑤 
𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 ∈ ℕ Batches planned for half-fabric 𝑗 in week 𝑤 

𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑘,𝑤 ∈ ℕ Number of end products 𝑘 covered in week 𝑤 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧 ∈ ℕ Current inventory of component / half-fabric 𝑧  

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧 ∈ ℤ Current inventory position of component / half-
fabric 𝑧 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧,𝑤 ∈ ℕ Inventory of component / half-fabric 𝑧 at the 
start of week 𝑤 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑂𝑟𝑑𝑒𝑟𝑠𝑗 ∈ ℕ The number of half-fabrics 𝑗 to produce for 
increasing the inventory 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤 ∈ ℕ The number of half-fabrics 𝑗 required to be 
produced in week 𝑤 

𝑂𝑟𝑑𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑖,𝑤 ∈ ℕ Number of components 𝑖 that arrive at the start 
of week 𝑤 

𝐵𝑎𝑐𝑘𝑂𝑟𝑑𝑒𝑟𝑘,𝑤 ∈ ℕ The number of end products 𝑘 in backorder in 
week 𝑤 (unfulfilled demand) 

𝐷𝑒𝑙𝑎𝑦𝑘,𝑤 ∈ ℕ The total delay for end product 𝑘 from the order 
placed in week 𝑤 

𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤 ∈ ℕ Auxiliary variable to determine the number of 
end product covered directly from half-fabric 
inventory in week 𝑤 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑆ℎ𝑜𝑟𝑡𝑗,𝑤 ∈ ℕ Auxiliary variable to determine the number of 
half-fabrics 𝑗 short in week 𝑤 

𝐷𝑒𝑙𝑎𝑦𝑂𝑟𝑑𝑒𝑟𝑘,𝑤 ∈ ℕ The number of weeks the order from week 𝑤 is 
delayed for end product 𝑘  

𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑇𝑖𝑚𝑒𝑘,𝑤 Auxiliary variable to determine the number of 
‘late’ orders  

 

Table 8. Overview decision variables 

Decision Variables   

𝑆𝑧 ∈ ℕ Base stock level for component / half-fabric 𝑧 

 

4.1.3. Part one (Yellow) 
After the initiation of the input variables and the current week are selected, three steps need to be 

considered in order to start the week. The first one is updating the inventory parameters. For the first 

week, the inventory(position) is set to the reorder point. The second step is where the demand is 

generated for the entire week. It is assumed that all the demand arrives at the start of the week and 

that it is normally distributed (Section 4.2). Moreover, in order to be able to compare different 

simulations, demand is generated with pseudo random numbers. The third step of this part is to keep 

track of a list with all demand that is not completed yet. The values in this list represent the demand 

that is (still) unmet given an end product 𝑘 at a given week. In Figure 7 a flowchart of these steps is 

provided. 
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Figure 7. Flowchart part 1 (yellow) 

Step 1 (for all items in 𝒛): 

Inventory (position) for the first week: 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧,1 =  𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧 = 𝑆𝑧 

Inventory for the other weeks:  

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖 +  𝑂𝑟𝑑𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑖,𝑤  

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧,𝑤= 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧 

 

Step 2/3 (for all end products 𝒌): 

Generate demand normally for end product 𝑘 with 𝜇𝑘 and 𝜎𝑘. Then add (positive) demand to list of 

unfulfilled orders. Note that the generated demand 𝐷𝑘,𝑤  is rounded to the nearest integer.  

𝑈𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑘,𝑤 = max{0, 𝐷𝑘,𝑤 } , 𝑤ℎ𝑒𝑟𝑒 𝐷𝑘,𝑤 ~  𝑁(𝜇𝑘, 𝜎𝑘) 

4.1.4. Part two (Green) 
When the list of unfulfilled orders is updated, we start by finding the first week for which unfulfilled 

orders still exist. For every week in the unfulfilled order list the steps in this part should be taken.  

When the list is empty or all items in the list are already evaluated, part three is initiated immediately. 

If there are still unevaluated orders on the list, the following steps are taken.  

First, we take the first unevaluated week from the list. For the selected week, we go over the half-

fabrics based on expected demand. In practice this means that we first select the half-fabric with the 

highest expected demand. Next, we determine how many end products can be directly produced from 

half-fabrics which are on stock. This number depends on the inventory of the half-fabric and 

production capacity (of the second production part). From this, it follows how many half-fabrics are 

required to be produced. With this the inventory levels can be updated, and the next covered half-

fabric can be selected. Finally, with the updated inventory position we can determine if we have to 

place an inventory order. When all six end products have been evaluated, we go to part three. This 

second part of the simulation is shown in Figure 8. 
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Figure 8. Flowchart part 2 (green) 

Step 1: 

Check if there are unfulfilled orders on the list, if not go to part three. 

Step 2 (do for all half-fabrics 𝒋 (high-low)): 

Select the current week to evaluate: 

𝐸𝑣𝑎𝑙𝑊𝑒𝑒𝑘 = ′𝑓𝑖𝑟𝑠𝑡 𝑢𝑛𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑤𝑒𝑒𝑘′ 

Determine how many end products can be covered from stock: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤 =

 {
∑ (𝑈𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑘,𝐸𝑣𝑎𝑙𝑊𝑒𝑒𝑘 ∗ 𝐵𝑗𝑘)𝑘 , if ∑ (𝑈𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑘,𝐸𝑣𝑎𝑙𝑊𝑒𝑒𝑘 ∗ 𝐵𝑗𝑘) < 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗𝑘

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗            , else                                                
   

Check if the production capacity of the covering is not exceeded: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤 =

 

{
 
 

 
 
𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤
                               , if 𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤 < (𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑘,𝑤 − ∑ 𝑃𝑟𝑜𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚,2𝑚 )

𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑘,𝑤 − ∑ 𝑃𝑟𝑜𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚,2𝑚

, else 

    

Update inventory (position): 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗 =

{
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗 − 𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤   , if 𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤 < 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗

0            , else
   

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗 − 𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤  

Update production capacity: 

𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑘,𝑤 =  𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑘,𝑤 +  𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤   
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Determine how many half-fabrics should be produced: 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤 =

{
 
 

 
 
∑ (𝑈𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑘,𝐸𝑣𝑎𝑙𝑊𝑒𝑒𝑘 ∗ 𝐵𝑗𝑘)𝑘 − 𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤                                        

, if 𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑒𝑡𝐹𝑟𝑜𝑚𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑤 < ∑ (𝑈𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑘,𝐸𝑣𝑎𝑙𝑊𝑒𝑒𝑘 ∗ 𝐵𝑗𝑘)𝑘

0

       , else                              

    

 

Step 3 (do for all half-fabrics 𝒋):  

Place an inventory order if the inventory position is below the reorder point: 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑆ℎ𝑜𝑟𝑡𝑗,𝑤 = max{0, 𝑆𝑗 −  𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑡𝑖𝑜𝑛𝑗}  

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑜𝑟𝑑𝑒𝑟𝑠𝑗 =

 {
𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑜𝑟𝑑𝑒𝑟𝑠𝑗 +max{𝑀𝑂𝑄𝑗 , 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑆ℎ𝑜𝑟𝑡𝑗,𝑤}, if 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑆ℎ𝑜𝑟𝑡𝑗,𝑤 > 0

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑜𝑟𝑑𝑒𝑟𝑠𝑗       , else  
  

4.1.5. Part three (Blue) 
When we arrive at this part, we know how many half-fabrics should be produced (see 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤). Based on these values we decide how many batches we want to produce. This, 

however, is constraint by the production capacity and the inventory of the relevant components. 

Similar to part two, we go over the half-fabrics (from highest to lowest mean) and determine per half-

fabric how many batches are produced. This is done in two steps. First, we try to plan “full” batches, 

meaning that the entire batch is used to fulfill (part of) the 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑. Next when all the “full” 

batches have been planned, we plan one more “left-over” batch if there is still 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑 for 

this half-fabric. We either plan one or none in this case, since we already evaluated if “full” batches 

should be created. After this, the inventory of the components is evaluated, and we go back to part 

two. An overview of these steps is provided in Figure 9. 

 

 

Figure 9. Flowchart part 3 (blue) 
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Step 1 (do for all half-fabrics 𝒋 (high-low)): 

Calculate the maximum number of batches that can be planned: 

𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 = min{∑ 𝑃𝑟𝑜𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚,1𝑚 − ∑ 𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 ∗ 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒𝑗 ,

∑ 𝐴𝑖,𝑗 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖  𝑑𝑖𝑣 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒𝑖 , 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤  𝑑𝑖𝑣 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒}  

Add the number of “full” batches to the planned batches: 

𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 =  𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 +  𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠  

Update Required demand: 

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤 =    𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤 −  𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 ∗ 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒   

Step 2 (do for all half-fabrics 𝒋 (high-low)):  

Determine of one “left-over” batch can be planned: 

𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 = min{∑ 𝑃𝑟𝑜𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚,1𝑚 − ∑ 𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 ∗ 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒𝑗 ,

∑ 𝐴𝑖,𝑗 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖  𝑑𝑖𝑣 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒𝑖 , 1}  

Add the “left-over” batch to the planned batches: 

𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 =  𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 +  𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 

Update the inventory for the half-fabrics as a result of the “left-over” batch: 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗 =

 

{
 

 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗 +𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 ∗  𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 −  𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤  

   , if 𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 = 1

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗
 , else                                            

  

Update Required demand: 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤 = {
0  , if 𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 = 1

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤    , else  
  

Step 3 (do for all components 𝒊): 

Update the Order arrival and Inventory position: 

𝑂𝑟𝑑𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑖,𝑤+𝐿𝑖 =

{
max{𝑀𝑂𝑄𝑖 , 𝑆𝑖 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖} , if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 < 𝑆𝑖

𝑂𝑟𝑑𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑖,𝑤+𝐿𝑖            , else               
   

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 =

{
 
 

 
 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 +max{𝑀𝑂𝑄𝑖 , 𝑆𝑖 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖}

 , if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 < 𝑆𝑖

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖          

     , else

   

Step 4 (do for all end products 𝒌 and half-fabric 𝒋, in which 𝑩𝒋𝒌=1): 

Update order list, determine delay if order is complete. 

𝑑𝑒𝑙𝑎𝑦𝑂𝑟𝑑𝑒𝑟𝑘,𝐸𝑣𝑎𝑙𝑊𝑒𝑒𝑘 =  𝑤 − 𝐸𝑣𝑎𝑙𝑊𝑒𝑒𝑘, if 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤 = 0 

𝑈𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑘,𝐸𝑣𝑎𝑙𝑊𝑒𝑒𝑘 = {
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤              , if 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑤 > 0

  0        , else             
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4.1.6. Part four (Purple) 
At this part the end of the simulated week is reached, after no more unevaluated items are on the 

order list. This step checks if it is possible to produce an extra batch at the end of the week. This can 

only be done if all of the following three conditions are met: (1) there is demand for more inventory in 

the form of an inventory order, (2) there are enough components to make at least one batch of the 

inventory order, (3) there are still unplanned batches left in the current week). If all these conditions 

are met, the batch(es) is (are) created and the relevant components are updated. When these steps 

are taken, it is determined whether the set run length is reached. If the run length is not reached, the 

next week is simulated. If the run length is reached, the KPIs are calculated. This final part of the 

flowchart is presented in Figure 10. 

 

Figure 10. Flowchart part 4 (purple) 

Step 1 (for each half-fabric 𝒋 (high-low)): 

Check if inventory orders exist and can be produced: 

𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 = 

min{(∑ 𝑃𝑟𝑜𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚,1𝑚 − ∑ 𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 ∗ 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒𝑗 ) 𝑑𝑖𝑣 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒,

∑ 𝐴𝑖,𝑗 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖  𝑑𝑖𝑣 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒𝑖 , 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑂𝑟𝑑𝑒𝑟𝑠𝑗  𝑑𝑖𝑣 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒}  

Update batches planned: 

𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 =  𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤 +  𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 

Update inventory orders planned: 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑂𝑟𝑑𝑒𝑟𝑠𝑗 =  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑂𝑟𝑑𝑒𝑟𝑠𝑗 −  𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 ∗ 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒  

Update half-fabric inventory planned: 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗 +  𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 ∗ 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒  

Update component inventory planned (for each component 𝑖): 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖 − 𝐴𝑖,𝑗 ∗ (𝑀𝑎𝑥𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑒𝑠 ∗ 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒) 

 

4.1.7. Output/end 
Finally, if all weeks are evaluated and run length is reached, important data can be stored. This is all 

the data relevant to determine the KPIs. From the equations below it can be seen which KPIs are used 
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and how they are calculated. The service level and average inventory are used to determine the 

objective value of the solution. The service level is calculated based on the lead time Nedap ideally 

promises its customers, which in this case is five weeks. Next to that, in order to make sure that the 

output satisfies a certain accuracy, the run length, replication, and warmup period are determined. An 

explanation of the methods used to determine these values can be found in Section 4.3. 

Outputs: 

 𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑇𝑖𝑚𝑒𝑘,𝑤 = {
 1    , if 𝑑𝑒𝑙𝑎𝑦𝑂𝑟𝑑𝑒𝑟𝑘,𝑤 < 𝑃𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝐿𝑒𝑎𝑑𝑇𝑖𝑚𝑒𝑘

0     , else          
 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑒𝑣𝑒𝑙𝑘 =
∑ ∑ 𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑇𝑖𝑚𝑒𝑘,𝑤𝑤𝑘

𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝑂𝑟𝑑𝑒𝑟 
  

, in which 𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝑂𝑟𝑑𝑒𝑟 is the number of orders for which demand was not 0 

𝑎𝑣𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑒𝑣𝑒𝑙 =
∑ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑒𝑣𝑒𝑙𝑘𝑘

𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐸𝑃
  

𝑎𝑣𝑔𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧 =
∑ 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧,𝑤𝑤

𝑅𝑢𝑛𝐿𝑒𝑛𝑔𝑡ℎ
  

𝑎𝑣𝑔𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =
∑ 𝑎𝑣𝑔𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧𝑧

(𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐻𝐹 +𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑚𝑝)
 

𝑎𝑣𝑔𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =

∑ (
∑ 𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑗,𝑤𝑗

∑ 𝑃𝑟𝑜𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚,1𝑚  
)𝑤

𝑅𝑢𝑛𝐿𝑒𝑛𝑔𝑡ℎ
 

𝑎𝑣𝑔𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 = (
𝑁𝑢𝑚𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑠𝑖
𝑅𝑢𝑛𝐿𝑒𝑛𝑔𝑡ℎ

 )
−1

 

𝑎𝑣𝑔𝑂𝑟𝑑𝑒𝑟𝑆𝑖𝑧𝑒𝑖 =
∑ 𝑂𝑟𝑑𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑖,𝑤𝑤

𝑁𝑢𝑚𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑠𝑖
 

, in which 𝑁𝑢𝑚𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑠𝑖  is the total number of orders that arrived for component 𝑖 

 

4.2. Assumptions  
Throughout the simulation, many assumptions have been made in order to model the current situation 

close to reality on a tactical level. In this section, these assumptions are discussed per category, in 

order to get a better understanding of the key decisions made in the model. 

4.2.1. End products (covered half-fabrics) 
First, we made one assumption concerning the end product, which is formulated: 

- There are always ample customer-specific covers on stock, therefore no distinction is made 

between end products from the same tag type. 

As explained in Figure 2, an end product consists of a half-fabric (tag type) and a customer specific 

cover. The customer specific cover is always available, due to its low cost and low lead time. Hence, 

the end products are presented as cover half-fabrics rather than the customer specific end product. In 

addition, the half-fabrics do need to be covered and this cover production capacity is not infinite. For 

this reason, we do make a distinction between half-fabrics and end products (covered half-fabrics).  

4.2.2. Demand 
Second, we have one assumption regarding the demand, which is: 
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- Demand of end products is normally distributed  

We decided that the end products are end products rather than customer specific SmartTags. Because 

of this assumption, we generate demand as end products. As a consequence, demand can be 

estimated more accurately, due to grouping on half-fabric level (risk pooling). These grouped values 

are assumed to be normally distributed. Assuming normality also has the benefits of integrating well 

with the models from the literature. Since these models also assume normal distributed demand, we 

are able to use the same demand parameters in our model and the literature models. Furthermore, 

the demand generated from the normal distribution provided values close to the historical data. In 

Appendix D: Q-Q plot demand, the fit of the normally distributed demand on the historical data is 

provided.   

4.2.3. Orders 
Furthermore, we made multiple assumptions regarding the creation and content of an order. These 

are presented below. 

- Orders consist of only one type of item (an end product) 

In the simulation, the terms order and order list are used to define the generated demand. However, 

these orders are not simulated from customers, they are generated by the product specific demand. 

Since the interest of this simulation lies on the products on a tactical level, the demand is generated 

accordingly.  

- All orders arrive at the beginning of the week 

The demand, and thus the new orders, are generated at the start of the week. Because we simulate 

on a tactical level, we are interested in the availability of the products rather than the exact fulfillment 

of customer orders. Therefore, it makes sense to generate the end product demand at the start of the 

week, since this allows us to plan the generated demand in the current week. 

- Inventory orders are fulfilled at the end of the week 

Inventory orders for the half-fabrics are only produced after the regular demand is handled and are 

therefore only fulfilled at the end of the week. The produced half-fabrics are added to the inventory 

of next week, since no more demand follows after the inventory orders in that week.  

- Orders are completed when the entire order is fulfilled. 

Orders cannot always be fulfilled in the same week. When 99% of an order is fulfilled in the first week, 

but the other percent in the next week, the delay of the entire order is assumed to be one week. In 

practice, this is much different, since this one large order consists of multiple customer specific orders, 

meaning that many customers receive their order in the same week. However, the focus is on the 

specific product, not on the customer. Therefore, it is assumed that the entire order should be fulfilled 

in order to decide the total delay. 

- The products get evaluated by the simulation in a fixed order 

As can be seen in Section 4.1, the items are evaluated in a fixed order per week. Orders cannot be 

evaluated at the same time, since planning a batch for one product could mean there is no more 

capacity for another. For this reason, we assume that the products with the highest expected demand 

are always evaluated first. 

4.2.4. Production 
In addition, the assumptions affecting the production are listed below.  
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- Production time (component to half-fabric and half-fabric to end product) is zero, if it does not 

exceed the capacity 

The production time of producing one batch (at production part one) is half a day. The production time 

for part two depends on the size of the batch, however a production capacity is incorporated. Because 

these production times are less than one week, they are assumed to be zero. This means that if there 

is production capacity and the components are available, production can be done within the same 

week. Next to that, there are currently two different production locations. However, since they have 

the same type of production line and batch size, it is assumed that the production is done on one big 

machine. This is a reasonable assumption, since there is no significant difference on a tactical level.  

- Only full batches are created 

Currently, it is decided that only full batches are produced. This also translates to the size in which half-

fabrics and components are ordered. Ordering, for instance, two and a half batches worth of 

components would not make sense, since only entire batches are produced, which results in leaving 

that half batch as unused inventory.  

- 98% of the total production capacity is used, 2% failure rate 

In practice the production can be on hold due to failure and because of planned days off. On average 

the production is down 2% of the time (on a yearly basis, a year equals 50 weeks). Because of this we 

assume that every week we have 98% of the total capacity.   

 

4.2.5. Components 
Next, we made two assumptions about the components, which are: 

- Component lead time is deterministic 

The simulation models only accounts for deterministic lead times, because of three reasons. The first 

reason is that the models we derived from literature also use deterministic lead times. In order to 

evaluate the performance, the variables should be the same. Secondly, including stochastic lead times 

would increase the number of different scenarios significantly. Since we already have an enormous 

number of scenarios to cover, it would only decrease the accuracy of the model to incorporate even 

more stochasticity. The last reason is simplicity and lack of accurate information. Because the lack of 

information about the actual lead time from the suppliers, assuming deterministic times makes for 

easy calculation. If the simulation model had to incorporate stochastic lead times, it would need 

accurate numbers for it to add value. However, there is currently no information at Nedap about how 

the lead time is distributed in practice. Nevertheless, we include the lead time in our sensitivity analysis 

in Section 5.2, which provides insights into the effect of the lead time on the objective. 

- Components are always delivered in the same amount as ordered, which is always a multiple 

of the batch size  

Besides assuming that the components always arrive on time, it is also assumed that orders arrive in 

the same amount as ordered. Practice shows that orders sometimes get partially fulfilled in time. 

However, the simulation assumes that when an order is placed, the entire order is received on the 

scheduled time. Moreover, orders are always placed as a multiple of a batch size.  

4.2.6. Inventory policy 
The final assumptions are about the inventory policy we selected. 
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- The holding cost is equal on all levels and for all items  

Currently, Nedap does not care for a specific holding cost. They do not prioritize one inventory 

placement over another, meaning that it does not matter for the holding cost, if there is one 

component or one half-fabric on stock. 

- No significant fixed ordering cost for orders with a minimum size are incorporated. 

Next to the holding cost, there are also no significant fixed ordering costs since orders are always 

placed with a minimum order size at the supplier. Because the minimum order size is relatively large, 

no fixed ordering cost are considered. 

- A base stock policy is used with a minimum order quantity (MOQ) 

The policy used to order from suppliers and create inventory orders at half-fabric level, is a base stock 

policy. A base stock policy is a great policy, because we do not have a fixed ordering cost which means 

that we can order as many times as we want. However, there does exist a MOQ, which means that we 

can only place an order if it is above a certain amount. Therefore, the base stock policy cannot be 

optimally used. As can be seen in the formula below (from step 3 in part three), the ordered quantity 

is the maximum of the items short and the MOQ.    

𝑂𝑟𝑑𝑒𝑟𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = max{𝑀𝑂𝑄𝑖 , 𝑆𝑖 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖} 

- The base stock levels are always a multiple of the batch size 

Since only full batches are created, there is no need for base stock levels that are not a multiple of the 

batch size. For example, if there are only enough components left to produce half a batch, these 

components will not be used. Only when extra components are ordered to create an entire batch, 

these components will be used. However, having this inventory in the first place only results in higher 

inventory level, without improving the service level. The decision to choose base stock levels as 

multiples of batch sizes, results in a significantly smaller solution space.   

4.3. Validation/settings 
In order to make sure that the simulation models exactly what we want it to model, we validated the 

model by presenting the simulation model to a small group of experts from the company. These 

experts were able to validate the decisions and assumptions made in the simulation. Furthermore, the 

accuracy of the output of the simulation is determined by a couple of parameters. These parameters 

are warm-up period, run length, and number of replications. These values have been calculated with 

the sequential procedure (Law, 2014, p. 505). The execution of this approach can be found in Appendix 

A. 

Warm up period 15 weeks 
Run length (excl. warm up) 500 weeks (10 ‘work’ years) 
Number of replications 400 replications 
Expected run time 146.05 seconds 

 

4.4. Literature models description 
In Chapter 3 we found different models to determine the safety stock placement and thus base stock 

levels. However, not every model includes all the relevant details relating to the production process at 

Nedap. In this section it is explained how different models from the literature can be used to determine 

the base stock levels.  
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4.4.1. Basic safety stock calculation 
The first way to determine the safety stock placement is by the safety stock calculation provided by 

Chopra & Meindl (2007). We want to optimize the base stock levels for the entire supply chain of 

Nedap. In order to do this, we can use the safety stocks to determine the base stock levels. Note that 

safety stock on end product level is not taken into account, due to the assumptions. This means that 

we either place safety stock levels at component level or half-fabric levels, which is similar to a MTO 

or ATO strategy. Both strategies are evaluated separately. 

The inputs for the model are as follows. Although it is assumed in the simulation that the production 

time is zero weeks, in practice not all the resources are always available, which is why we use a 

production time of one week for this model. We expect this one week to account for delay due to the 

unavailability of production capacity. However, it is difficult to say if this one week is valid, which is the 

reason for making a simulation in the first place. Also, the standard deviation of the demand will 

decrease as the decoupling points moves away from the customer, due to risk pooling, as discussed in 

Section 3.2.1. The last decision that should be made is about the cycle service level, which is set to the 

fraction of cycles in which no stock outs occur. Currently, we use a cycle service level of 95%. These 

values provide enough information to determine the safety stocks and thus the base stock levels. It is 

shown in the equations below, how these values are determined. 

Make-to-Order model (component level) (Hereafter referred to as C&M MTO model) 

Base stock level 𝑆𝑖: 

𝑆𝑖 = 𝑆𝑆𝑖 + 𝜇𝑖 ∗ 𝐿𝑖, in which 𝑆𝑆𝑖  is the safety stock and 𝜇𝑖 ∗ 𝐿𝑖  is the demand during lead time. 𝑆𝑆𝑖  is 

calculated as follows: 

Safety stock 𝑆𝑆𝑖: 

𝑆𝑆𝑖 = 𝑧𝑖  ∗  𝜎𝑖
𝐷 ∗ √𝐿𝑖, in which: 

𝑧𝑖 = 𝐹𝑠
−1(𝐶𝑆𝐿𝑖), in which 𝐹𝑠

−1 is the inverse standard normal of the cycle service level 𝐶𝑆𝐿𝑖 . 

𝜎𝑖
𝐷 = √∑ 𝐴𝑖𝑗 ∗ 𝜎𝑗

2
𝑗   , in which 𝜎𝑗 = ∑ 𝐵𝑗𝑘 ∗ 𝜎𝑘𝑘   

(All correlation coefficients 𝜌 𝑖𝑗  are < 0.05, therefore we assume no correlation) 

Demand during lead time 𝜇𝑖 ∗ 𝐿𝑖: 

𝜇𝑖 =∑∑𝐴𝑖𝑗 ∗ 𝐵𝑗𝑘 ∗ 𝜇𝑘
𝑗𝑘

 

Assemble-to-Order model (half-fabric level) (Hereafter referred to as C&M ATO model) 

Base stock level 𝑆𝑗: 

𝑆𝑗 = 𝑆𝑆𝑗 + 𝜇𝑗 ∗ 𝐿𝑗, in which 𝑆𝑆𝑗  is the safety stock and 𝜇𝑗 ∗ 𝐿𝑗  is the demand during lead time. 𝑆𝑆𝑗  is 

calculated as follows: 

Safety stock 𝑆𝑆𝑗: 

𝑆𝑆𝑗 = 𝑧𝑗  ∗  𝜎𝑗
𝐷 ∗ √𝐿𝑗, in which: 

𝑧𝑗 = 𝐹𝑠
−1(𝐶𝑆𝐿𝑗), in which 𝐹𝑠

−1 is the inverse standard normal of the cycle service level 𝐶𝑆𝐿𝑗. 

𝜎𝑗
𝐷 = 𝜎𝑗 =∑𝐵𝑗𝑘 ∗ 𝜎𝑘

𝑘

 

Demand during lead time 𝜇𝑗 ∗ 𝐿𝑗: 
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𝜇𝑗 =∑𝐵𝑗𝑘 ∗ 𝜇𝑘
𝑘

 

𝐿𝑗 = 𝐿𝑖 + 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒, in which 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 is one week. 

4.4.2. Guaranteed service model 
Another model we use to determine the safety stock levels is the GSM by Graves & Willems (2003). 

This model incorporates multi-echelon safety stock placements, by investigating the service times at 

various stages. This is contrary to the model from Chopra & Meindl (2007), in which only a single level 

could be evaluated at the same time. However, the GSM does need additional information to calculate 

the safety stock levels. In addition to the demand mean and standard deviation, lead time, and service 

level, it also requires the promised outgoing service time from the end products to the customers. For 

Nedap, the outgoing service time of the end products would be five weeks, since that is currently their 

ideal lead time. Moreover, since we do not include the end products in the model, we set the outgoing 

service time of the half-fabrics to five weeks. One downside to this model is that the problem is 

formulated as a non-linear problem, because of the square root in the objective function of this 

minimization problem. However, this problem is solved by using the Gurobi solver in Python, which 

uses piece-wise linear approximation to solve non-linear problems. After the model from Graves & 

Willems (2003) is solved by the Gurobi solver, the service times for each product at each stage are 

provided. This service time is used in Eq. (4) to determine the safety stock levels.  

Graves & Willems model (Hereafter referred to as GSM) 

Base stock level 𝑆𝑧: 

𝑆𝑧 = 𝑆𝑆𝑧 + 𝜇𝑧 ∗ 𝐿𝑧, in which 𝑆𝑆𝑧 is the safety stock and 𝜇𝑧 ∗ 𝐿𝑧  is the demand during lead time. We 

only calculate the base stock level if the GSM decides to put safety stocks on a certain place. 

Otherwise, we assume that no base stock levels are considered. 𝑆𝑆𝑧 is calculated as follows:  

Safety stock 𝑆𝑆𝑧: 

𝑆𝑆𝑧 = 𝑧𝑧𝜎𝑧
𝐷√𝑠𝑧

𝑖𝑛 + 𝑃𝐿𝑧 − 𝑠𝑧
𝑜𝑢𝑡  , in which 𝑧𝑧 and 𝜎𝑧

𝐷 are calculated in the same way as the models 

above. And where: 

 𝑃𝐿𝑖 = 𝐿𝑖 , in which the (production) lead time at component level, is the component lead 

time. 

𝑃𝐿𝑗 =  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒, in which the (production) lead time at half-fabric level is 

only the 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒, so without the component lead time. 

𝑠𝑗
𝑜𝑢𝑡 = 5, the (covered) half-fabrics should be available after five weeks (given by Nedap). 

𝑠𝑖
𝑜𝑢𝑡 and 𝑠𝑧

𝑖𝑛, result from solving the GSM. 

Demand during lead time 𝜇𝑧 ∗ 𝐿𝑧: 

𝜇𝑧, is calculated in the same way as the models above. 

4.4.3. Zero safety stock / current safety stocks 
Besides the two models from literature, there are two other base stock levels which we also want to 

analyze. One option is putting all safety stock to zero, to analyze the impact of safety stock. In this case 

we only determine the base stock levels on component level, we do not incorporate half-fabric base 

stock levels. Another setting that is evaluated, is how Nedap’s current approach performs. As stated in 

Section 2.4.2, the current approach is keeping roughly one month of demand as safety stock per 

component, and no base stock levels for the half-fabric products. Nedap currently does not work with 
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a base stock policy, but since we know how much safety stock they keep, we can translate it to a base 

stock policy. Furthermore, since we assume that all the levels are dividable by the batch size, we round 

the values to the nearest number dividable by the batch size. 

Zero safety stock (Hereafter referred to as ‘zero’ model) 

Base stock level 𝑆𝑧: 

𝑆𝑖 = 0 + 𝜇𝑖 ∗ 𝐿𝑖, in which 𝜇𝑖 ∗ 𝐿𝑖  is the demand during lead time and is calculated in the same manner 

as the C&M and GSM. 

𝑆𝑗 = 0, no base stock levels are considered at half-fabric level. 

Nedap’s current stock levels (Hereafter referred to as ‘Nedap’ model) 

Base stock level 𝑆𝑧: 

𝑆𝑖 = 𝑆𝑆𝑖 + 𝜇𝑖 ∗ 𝐿𝑖, in which 𝑆𝑆𝑖  is Nedap’s safety stock, and 𝜇𝑖 ∗ 𝐿𝑖  is the demand during lead time and 

is calculated in the same manner as the C&M and GSM. 

𝑆𝑗 = 0, no base stock levels are considered at half-fabric level. 

Nedap’s safety stock 𝑆𝑆𝑖: 

𝑆𝑆𝑖 = 4 ∗ 𝜇𝑖, at component level Nedap currently maintains roughly four weeks of expected demand, 

in which: 

𝜇𝑖 =∑∑𝐴𝑖𝑗 ∗ 𝐵𝑗𝑘 ∗ 𝜇𝑘
𝑗𝑘

 

4.4.4. Initial models for simulation 
The models found in literature provide a possible solution to the current problem. However, the 

simulation determines which model provides the best result. In this case, a good result means low 

inventory levels while maintaining a certain service level. Furthermore, the models are not only 

evaluated on their performance as individual models. They are also assessed based on their 

performance as initial model for the simulation optimization explained in Section 4.5. In this section a 

simulation optimization is provided in the form of a metaheuristic. And a metaheuristic needs an initial 

solution to start the optimization process. By analyzing the different models as initial solutions, it can 

be determined which model converges to the best value in the shortest time.  

4.5. Simulation optimization model 
In order to obtain the best solution for the situation at Nedap, a model should optimize the base stock 

levels for this situation. In this section it is explained how simulation is used to optimize the base stock 

levels, using simulated annealing.  

4.5.1. Optimization heuristic (Simulated annealing) 
Optimizing base stock levels by means of simulation comes down to evaluating as many different 

options as possible with a certain accuracy for a given time span. In this case we have ten decision 

variables (the base stock levels at component and half-fabric level) which can all obtain a large number 

of values. Since it is impossible to evaluate each individual solution due to the number of feasible 

solutions and the long running time, we use a simulated annealing.  

4.5.2. Initial solution and neighbor generation 
In Section 3.4.2 we found guidelines for determining the relevant simulated annealing settings. 

However, the best initial solution and how neighbors are generated depend on the situation. As 

explained above in Section 4.4.4, the best initial solution follows from the four models that are 
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evaluated. For the generation of neighbor solutions, we only change one base stock level at a time, 

which is a fixed step size (the batch size). This has two main reasons: first of all, by incorporating a step 

size we shrink our solution space. Secondly, we do not lose an important part of the solution space. 

This is because we assume that only full batches are produced, hence when we have less than a single 

batch size on stock, we are never going to use those items. The unused items only increase the average 

inventory level without impacting the service level. 

4.5.3. Objective function 
In order to determine which solution is better, an objective function is formulated. The objective is 

two sided, a certain service level should be obtained with as little inventory as possible. Currently, we 

want to achieve a service level of at least 95%. Nevertheless, in Chapter 5 we look into the impact of 

the service level on the objective function, which means that different service levels are evaluated. 

When the service level is set, the goal is to maintain the lowest inventory possible while maintaining a 

service level of at least 95%. This average inventory over all the half-fabrics and components is taken. 

Moreover, if one of the service levels from the covered tags drops below the 95% mark, a huge penalty 

is given (in the form of a large increase in the objective value) in order to ensure that the minimum 

service level is reached.  

Objective function: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =  {
1, if 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑒𝑣𝑒𝑙𝑘 <  0.95 ∀𝑘   

0, else             
  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝐵𝑖𝑔𝑀 ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 +
∑ ∑ 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑧,𝑤𝑤𝑧

(𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑚𝑝+𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐻𝐹)∗ 𝑅𝑢𝑛𝐿𝑒𝑛𝑔𝑡ℎ
 , 

with 𝐵𝑖𝑔𝑀 at least larger than the second part of the objective. 

4.5.4. Final settings 
In Table 9, a summary can be found on the settings that have been selected for the simulated 

annealing, based on Brusco (2014). 

Table 9. Simulated annealing settings 

Setting Value 

Start temperature 1,000 
End temperature 100 
Cooling scheme Exponential, factor: 0.97 
Markov chain length 50 

Neighbor creation 
Increase/decrease one base 
stock level with batch size 

Initial solution Best initial model 

Objective function 
Minimize average inventory 
while all service levels  ≥ 95% 

 

4.5.5. Simulation settings 
The simulated annealing algorithm evaluates many solutions (number of iterations * Markov length). 

If all of these values would be calculated by the simulation model with the original settings, this would 

take an immense amount of time. The time to obtain one objective value is already roughly 150 

seconds. Therefore, we need to make sure that we can run this algorithm in a reasonable time, so 

hours rather than years. In order to do this without harming the performance too much, we can change 

some of the simulation settings in order to decrease the running time of the simulation. The 

consequence is that the value obtained is less accurate. This could mean that certain neighbor 
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solutions get accepted while they might be worse, or the other way around. Nevertheless, we want to 

maintain a certain accuracy, and accept that one can never be a hundred percent sure in simulation. 

We acquired these lower running times by setting the number of replications from 400 to only 3. The 

analysis and explanation of these values can be found in Appendix A, which resulted in the following 

values:   

Warm up period 15 weeks 
Run length (excl. warm up) 500 weeks (10 ‘work’ years) 
Number of replications 3 replications 
Expected run time 1.03 seconds 

 

4.6. Conclusion method 
In this chapter we discussed the method we use to determine the best inventory parameters. First, we 

decided to create a simulation to model the current system at Nedap. This tactical-level simulation 

simulates the production steps together with the inventory levels of the SmartTags over a given time 

period. Given a set of base stock levels and other parameters, the simulation provides multiple KPIs in 

order to evaluate the performance of the base stock levels decision. In addition, some important 

assumptions have been made in Section 4.2 to model the simulation as accurate and close to reality 

as possible. Next, we evaluated the models which we derived from the literature, by using it as input 

for our simulation model. Besides the models we derived from literature, we also created our own 

optimization model. We applied SA with our simulation model to find the optimal base stock levels. 

The simulation model together with the models derived from literature and our own simulation 

provided enough information to optimize the base stock levels.   
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5. Results 
This chapter presents the results obtained from the simulation. First, we discuss the different models 

from literature and our optimization model. Second, we evaluate the base stock levels and 

performance of the models. Next to that, we gain insights into the impact of the different variables by 

performing a sensitivity analysis. Finally, at the end of this chapter, we examine the impact of some of 

the assumptions in Section 4.2. Note that the values are altered because of confidentiality.  

5.1. Evaluation of the models 
In this section we evaluate six different models. First, we evaluate the C&M MTO and C&M ATO model 

strategy. Next, we discuss the results from the GSM. After that, two different set of base stock levels 

are also taken into account. The first set is the ‘zero’ model, in which we determine base stock levels 

without safety stock, with the goal to gain insights into the impact of safety stock. The second set of 

base stock levels is the ‘Nedap’ model, which is an estimation of what the base stock levels would look 

like for the current situation at Nedap, in which on average roughly a month of demand is kept as 

safety stock for the components. Finally, we assess how well our own optimization model performs 

with respect to the others.  

5.1.1. Overview base stock levels  
In Chapter 4, we explained how we determine the base stock levels from the different models. In this 

section we provide an overview of all the base stock levels that are obtained from these models.   

Chopra & Meindl 

The input and output of the models from Chopra & Meindl (2007) can be found in Table 10 and Table 

11. Table 10 presents the values for the MTO strategy, in which base stock levels are only kept at 

component level. Table 11 provides the values for the ATO strategy, in which base stock levels are 

exclusively kept at half-fabric levels. 

 
Table 10. I/O C&M MTO model (components) 

 Components 
 Comp 1 Comp 2 Comp 3 Comp 4 
Input (weekly)     

Demand (mean) 36 3 1 27 
Demand (stdDev) 20 4 2 20 
Lead time 6 6 6 6 
Service level 85% 85% 85% 85% 
Output     

Safety stock 55 8 4 50 
Base stock 270 27 8 210 
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Table 11. I/O C&M ATO model (half-fabrics) 

 Half-fabrics 

 HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

Input (weekly)       

Demand (mean) 23 13 3 0 1 0 

Demand (stdDev) 20 7 4 1 2 1 

Cum. Lead time 7 7 7 7 7 7 

Service level 75% 75% 75% 75% 75% 75% 

Output       

Safety stock 86 30 14 0 6 0 

Base stock 248 120 35 0 12 0 

 

We initially aim to deliver 95% of the products on time, however, Chopra & Meindl (2007) use the cycle 

service level in their model. When we compute the service level with our simulation by evaluating the 

number of products that are delivered on time, we obtain values close to 100%. Therefore, we aim for 

a cycle service level which corresponds to our desired service level of 95%. This is done by running the 

simulation for different cycle service levels. It is shown in Table 12 which cycle service level came 

closest to our desired service level.  

Table 12. Overview service levels Chopra & Meindl model 

Cycle service level Simulated service level (MTO) Simulated service level (ATO) 

75% 91.7% 99.2% 
80% 94.6% 99.3% 
85% 97.6% 99.5% 
90% 99.7% 99.8% 
95% 99.9% 99.9% 

 

Although a cycle service level of 80% came closest to the 94.6% for the MTO model, an 85% cycle 

service level obtained a desired service level above the 95%. Therefore, we opt for a cycle service level 

of 85% for the MTO model. For the ATO model, all service levels are above the 95%, we select the cycle 

service level of 75%, since it is the closest to the desired number. Moreover, we decided not to go 

lower than a cycle service level of 75%, since the model gets close to becoming a MTO model when 

evaluated by the simulation. When the base stock levels for the half-fabrics are relatively low, the 

simulation model orders components so frequently (and in high numbers) that the inventory starts to 

pile up at component level, which resembles a MTO model. 

Graves & Willems 

For the GSM the values are put into one table, rather than the two separate tables for the MTO and 

ATO C&M models. The reason for this, is that the GSM evaluates the entire supply chain at once, which 

means that in addition to determining the safety stock level it also determines the placement. 

Furthermore, the original GSM would also incorporate the end products, but because the last 

production part has a lead time of zero weeks, there is no reason to stock items at that echelon level 

according to the GSM. In Table 13, the input and output of the GSM can be found. The input of the 

demand is the same for the GSM as for the C&M models. But instead of providing the lead times, the 

service times are shown, which are obtained from solving the non-linear model. 
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Table 13. I/O of the GSM 

 Components Half-fabrics 

Input Comp 1 Comp 2 Comp 3 Comp 4 HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

Demand (mean) 36 3 1 27 23 13 3 0 1 0 
Demand (stdDev) 20 4 2 20 20 7 4 1 2 1 
Service time 2 2 2 2 0 0 0 0 0 0 
Service level 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 
Output           

Safety stock 48 7 3 47 0 0 0 0 0 0 
Base stock 264 26 8 208 0 0 0 0 0 0 

Note: Service time = 𝑠𝑧
𝑖𝑛 + 𝑃𝐿𝑧 − 𝑠𝑧

𝑜𝑢𝑡 

We see from Table 13 that the GSM only places safety stock on component level. The service times for 

the components are two weeks, which means that safety stock should be implemented to cover for 

these two weeks of demand. When we compare these values to the C&M MTO model, we see that the 

base stock levels are slightly lower. That GSM provides lower values is not surprising considering the 

model’s nature. Since GSM also takes the promised lead time to the customer into account, it suggests 

a shorter duration for which safety stocks should be kept. However, there are two reasons why this 

difference is not as big as one might expect: first, the service level of the C&M MTO model is 85% 

compared to the 95% of the GSM. Second, the lead/service time are in the square root of the equation 

of the safety stock, which means that the difference is not linear.  

‘zero’ model & ‘Nedap’ model 

In Table 14 and Table 15 an overview of the safety and base stock levels from the two additional models 

is provided. As can be seen from the tables, both models only incorporate base stock levels at 

component level. 

 
Table 14. Output zero safety stock 

Zero safety 
stock 

Components Half-fabrics 
Comp 1 Comp 2 Comp 3 Comp 4 HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

Safety stock 0 0 0 0 0 0 0 0 0 0 
Base stock 217 18 4 161 0 0 0 0 0 0 

 

The base stock levels in Table 14 are only the demand during lead time, since there is no safety stock. 

This model shows how the base stock levels look when no safety stocks are used. 

Table 15. Output Nedap’s current stock levels 

Nedap’s 
current 
stock levels 

Components Half-fabrics 

Comp 1 Comp 2 Comp 3 Comp 4 HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

Safety stock 145 5 2 27 0 0 0 0 0 0 
Base stock 361 24 7 188 0 0 0 0 0 0 

 

The safety and base stock levels in Table 15 are an estimation of how Nedap’s base stock levels would 

look like if they would have used a base stock policy. As explained in Section 2.4.2 they currently keep 

a month of expected demand as safety stock, this corresponds to the values in Table 15. The base stock 

levels are significantly higher than both C&M models, the GSM, and the ‘zero’ model.    
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Simulated annealing 

For the simulated annealing algorithm, we already determined most parameters. These are 

determined based on Brusco (2014), which provided guidelines for optimal simulated annealing 

settings. In this section we evaluate these parameters and see how they perform. First, we evaluate 

which models perform best as initial model. After that we extend the running time of the algorithm by 

changing the parameters and seeing if the difference in performance makes up for the increase in 

running time.  

 

Initial model  

As explained in Section 3.4.2, simulated annealing needs an initial solution in order to provide 

solutions. The choice of an initial solution can have a significant impact on the performance and 

running time of the algorithm. Initial solutions that are ‘far away’ in the solution space from the global 

optimum require more time to converge to good solutions. Therefore, they are less efficient than initial 

solutions which are already closer to good solutions. We already have different ways to generate initial 

solutions, namely the five different models to determine the base stock levels. In this section we 

evaluate these models, by performing the simulated annealing algorithm with the same settings 

obtained from Brusco (2014). In Table 16 the performance of these initial models are provided. In Table 

17, we can see the base stock levels after running the algorithm.  

Table 16. Performance models after SA (with the settings from literature) 

Initial Model Average inventory (rank) Service level (rank) 

SA (C&M (MTO)) 95  (5) 98.6% (1) 

SA (C&M (ATO)) 65   (2)  92.6% (2) 

SA (GSM) 76  (3) 92.4% (3) 

SA (Zero) 39  (1) 88.3% (5) 

SA (Nedap) 91     (4) 90.5% (4) 

 

Table 17. Base stock levels after SA (with the settings from literature) 

Base stock levels  
(after SA) 

Components Half-fabrics Total 
base 
stock 

Comp  
1 

Comp 
2 

Comp 
3 

Comp 
4 

HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

SA (C&M (MTO)) 261 24 12 199 22 12 2 7 0 2 541 

SA (C&M (ATO)) 53 19 0 10 252 74 39 40 33 17 537 

SA (GSM) 257 24 7 182 2 4 2 7 5 5 495 

SA (Zero) 201 21 2 151 21 7 2 5 12 2 424 

SA (Nedap) 345 21 45 132 12 10 41 2 31 0 639 

 

The overview of the performances provided by Table 16 shows that choosing the C&M MTO model as 

initial model is the only option that is able to achieve the minimum service level of 95%. However, this 

is achieved with the highest average inventory of all the models. It still is the best initial model, because 

the neighbor solutions are likely to also be solutions with a service level above 95%. The neighbor 

solutions are important, since they determine the way to the best solution. Nevertheless, it becomes 

clear that all models differ quite a lot from each other in terms of performance (Table 16) and base 

stock level (Table 17). These differences mean that the solutions did not converge to a(n) (local) 

optimum, which tells us that the simulated annealing settings are not optimal for this case.  
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Parameter fine tuning 

In order to achieve a(n) (local) optimum, we extend the current simulated annealing parameters. Next 

to the general simulated annealing parameters, we also include the number of replications the 

simulation performs in order to determine the objective value of the neighbor solution. This parameter 

is not a simulated annealing parameter, but it does determine the accuracy of the objective function 

from the neighbor solution. Increasing the accuracy of the neighbor’s objective increases the chance 

of achieving a solution with a minimum service level of 95%. In Table 18 three different settings are 

evaluated in order to determine the best simulated annealing parameters. These runs use the C&M 

MTO model as an initial solution, since it was the only model that was able to obtain a service level 

above the 95%. 

Table 18. Tuning the simulated annealing parameters (initial model: C&M MTO) 

 Start 
temp 

End 
temp 

Decrease 
factor 

Markov 
length 

Replications Average 
inventory 

Average 
service level 

Run time 
(sec) 

Setting 1 1,000 100 0.97 50 3 95 98.6% 1,816 
Setting 2 1,000 10 0.98 75 5 71 95.9% 12,683 
Setting 3 1,000 1 0.98 100 5 71 95.9% 31,968 

 

From Table 18 we observe that running the simulated annealing algorithm more intensely, and thus 

longer, results in better objective values. However, the second change in parameters (from Setting 2 

to Setting 3) did not result in an improvement. This could be because the model got stuck in a local or 

global optimum. We have to take into account that this problem is a stochastic problem, and the 

algorithm is based on random values. Therefore, it is difficult to talk about optimal values. 

Nevertheless, it seems that to a certain extent, the algorithm is able to find improvements. So, in 

conclusion, running the algorithm for more iterations results in better values. However, the algorithm 

has its limits and for this case it seems that the limit is found at running the algorithm for three and a 

half hours. Next to that, we observed that the hyperparameters provided by Brusco (2014) did not 

provide the optimal values. The explanation for this lies in the different problem sizes, larger problems 

have more different values to evaluate, which requires more iterations to evaluate different solutions.  

Final base stock levels 

After performing the simulated annealing algorithm with the best parameters, we obtained the base 

stock levels presented in Table 19.  

Table 19. Base stock levels simulated annealing 

Simulated 
annealing 

Components Half-fabrics 
Comp 

1 
Comp 

2 
Comp 

3 
Comp 

4 
HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

Base stock 84 21 9 182 194 93 9 43 29 9 

 

5.1.2. Evaluation base stock levels  
In Table 20, a summary of all the base stock levels is provided. All the numbers are rounded to the 

nearest number that is dividable by the batch size, see Section 4.2.6 for the assumption that explains 

this action. From this we can see that the simulated annealing is the only model that includes base 

stock levels on component and half-fabric level. Moreover, all other models only include base stock 

levels on component level, except the C&M ATO model, which only includes base stock levels on half-

fabric level.  
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If we take a look at the total base stock level, we can see that the zero-safety stock model has the 

lowest total base stock. And the simulated annealing has by far the highest total base stock. 

Furthermore, it is interesting to see that the C&M ATO model incorporates 160 less total base stock 

than the C&M MTO model. Due to the risk pooling effect, one expects the total base stock of the C&M 

MTO model to be lower. However, the reason that the total base stock of the C&M MTO model is not 

lower, is that all the half-fabrics that start with (HF 1, HF 3, HF 5) need two components, the ‘ID’ and 

one other components. Also, the difference in cycle service level (75% for ATO vs 85% for MTO) plays 

a role in this difference. However, if we take a cycle service level of 95% for both, the difference is still 

100, these base stock levels can be found in Appendix C: base stock levels C&M models. Although the 

base stock levels for the MTO model are higher compared to the ATO model, the safety stock for the 

MTO are lower compared to the ATO model. 

Table 20. Overview base stock levels: comparison of the output from the different models 

 Components Half-fabrics Total 
base 
stock 

Base stock 
levels 

Comp 
1 

Comp 
2 

Comp 
3 

Comp 
4 

HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

C&M (MTO) 270 27 8 210 0 0 0 0 0 0 515 

C&M (ATO) 0 0 0 0 248 120 35 0 12 0 415 

GSM 264 26 8 208 0 0 0 0 0 0 506 

Zero 217 18 4 161 0 0 0 0 0 0 400 

Nedap 361 24 7 188 0 0 0 0 0 0 580 

SA 84 21 9 182 194 93 9 43 29 9 673 

 

5.1.3. Evaluation of the performances 
Based on the base stock levels from Table 20, we calculated the average inventory and service level 

with our simulation. The results of these simulations are shown in Table 21.  

Table 21. Performance different models 

Model 
Average inventory 

(rank) 
Service level 

(rank) 

C&M (MTO) 97 (4) 97.6% (2) 
C&M (ATO) 295 (6) 99.2%  (1) 

GSM 94 (3) 96.9% (3) 
Zero 41 (1) 79.8% (6) 

Nedap 103  (5) 88.4% (5) 
SA 71 (2) 96.3% (4) 

 

First of all, when we compare Nedap’s current solution to the best solution (simulated annealing), we 

see that the average inventory decreases with 30.7%. In addition, the service level is 96.3% rather than 

the 88.4% Nedap would have obtained. Thus, the simulated annealing solution provides better average 

inventory values and service level, making it the superior solution on both fronts. In addition, both the 

C&M MTO model and GSM outperformed Nedap’s current model, with 6.0% and 9.0% lower average 

inventory respectively. Not only did both models perform better in terms of average inventory, both 

models also obtained a service level above 95%.  

Next to that, the lowest average inventory in Table 21 is the zero-safety stock configuration. However, 

the service level is below 80%, which is far off the 95% target service level. The second lowest average 

inventory is the simulated annealing, which is surprising considering its total base stock level is by far 
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the largest. The reason why high total base stock levels do not always result in high average inventory 

levels, can be explained by the deviation of the base stock levels over the different components and 

half-fabrics. For instance, if we take Nedap’s current model, we notice a high base stock level for Comp 

1 (361). When we compare this number to the base stock level for the same component provided by 

simulated annealing (SA model), we perceive a much lower value (84). However, the part of inventory 

that is nonmoving during each cycle (on average), is noticeably different for the two models. The part 

of inventory that is not moving in case of the Nedap model is extremely high. For the SA model this is 

different, because the inventory in the SA model is used more effectively. There is little nonmoving 

inventory, resulting in low average inventory levels. Furthermore, Nedap’s model does not include 

base stock levels on half-fabric level, but inventory arises as work in progress inventory. For this reason, 

a higher average inventory is obtained with respect to the base stock level. In Figure 11 an illustrative 

example of these effects is provided. From this figure it becomes clear that Nedap’s model has 

significantly more non-moving inventory, which results in higher average inventory, despite the lower 

total base stock level.  

   Note: ID = Identification (component)         

 

Figure 11. Illustrative example inventory movement 
 

This decrease in average base stock level is the result from understanding exactly where and how many 

items are needed in the supply chain, this effect becomes especially clear when we look at the first 

component (Comp 1). Keeping items upstream the supply chain is beneficial due to the risk pooling 

effect. On the contrary, stocking items downstream results in reducing the risk of waiting for other 

orders to be produced first. The SA model is able to find the balance between the two and thus 

provides lower average inventory values, despite the high(er) total base stock level.   

5.2. Sensitivity analysis 
In the previous sections we found the best base stock levels simulated annealing was able to provide. 

However, this was solely based on the average inventory given a service level (of 95%). In order to 

understand the impact of the solution, we evaluate the effect of the input on the output by means of 

a sensitivity analysis. We use the best base stock levels found by the simulated annealing algorithm for 

the sensitivity analysis, which tells us how the solution performs under different circumstances. 
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Moreover, the following input parameters are considered in the analysis: lead time, demand, 

production capacity, batch size, and minimum order quantity. For the output we are not only 

interested the average inventory. In order to gain more insights into the performance of the best 

solution, we also discuss other KPIs. First, we evaluate the service level per end product, which gives 

us information about how the solution performs per end product. Next, the average order size and 

frequency per component are discussed, with the goal to examine the impact of base stock levels on 

the order patterns. Furthermore, we keep track of the utilization of the production (both parts), this 

tells us how ’full’ the system is. Finally, we consider the percentage of time we do not have any 

components on stock, per component.  

Lead time 

For the sensitivity analysis of the lead time, we evaluate lead times between four and eight weeks, 

with steps of one week. Below in Figure 12, the impact of these component lead times on the average 

inventory and service level is shown.  

 

 

Figure 12. Sensitivity analysis: Lead time 

From Figure 12 we conclude that both the average inventory and the service level decrease when the 

component lead time increases. When components arrive later, we have a higher chance of stockouts 

due to the increased waiting time of our components. These stockouts result in lower inventory levels 

and lower service levels. Currently, we assume the lead time to be six weeks. However, from the figure 

it becomes clear that if the lead time increases by a week, the service level drops by a significant 

amount. This emphasizes the impact of the accuracy of the lead time. Furthermore, it is in practice 

unlikely that suppliers deliver sooner than promised, which would decrease the lead time. However, if 

the lead time does decrease, we end up with more inventory. We notice an increase in average 

inventory of 3% and 14% for the lead times of five and four weeks respectively. This increase in 

inventory means more cost and a higher service level. However, the service level was already above 

the target level of 95%, therefore this increase in service level might not be worth the extra cost. In 

addition, the production utilization of the first production part and the percentage of no component 

on stock explain the cause of the decrease in service level. We see that for the original scenario, the 
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percentage of no components on stock is 18% on average, with a production utilization (first part) of 

64.2%. These numbers already show that the service level is limited by the availability of components 

rather than the production capacity. If we increase the component lead time to 8 weeks, we notice an 

even higher zero component percentages of 25% on average. The production utilization however, does 

not change at all.  

We perceived that if we use the current base stock levels and the lead time is 7 weeks (for the 

components) it results in a service level under the target of 95%. Therefore, we reoptimize the base 

stock levels for a lead time of 7 weeks, to see what the difference in base stock levels and performance 

is. In Table 22 an overview of the base stock levels for a lead time of 7 weeks is provided. 

Table 22. Optimized base stock levels (lead time = 7 weeks) 

Base 
stock 
levels 

Components Half-fabrics Total 
base 
stock 

Comp 
1 

Comp 
2 

Comp 
3 

Comp 
4 

HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

SA (lead 
time 7) 

120 31 36 163 216 91 14 14 48 5 738 

 

When we compare the base stock levels for 6 and 7 weeks of lead time, the total base stock increases 

by approximately 8%. If we then evaluate the performance with our simulation, we obtain an average 

inventory of 71, with a service level of 98.1%. Not only is the service level above the target of 95%, the 

average inventory is similar to the average inventory of the original scenario. Therefore, we obtain 

similar performance if we reoptimize our base stock levels for the alternative parameters. 

Demand 

In order to determine the effect of the demand, we analyze the interval between 20% less demand 

and 20% more demand (than currently assumed), with an interval of 10%. In addition, we also include 

a scenario of 50% more demand. In Figure 13, the impact of the demand on the average inventory and 

service level is shown.  

 

 

Figure 13. Sensitivity analysis: Demand 
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From Figure 13, we are not able to see a large difference in both the service level and inventory for the 

first five scenarios. The first four scenarios all obtain a service level of at least this 95% mark. Moreover, 

the service level reaches 93% with 20% more demand, which is just below the target service level of 

95%. The average inventory levels for the first five scenarios are also not quite different. However, 

when we look at the last three scenarios, we see that the average inventory increases heavily and the 

service level drops. These values can be explained by the production capacity. In the first five scenarios 

the production capacity was enough to handle the demand. Hence, no large difference in service level 

and average inventory were noticeable. An increase in demand of 30% results already in a small change 

in both the average inventory and service level. However, in case of an increase of 40% demand, we 

notice that production capacity becomes the bottleneck, resulting in significantly higher inventories 

and lower service levels. The average inventory increases because components remain longer on stock, 

since they cannot be used when the production capacity is reached. If demand rises, we order 

additional components to fulfill this increased demand. Nevertheless, if the production capacity cannot 

handle this demand the inventory piles up. For the same reason the service level decreases, because 

end products cannot be produced due to production capacity limitations. This is confirmed by the 

production utilization of the first production part, which is 64.2% for the original demand scenario and 

96.2% for the 50% more demand scenario. From this we conclude that, at this level of demand, the 

production capacity becomes the bottleneck rather than the component availability. 

Production capacity 

For the sensitivity analysis of the production capacity we only evaluate the production capacity of the 

first production part. We change the production capacity of the second part with the same margin as 

the first production part. However, the second production part has a lower utilization than the first 

part, which means that the first production part is more likely to become the bottleneck. Therefore, 

we evaluate the following five production capacities (next to the original capacity) for our analysis of 

the first production part: -30%, -20%, -10%, +10%, and +20%. The results can be found in Figure 14. 

 

 

Figure 14. Sensitivity analysis: Production capacity 
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Figure 14 shows us that the service level barely changes and the average inventory decrease if the 

capacity does not drop by 20%. Decreasing the production capacity means that less components can 

be used per week, which means that components remain on average longer on stock if the capacity is 

reached. Because the components remain longer on stock, the average inventory increases. However, 

the service level is not affected by it, because the production capacity is not the bottleneck for the 

service level. Some end products might take longer to be delivered, but if it is within the five weeks 

promised lead time, the service level does not get effected. However, we notice that production 

capacity does become the limiting factor when the production capacity reduces by 30%. The average 

inventory becomes three times higher compared to the other experiments and the service level drops 

below 50%. Moreover, by looking at the production utilization we see that the -20% production 

capacity is already close to becoming the bottleneck, since the first production part obtains a utilization 

of 82.5%. This utilization indicates that production capacity of -20% of the total is just enough to keep 

the system from overloading.  

Batch size 

The batch size is the next input parameter which is included in the sensitivity analysis. For this we take 

5 different batch sizes, these are scenarios 1 to 5. Currently, scenario 5 is the largest batch size Nedap 

is able to work with, due to production limitations. In Figure 15, the performance of the different batch 

sizes is presented.  

 

 

Figure 15. Sensitivity analysis: Batch size 
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service level. Furthermore, there is no clear relation between the average inventory and the batch size. 

The base stock levels and MOQ remain the same, leading us to order the same quantity and maintain 

the same level. Although, we might place an order sooner because we produced more due to a higher 

batch size, the order size remains unchanged. Hence, the batch size does not have a clear impact on 

the average inventory. KPIs which do show different outcomes for different batch sizes are the 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Se
rv

ic
e 

le
ve

l

In
ve

n
to

ry
 (

u
n

it
s)

Batch size (units)

Sensitivity analysis: Batch size

Inventory Service level



51 
 

production utilization of the first production part and the percentage of zero components on stock. 

The production utilization and percentage zero components are 62.6% and 10.6% respectively for a 

first (most flexible) scenario. These values are better compared to the 66.5% and 19.8% for the larger 

batch size of scenario 5. This difference is solely obtained by being able to produce the exact amount 

we need.     

Minimum Order Quantity (MOQ) 

Finally, we analyze the impact of the MOQ. The MOQ is determined by Nedap’s suppliers, which 

reduces the order flexibility. In order to gain insights on how much impact the MOQ constraint has, we 

evaluate the solution without the MOQ constraint. 

 

 

Figure 16. Sensitivity analysis: MOQ 

Figure 16 shows that the MOQ has significant impact on the performance of the solution. First of all, 

the average inventory decreases by 20.6%, while the service level decreases from 96% to 93%. The 

explanation for this effect is similar to the effect we saw with the batch sizes. By removing the MOQ 

constraint we are more flexible, which means that we only order what we need. This results in a large 

decrease in average inventory units (20.6%), but also in less service level. One advantage of ordering 

more than initially required, is that sometimes we require more than expected. Because of this effect 

we obtain a slightly higher service level with the MOQ constraint. This effect is confirmed by the 

ordering patters. We see that we order three times more often without the MOQ constraint. In 

addition, we see that our average order is also significantly lower with 18 units instead of 57 (almost a 

third of the total). 

When we do not incorporate the MOQ, the service level falls slightly below the target of 95%, since 

the base stock levels are determined based on including an MOQ. Optimizing the base stock levels 

without an MOQ results in the values provided in Table 23. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

True (org) False

Se
rv

ic
e 

le
ve

l

In
ve

n
to

ry
 (

u
n

it
s)

Minimum Order Quantity

Sensitivity analysis: MOQ

Inventory Service level



52 
 

Table 23. Optimized base stock levels (no MOQ) 

Base 
stock 
levels 

Components Half-fabrics Total 
base 
stock 

Comp 
1 

Comp 
2 

Comp 
3 

Comp 
4 

HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

SA (no 
MOQ) 

84 24 9 182 194 93 19 43 29 9 686 

 

The new base stock levels are unchanged apart from comp 2 and HF 3. When we take a closer look at 

the KPIs from the original scenario, we notice a service level of approximately 63% for the HF 3. Hence, 

it makes sense that this product with its related components are the two items that have an increased 

base stock level. These extra 13 base stock units (3 of Comp 2, and 10 of HF 3), result in an average 

inventory of 59 units and a service level 96.1%. This means that the target service level of 95% is 

reached and we are still able to maintain a 17.5% lower average inventory than the original scenario 

with an MOQ.  

5.3. Assumption validation 
In this section we evaluate the impact of two assumptions we made for our simulation. The first 

assumption is about not including safety stock / base stock levels at end product level. Therefore, we 

adapt our simulation to include the option to keep inventory on end product level. The other 

assumption is about the order in which batches are planned. Currently, we decide which batch is 

produced based on a fixed order, sorted from most to least expected demand. We evaluate to what 

extent this decision changes the objective.  

End products on stock 

In order to include the option to include inventory on end products level, the simulation is slightly 

altered. In addition to evaluating if it is possible to create additional batches to obtain half-fabric 

inventory (inventory orders), we now also evaluate if it is possible to cover half-fabrics already to 

create inventory for the end products. We previously made an assumption that we do not make a 

distinction between the different covers, which makes it difficult to decide for which end products we 

maintain inventory. Therefore, we only place inventory for the ‘runners’ for which we know there is 

plenty demand. These ‘runners’ include the covered HF 1 and HF 2 tag. For these two items we are 

keeping end product inventory with a maximum of half a week of demand. We only keep a maximum 

of half a week of demand, since this limits the risk of keeping stock on that level but shows the possible 

gain of keeping stock. 

After performing the simulation with the addition of keeping inventory at end product level, we saw a 

small decrease in both average inventory and service level. The average inventory we obtained was 71 

with a service level of 96.0%. The average inventory does not include the inventory of the end 

products. However, since a small part of the inventory is now shifted to the end product inventory the 

average inventory is slightly lower. Furthermore, the main benefit when placing inventory on end 

product level is that we do not have to cover (second production part) the tags. Nevertheless, the 

production capacity for covering a tag is never the limiting factor in the current setting. Therefore, 

including inventory on end product level did not make a significantly large difference.  

Production planning order 

We also analyzed the impact of altering the order in which products are planned. Currently the 

products with the highest expected demand are planned first. For this analysis we plan the products 

with the least expected demand first. By changing the order in which orders are planned, we evaluate 

the impact the planning order has on the performance of the solution. 



53 
 

The new planning order resulted in an average inventory of 72 and a service level 95.5%, which is a 

slightly worse solution than the original planning order. The reason why this solution is slightly worse, 

is because the products with a higher expected demand are less likely to be planned quickly, since the 

other products are prioritized. Because these products need to wait longer to be produced, the relative 

components spend more time on the shelf, which results in a higher average inventory. Moreover, 

when these products are planned too late, this results in a lower service level as well. The additional 

delay of the ‘high demand’ products as a result of the worse planning order, impacts the objective 

slightly. However, this impact could be much worse if the production would form the bottleneck in this 

setting. When the production is the bottleneck, the decisions regarding the planning order carry 

greater consequences.  

5.4. Conclusion results   
First, we obtained the base stock levels from the different models. After fine tuning the service level 

for the model provided by Chopra & Meindl (2007) and the simulated annealing parameters, the 

simulated annealing model was able to obtain the best performance. With an average inventory of 71 

and a service level of 96.3%, it achieved the lowest average inventory while maintaining a service level 

above the 95% mark. In addition, our ‘initial model’ experiment showed that the C&M MTO model was 

able to obtain the best value (only service level above 95%) after running the simulated annealing 

model for a fixed time. Next to that, we noticed that the total base stock level of the best performing 

model (simulated annealing) was significantly higher than the other models. While the total base stock 

level was higher, it was still able to outperform the other models in terms of average inventory. We 

learned that the placement of the base stock levels plays an enormous role in the performance of the 

model. Besides the performances we acquired, we also gained more insights in the effect of the input 

and output parameters with a sensitivity analysis. From this sensitivity analysis we obtained many 

insights in the following input parameters: lead time, demand, production capacity, batch size, and 

MOQ. Three important conclusions can be drawn from this sensitivity analysis. First, the lead time has 

a large impact on the performance, regarding both the inventory and the service time. Second, in the 

current setting we are not bounded by production capacity, but rather by the availability of 

components. Third, the MOQ constraint has a significant impact on the average inventory. In addition 

to conducting these analyses, we also reoptimized the base stock levels for two different scenarios. 

The first scenario involved a lead time of 7 weeks, while the second scenario excluded the MOQs. 

These re-optimizations showed where and how much to change the base stock levels in order to obtain 

an appropriate service level and average inventory. Finally, we evaluated the assumptions we made 

about the inventory placement on end product level and the order in which products are planned. We 

showed that both assumptions have minor impact on the model.  
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6. Conclusion and discussion 
This chapter concludes this thesis. In this Section 6.1 we conclude the thesis by answering the research 

question: “How can the inventory be optimally managed for the production process of the 

SmartTags?”. In addition, we provide other findings from the thesis. Next to that, in Section 6.2 we 

discuss the limitations of the research. Furthermore, in Section 6.3 we provide recommendations to 

Nedap. Finally, in Section 6.4 we discuss the opportunities for future research.  

6.1. Conclusion 
We developed a simulation model to evaluate the impact of the base stock levels on the average 

inventory and service level in a multi-echelon multi-item supply chain. By implementing SA to optimize 

the base stock levels, we found a set of base stock levels which provided great results for Nedap. If we 

compare these results to Nedap’s current inventory policy, we obtain a decrease of approximately 

30.7% average inventory while increasing the service level from 88.4% to 96.3%. This improvement is 

realized by understanding the requirements of each item on every echelon level. By utilizing the entire 

supply chain, rather than only the component level, much performance has been gained.  

From the literature we found that both Chopra & Meindl (2007) and Graves & Willems (2003) provided 

a model to calculate safety stocks and thus base stock level. The C&M MTO model was able to find a 

6.0% reduction in average inventory compared to Nedap’s current policy, after fine tuning the cycle 

service level. In addition, the GSM reduced the average inventory by 9.0% compared to Nedap’s policy. 

Both models are superior to Nedap’s in terms of average inventory, while obtaining a service level 

above the target of 95%. However, the reason why these models did not perform as great as our SA 

algorithm, is the placement of the safety stocks. No other model, except the SA, suggested placing 

stocks on more than one echelon level, which caused higher average inventory values. Moreover, the 

research on the impact of production capacity on inventory optimization confirms the differences we 

see between the SA model and the others. From evaluating the models that suggest only placing 

inventory at component level, such as C&M MTO and GSM, it becomes clear that the production 

constraints are not taken into consideration. Our optimization model does include the capacity 

constraints, which is why our model suggests placing inventory on both echelon levels, therefore 

benefitting from both risk pooling effect (component level) and not waiting for production (half-fabric 

level). Therefore, it is clear that our optimization model effectively takes these production capacity 

and planning into consideration. This shows the advantages our model has over the models discussed 

in Chopra & Meindl (2007) and Graves & Willems (2003) that do not incorporate these production 

constraints. 

Furthermore, the sensitivity analysis provided interesting insights about the different input parameters 

and behavior of Nedap’s current system. First of all, we observed a large impact of the lead time on 

both the service level and the average inventory. Increasing the lead time by one week resulted in a 

service level of 87%, increasing it by one more week resulted in a service level of 76%. The average 

inventory did drop as well, however, this is solely because the increase in stockout due to the increased 

lead time. Therefore, it can be concluded that the availability of the recourses has a large impact on 

the objective value.  

Next to that, the sensitivity analysis on the production capacity and demand showed that the impact 

of the capacity is not the same as component availability. When we decrease the production capacity 

by 20% or increase the demand by the same amount, the objective value does not change that much. 

When this percentage gets closer to 50%, we see that the system gets overloaded and then the 

production capacity does become the limiting factor. However, in the current system we see that the 

availability of resources is limiting the performance more than the production capacity. Finally, we 
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observed that excluding the MOQ of components leads to improved performance and reduced base 

stock levels. This outcome is expected, since MOQs often result in ordering quantities that exceed 

actual requirements. 

 

6.2. Limitations 
In this section we discuss the two main limitations we encountered during this research.  

Stochastic lead time 

The first limitation is the stochasticity of the lead time. We know that in practice the lead time is not 

deterministic, however since we do not have accurate information about the lead time and the 

simulation would include even more stochasticity, we decided to apply deterministic lead times. One 

more reason for using deterministic lead times was to be able to compare our model to the models 

derived from literature, which also use deterministic lead times. However, we did incorporate the lead 

time in the sensitivity analysis and evaluated the effect on the solution for different lead times. This 

showed that altering the lead time has a significant impact on the solution. Therefore, not including 

stochastic lead time is a limitation of this research.  

 

Order generation 

The second limitation is regarding the way orders are treated in the simulation. In practice, orders can 

arrive every day of the week and consist of multiple product types per order. We assumed that orders 

consist of one type of product and always arrive at the start of the week. The simulation evaluates how 

many types of a certain tag needs to be produced that week, but this can change in practice during the 

week depending on the incoming orders from the customer. Although this current way of simulating 

demand is not how it is currently going, it still provides enough insights to evaluate the demand on a 

tactical level. Nevertheless, it is a limitation since the simulated demand is not presented in the same 

way as the actual demand. 

 

6.3. Recommendations 
In this section we provided recommendations to Nedap. 

Incorporating base stock levels 

In order for the simulation to have any effect on the future performance, the values need to be 

implemented. Therefore, these base stock levels should be put into the ERP system. Moreover, 

because Nedap has access to the simulation model, they can use it to recalculate the base stock levels 

when parameters have changed. Therefore, we encourage Nedap to use the simulation model and 

update the values after an event of change. The importance of updating the input parameter is 

emphasized by the results we obtained from the sensitivity analysis.   

 

Nedap needs to change their inventory settings in their ERP system and reconsider certain operation 

decisions to make sure inventory on half-fabric level is accurately monitored and placed. Apart from 

these measures, there are no actions of substantial impact expected to be taken.  

 

KPI monitoring 

Besides using the current base stock levels and updating them, we recommend Nedap to gain more 

insights into their own KPIs and parameters. When they obtain data about their performance and other 

parameters, they are able to utilize the simulation model even more. When more accurate data is put 

into the model, more accurate data comes out. In addition, tracking the KPIs will give Nedap the 
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opportunity to evaluate their performance, but also the performance compared to the expected 

performance form the simulation model. Tracking the KPIs indicates whether the input parameters 

need to be altered due to unforeseen behavior.  

 

We have already seen how important the accuracy of lead time is, which asks for accurate monitoring 

of the lead time from the suppliers. In addition, it is crucial to evaluate the simulation by monitoring 

the service level and the average inventory, this shows the accuracy of the model itself. Finally, it is 

crucial to continue actively monitoring KPIs that are already available such as: production failure rate, 

demand/sales, and order sizes. It is important that these values are being monitored since they keep 

the simulation model up to date.   

 

Sensitivity analysis 

From the sensitivity analysis in Section 5.2, we already gained a lot of interesting insights. Therefore, 

we recommend Nedap to create insights on their own as well. By using the simulation model to create 

these sensitivity analyses, Nedap can create many interesting quantitative insights, which can be used 

as a foundation for both strategic and tactical decisions. An example in which a sensitivity analysis 

could be used as a quantitative foundation for a strategic decision is a production scale up. A sensitivity 

analysis can provide insights in when and how much production needs to scale up in order to fulfill 

demand. Another application would be to evaluate the effect of the lead time Nedap promises their 

customers. A sensitivity analysis shows Nedap if it is possible to lower the promised lead time to their 

customer, if needed.    

 

Volatile lead time 

The final recommendation is about determining the lead time. From the sensitivity analysis of the lead 

time, we saw how lead time can impact the objective values. By creating agreements with suppliers on 

lead times and service levels, Nedap makes sure that the lead time from the simulation is promised. 

Therefore, achieving this lead time results in the optimal usage of the base stock levels provided by 

the simulation. 

 

6.4. Future research 
This section shows the opportunities for future research. We provide four possibilities for future 

research. 

Optimization algorithms 

We proposed a model that uses SA to optimize the base stock levels in a multi-echelon multi-item 

inventory production system. However, there are more algorithms available to approach such a 

problem. The literature provides us already with alternatives for similar problems such as machine 

learning algorithms and other (meta)heuristics (Pirhooshyaran & Snyder, 2020; Taleizadeh et al., 2016; 

Zhao & Sun, 2010). It is interesting to see how these other algorithms perform in terms of running time 

and objective value when compared to the SA algorithm for the current system.  

 

Stochastic lead time 

Secondly, incorporating stochastic lead time within the model is a possible improvement to our model. 

Including these stochastic values to evaluate the impact of stochastic lead times is another interesting 

possibility for future research. When there is accurate information available about the distribution of 

the lead time, including this lead time makes the model more realistic. Including stochastic lead times 

within a simulation model should be straightforward. However, formulating stochastic lead times 

within an exact model is likely to be unattainable.    
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Demand distribution 

Next to that, we assumed normally distributed demand for our model. In our case normally distributed 

demand matches the historical demand, however this does not have to be the case for other systems. 

Therefore, exploring different distributions for demand is an addition to our model. Including different 

distributions makes the model more applicable for other systems. 

 

Alternative production planning  

Finally, we focus on the base stock levels in an inventory production system, however, we assume all 

production related parameters to be fixed. For instance, we do not focus on the production planning 

and thus the order in which production is planned. We evaluated an alternative production planning 

in Section 5.3, but we do not have a lot of information on what the impact is of this production planning 

and which production planning is optimal for our inventory production system. Focusing on the 

production planning and its effect on the inventory parameters is interesting material for future 

research.  
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Appendices 

Appendix A: simulation settings 

Warm up period 
In order to determine the warmup period, 100 weeks have been run. Once with (relatively) low input 

variables and once with (relatively) high input variables. Since the goal is to see when the system 

approaches a steady state, two different scenarios have been selected to get a better understanding 

of when this happens. In Figure 17 and Figure 18, the warmup period is presented, by mapping the 

average inventory per week. In both figures it can be seen that the weeks up until week 15 look slightly 

different from the steady state that is reached after week 15. That is why we determine that after 15 

weeks, the system should be in its steady state. Hence, we obtain a warm-up period of 15 weeks.  

 

Figure 17. Warm up period, low input 

 

Figure 18. Warm up period, high input 

Run length and replications 
After the warmup period has been determined, the run length and number of replications should be 

determined in order to predict the accuracy. This is done by the sequential procedure proposed by 

(Law, 2014). This procedure is performed for both the evaluation and the optimization simulation. The 

main difference between these simulations is the required accuracy. For the (more accurate and 

slower) evaluation simulation, a relative error of 1% with a 99% confidence level is the target. For the 

(less accurate and faster) optimization simulation, a relative error of 10% with a 90% confidence 
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interval should be enough to give an indication whether one solution performance better than 

another. And more importantly, with these values we can achieve running times which are far more 

reasonable. In Figure 19 and Figure 20 it is shown how many replications are needed in order to achieve 

these values for the given run length. 

 

Figure 19. Simulation settings (simulation evaluation) 

 

Figure 20. Simulation settings (simulation optimization) 

 

From these figures the values in Table 24 can be achieved. The warmup period is the same for both 

simulations, since that is the time needed for the simulation to get into the steady state. Next, the run 

length and number of replications together result in the accuracy, which is why it is decided to set the 
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run length to the same value, namely 500 weeks. This corresponds to ten years, since the production 

runs 50 weeks a year. Finally, the number of replications is where one can see the difference between 

the two. However, this higher accuracy comes at a higher computation time. The hardware used was 

a windows 10 laptop using a 2.4GHz Intel Core i5-1135G7 processor with 16.0 GB of RAM. 

Table 24. Simulation settings 

 Evaluation simulation Optimization simulation (SA) 

Warm up 15 weeks 15 weeks 
Run length (excl warm up) 500 weeks 500 weeks 
# of replications 400 3 
Computation time 146.05 seconds 1.03 seconds 

 

Appendix B: flowchart simulation 

 

Figure 21. Flowchart simulation model 
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Appendix C: base stock levels C&M models 
 

Table 25. Base stock levels C&M models with 95% cycle service level 

Base stock 
levels 

Components Half-fabrics Total 
base 
stock 

Comp 
1 

Comp 
2 

Comp 
3 

Comp 
4 

HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 

Chopra & 
Meindl (MTO) 

276 29 9 209 0 0 0 0 0 0 523 

Chopra & 
Meindl (ATO) 

0 0 0 0 247 120 36 2 12 2 419 

 

Appendix D: Q-Q plot demand 
In order to evaluate if the demand is even close to being normally distributed, we create a Q-Q plot of 

the total weekly demand, compared to the normally distributed demand. We got rid of the first and 

last 5% demand values, since they are obvious outlier. In Figure 22 it is shown that the demand follows 

the ‘y=x’ line in the middle part of the graph. The first and last part show small deviations from the 

line. From this we can see that the normal distribution is a decent fit, however it is not perfect, 

especially in both tails we see more deviation from the line. 

 

Figure 22. Q-Q plot total demand 

Q-Q plot total demand

Demand Linear (y=x)


