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Fig. 1. Caspian Sea from a bird view [18]

ABSTRACT
Physics and mathematics allow us to provide accurate weather forecasts.
Thanks to observations and numerical weather predictions, meteorologists
can predict weather conditions which undoubtedly affect the daily choices
made within various sectors of society. Models are built to provide forecasts
to simulate atmospheric conditions and predict how they will evolve over
time. By combining this information with hydrological data and models
meteorologists can make predictions about water levels as well. However,
various biases and errors are present in weather prediction models which
are difficult to eliminate. We propose using machine learning as a post-
processing technique to correct ocean circulation model outputs. In this
research we carried out boosting algorithms together with a novel Fully
Convolutional Network for the regression problem to see to what extent it
is possible to successfully correct data coming from the ADCIRC model. We
managed to obtain promising results which show that the model’s outputs
could be successfully corrected depending on the season of the year and on
number of variables which were used to train the model.

Additional Key Words and Phrases: fully convolutional networks, post pro-
cessing, time series forecasting, time series regression, water level prediction

1 INTRODUCTION
Accurate prediction of water levels in rivers and lakes is crucial for
effective flood warning and management of water resources. As
water level data from hydrological stations usually exhibit a time
series structure, researchers often utilize time-series hydrological-
prediction models to forecast future water-level data. By leveraging
past data to predict future water levels, researchers can uncover
hidden information and gain insight into future behavior. This in-
sight is essential for mitigating flood effects, preventing disasters,
and managing water resources effectively. At the moment weather
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prediction uses mathematical models of the atmosphere and wa-
ter to predict the weather phenomenons. These models based on
the physical and mathematical principles can predict short as well
as long term weather forecasts [7]. However, weather models are
prone to errors and biases which sometimes are very difficult to
remove. As explained by the European Centre for Medium-Range
Weather Forecasts ECMWF [16] in recent years there have been
improvements in terms of optimizing weather models. Nevertheless,
there are still persistent biases which are difficult to exclude. One of
the models which is used for water level prediction is the ADvanced
CIRCulation model ADCIRC [6]. This numerical ocean circulation
model is used to simulate storm surge, tides, water levels and coastal
circulation. However, this model in various situations lacks stability
and as a consequence loses on its performance. Therefore, we are
going to look at correcting this model output to achieve higher
accuracy.

Water level data plays a vital role in water resource planning and
management. Correcting the time series helps ensure that the data
accurately represents the state of water bodies, such as rivers, lakes,
and reservoirs. This information is essential for water allocation,
assessing water availability, optimizing water use, andmanaging wa-
ter resources sustainably. In this research, we try to predict the time
series of water level using state-of-the-art regression techniques
as well as with a deep learning architecture Fully Convolutional
Networks FCN.

This research topic has been brought up by Infoplaza, a weather
service forecast provider. The company has started a broader ma-
chine learning and artificial intelligence movement which should
help the company to improve their weather forecasting. At the mo-
ment Infoplaza does not have a forecasting system that incorporates
observations to predict future water levels. As a result, the company
is interested in the improvement of water level forecasts in one
location at the Caspian Sea. At this specific geographical location,

1



TScIT 39, July 7, 2023, Enschede, The Netherlands Krzysztof Wiesniakowski

it is necessary to apply corrections to the ADCIRC model to en-
hance its accuracy and provide Infoplaza with more dependable and
trustworthy information.

2 RESEARCH QUESTION
RQ: To what extent can advanced AI models predict time series of
water levels in a closed reservoir?

The following sub questions should help to answer this question
(1) How do traditional models perform in predicting water levels in

a closed reservoir compared to Fully Convolutional Network?
(2) Under what circumstances can the Machine Learning model be

used and not be used ?

3 RELATED WORK
In this section, we describe the state-of-the-art in predicting time
series of water levels, we go over research work done towards nu-
merical weather prediction and we take a closer look at the ADCIRC
model, errors, and biases that concern weather prediction.

3.1 Correcting weather models
As it has been stated by Zadra et al. (2017) [25] weather models
still need improvement due to differences between predictions and
observations. These differences may reflect observational uncer-
tainty, internal variability or errors and biases in the representation
of physical processes.
Lee et al. (2021) [15] have carried out research in which peak

storm surges were simulated. The ADCIRC model was tested on
and it has been shown that due to its instability, 19 storms were not
reported by the model. Thus, it can be noted that the aforementioned
model can be improved.

In the field of machine learning and weather prediction, scientific
studies demonstrate the successful utilization of these techniques
to effectively mitigate errors and biases in weather models [10, 24].
In 2022, Atashi et al. [9] have applied a statistical method, machine
learning algorithm as well as deep learning method to improve flood
predictions in the Red River of the North [8]. After conducting their
research on the particular case they have showed that Long Time
Short–Memory LSTM has outperformed other methods used in the
research.
This study aims to explore the effectiveness of deep neural net-

works and gradient boosting algorithms in addressing time series
problems. Both approaches have demonstrated their success in over-
coming the challenges inherent in time series analysis, and we seek
to contribute to the existing knowledge by investigating their per-
formance and suitability in this context.

3.2 Boosting algorithms in time series
Boosting algorithms have demonstrated practical applicability, par-
ticularly when employing decision trees as base models. The concept
of "boosting" refers to a potent technique that adeptly combines
multiple approximate and moderately accurate models to generate
a highly precise predictive model. This is achieved through a series
of iterations, where the learning algorithm repeatedly scans the
training data and places emphasis on the examples that were pre-
viously misclassified. By giving more weight to these challenging

examples, the algorithm combines the decisions from the weak rules
to produce a final prediction with significantly improved accuracy
[20].
Nguyen et al. (2021) [19] have developed hybrid models (GA-

XGBoost and DE-XGBoost) combine a genetic algorithm GA and a
differential evolution DE algorithm with the extreme gradient boost-
ing XGBoost model to predict hourly water levels. They have used
the which were collected from rain gauges and water level stations
from 2003 to 2020, with 42 heavy rain events during that span. The
comparison of results demonstrated the superior performance of
two hybrid models, over classification and registration trees (CART)
and random forest (RF) models in the multistep-ahead prediction of
water levels.

Li et al. (2020) [17] in their work analysed two mobile phone
activity dataset to predict the future traffic of mobile base stations in
urban areas. They utilized gradient-boosted decision tree algorithm
based on Kalman filter GBDT-KF together with LSTM model. They
have concluded that the RMSE Root Mean Squared Error of the
predicted values obtained from their GBDT-KF algorithm compared
to the ground truth is only around 12-14% worse than that of the
LSTM model. This points out that the GBDT-KF algorithm achieves
a reasonable level of precision while significantly reducing training
time by more than 100 times compared to the LSTM model. In
essence, the GBDT-KF algorithm strikes a balance between accuracy
and time complexity, making it a favorable alternative to the LSTM
model.

3.3 Fully Convolutional Networks in time series
Wang et al. (2017) [23] in their research introduced Fully Convolu-
tional Network FCN which showed promising results in time series.
In their proposed architecture all layers are learnable which can
provide high accuracy. To see the architecture please check Figure
5. They have tested this network architecture on 44 UCR time series
datasets with other benchmarks [12]. It turned out that FCN has the
lowest mean per-class error MPCE out of all the architectures which
have been tested. In our research we will focus on time series re-
gression. In this problem the objective is to make predictions about
a continuously changing output variable over period of time, by
considering its previous values and other factors that vary over time.
Since FCN is relatively a new architecture, there is yet very little
research done towards evaluating its performance. Nevertheless,
Tan et al. (2021) [21] showed that FCN can be successfully applied
to the regression problem as well. They have worked on their novel
database archive for evaluating Time Series Extrinsic Regression
TSER. An important aspect to recognize is that, they made an as-
sumption that most recent values are not most indicative of future
values and therefore, they did not evaluate the model on predicting
for instance heart rate. They have concluded that FCN for most of
the datasets and for multivariate time series performs better than
other traditional machine learning algorithms.

4 METHODOLOGIES

4.1 Literature review and business understanding
Gradient boosting algorithms have shown encouraging results in
predictive capabilities in terms of accuracy metrics and training
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speed [11]. Moreover, aforementioned algorithms showed promising
results for time series problems as well. Therefore, these algorithms
can be used as a great benchmark for FCN for a regression problem.
Although there has been research done in the field of using ma-

chine learning techniques to improve numerical weather predictions,
there is still a gap for more research when it comes to using deep
learning methods for univariate time series regression problems in
water level predictions. After researching in which fields FCN has
been applied and evaluated, it can be concluded that there is very
little research when it comes to FCN usage in numerical weather
forecasting such as correcting water level forecasts.
This paper will contribute in analyzing the traditional ML tech-

niques together with FCN architecture to see how deep learning
performs compared to the state-of-the-art techniques for predicting
time series regression problems.

Furthermore, this research aims to improve water level prediction
produced by the ADCIRC model by using machine learning as a
post-processing technique. This approach is expected to enhance
the accuracy of services provided by Infoplaza by providing a more
accurate time series of water levels in one location at the Caspian
Sea.

4.2 Implementation
In this research, we utilize traditional learning regression tech-
niques as well as a Fully Convolutional Network. This deep learning
method has been implemented using Tensforflow [5] and Keras [22]
in Python language. To see how traditional regression techniques
perform, we used PyCaret [4] since it enabled us to rapidly pro-
totype, compare, and evaluate machine learning models using a
user-oriented and intelligible interface. The exact results of using
Pycaret are described in an Appendix B.1 section.

4.3 Machine Learning Architecture
Fully Convolutional Network for a regression problem has been
inspired and adapted from previous research done by Wang et al.
(2017) [23]. In their research authors dealt with the classification
problem. They constructed the ultimate networks by combining
three convolution blocks with filter sizes of 128, 256, 128 in each
block. Following the convolution blocks, the features are passed
through a global average pooling layer, instead of a fully connected
layer, which significantly decreases the number of weights. In the
end, a softmax layer generates the ultimate label. However, in our
problem we carry out a regression problem, therefore, an architec-
ture needs to be adapted.

Tan et al. (2021) [21] have successfully applied FCN to the regres-
sion problem. In their research global average pooling and softmax
activation function which normally are used for classification prob-
lems were replaced with 1 dimensional global average pooling and
linear activation function which allowed the network to predict
continuous values.

In our research, we utilize the same network architecture which
can be seen in the figure 2. The linear function is defined as:

𝑓 (𝑥) =𝑚𝑥 + 𝑏 (1)

where𝑚 is the slope and 𝑏 is the y-intercept.

Fig. 2. FCN architecture for regression

5 EXPERIMENTAL SETUP

5.1 Dataset format
The dataset consists of data generated with the ADCIRC model
using ECMWF atmospheric forcing data [1] as well as observations
from NCOC [14]. Model outputs have been generated by Infoplaza
employees for the time span of one year at the same location at
Caspian Sea. Data was produced for one year starting from May
2022 up to and including April 2023.
ADCIRC model outputs are in JSON format consists of several

information: what time model has been run, predictions for 10 days
in advance with 30 min timestamp about water levels, wind speed
and wind directions. ADCIRC model is run twice per day. 720 JSON
files were used in this research.
NCOC observations are generated for every month in a CSV

format with 10 minute timestamps and the following information:
water level, water temperature and conductivity. This research uti-
lized a total of 12 CSV files.

Water levels are expressed as the delta value in meters compared
to the reference level specified which is based on bathymetry data
used inside Infoplaza.

5.2 Data cleaning
To make sure that the data we used in our research is consistent,
complete, and in suitable format we made sure that observations as
well as model outputs which were used in the training process are
free of null, extraordinary high, or low values which could be for
example a result from sensors’ malfunctions. Therefore, we excluded
all the observations that either were null or had differences between
consecutive values greater than 0.5 meters.

5.3 Data preprocessing
To use both inputs as well as observations in our experiment they
were brought to the same format and merged based on the times-
tamp. Following this, 12 pandas DataFrame [3] objects were obtained
with the information from observations as well as ADCIRC model
outputs.

The next step was to create a file that could be used in the experi-
ments. Since the goal of the research is to use machine learning as a
post-processing technique, for every prediction we used 9 ADCIRC
model outputs as the inputs for our MLmodels. Therefore, files were
created with the following information: observation time, forecast
runtime, forecast 8 timestamps ago, forecast 7 timestamps ago, ...,
forecast 1 timestamp ago, forecast at that time, and observation at
that time.
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Since the ADCIRCmodel produces predictions 10 days in advance,
experiments also take into consideration to what extent can ma-
chine learning be used depending on how long in the future model
outputs are corrected. Therefore, based on model runtime and 3 lead
times; 0-12 hours, 12-48 hours, and 48-240 hours we included model
predictions together with the upper value of model runtime to the
dataset. That means that for every model runtime model predictions
and observations were appended together with an upper range time.
Our dataset was saved in a CSV as well as numpy format [2] which
were used in experiments.

That led to a file for each month with the following information:
upper limit lead time, forecast 8 timestamps ago, forecast 7 times-
tamps ago, ..., forecast 1 timestamp ago, forecast at that time, and
observation as a target column. In the last stage, every file which
corresponds to one month was divided into training, validation,
and testing sets with the proportions 80 %, 10%, 10 %, accordingly.
Splitting the data from every month into these 3 sets allowed us
to train the models for the whole year and later evaluate them for
the whole year as well as for a specific season without the need of
retraining them again.
In the process of preparing the data for analysis, 86330 rows

have been excluded before appending them to the dataset used in
experiments. This is because they lacked consecutive values for the
window size and could not be used inside datasets. This could be
the result of missing model predictions or observations for certain
timestamps. Eventually, the whole dataset consists of 212886 rows
for training data, 26601 rows for validation data, 26643 rows for
testing data.

5.4 Experiments
Since our goal is to successfully correct the ADCIRC model outputs
we established its forecasts as the baseline for our results. Moreover,
we analyze to what extent we can correct the outputs of ADCIRC
model depending on the season of the year. All the models have
been trained for 1 year and after the training process they were
evaluated for the whole year as well as every season with the testing
data which was not used in the training process.

Before training, data was normalized with the following formula:

𝑥normalized =
𝑥 − 𝑥min

𝑥max − 𝑥min
(2)

This linearly transformed data to fit the interval [0,1].
Normalizing data before training ensured features were on a

similar scale, avoiding domination, aiding convergence, enabling
equitable comparisons, reducing sensitivity to initial conditions, and
facilitating regularization.
The maximum value from the dataset used in experiments was

240 since we appended the upper range model lead times, and the
minimum value was -2.2379 which represents the lowest water level
inside data collection.

5.5 Evaluation metrics
To assess a performance from different models we evaluate them
using the following metrics. Where 𝑛 is the total number of data
points, 𝑦 is the actual (true) value of the target variable for the 𝑖-the

data point, 𝑦 is the predicted value of the target variable for the 𝑖-th
data point.
The Mean Absolute Error MAE measures the average absolute

difference between the predicted values and the actual values in a
dataset. It provides a direct interpretation of the average magnitude
of errors. A lower MAE indicates better performance, as it means
the model has smaller average errors.

MAE =
1
𝑛

𝐷∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (3)

The Mean Squared Error MSE measures the average squared
difference between the predicted values and the actual values. It
squares the errors, which means it penalizes larger errors more
heavily. A lower MSE indicates better performance, as it means the
model has smaller overall errors.

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (4)

Root Mean Squared Error RMSE

RMSE =

√︄∑𝑁−1
𝑖=0 (𝑦𝑖 − 𝑦𝑖 )2

𝑁
(5)

6 RESULTS AND DISCUSSION
All the values inside the tables are in centimetres and present trained
model predictions on testing data together with model ADCIRC
outputs for the same dates.

6.1 Univariate time series
Firstly, the experiments were run using only water levels as the
inputs. In this set up, we wanted to observe whether exclusively
water levels are enough to successfully correct ADCIRC model
outputs. After running an experiment with Pycaret [4] with water
level data solely, it has shown that boosting algorithms have a great
potential to improve time series with the aforementioned data.

The results for univariate time series experiments are presented
in the table 1. ADCIRC model has lower MSE for the whole year
comparing to boosting regressors algorithms and FCN. However,
post-processed predictions have marginally lower MAE compared
to ADCIRC and FCN. The reason for that is that RMSE amplifies the
impact of larger errors due to the squaring operation. A lower RMSE
indicates that the model has smaller overall errors, particularly with
regard to larger errors or outliers. On the other hand, MAE treats all
errors equally, regardless of their magnitude. That means boosting
algorithms predictions that are generally closer to the true values
than ADCIRC predictions. However, as we can see in Figure 3, they
have a few predictions that are significantly off, contributing to a
higher RMSE.
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Table 1. Metrics for the whole year of testing data for univariate time series

Model MSE RMSE MAE
ADCIRC 127.73 11.30 8.63
Cat Boost 194.96 13.96 8.58

Gradient Boosting 196.15 14.01 8.61
Light Gradient Boosting 196.10 14.00 8.57

FCN 194.82 13.96 8.74

After providing evaluation metrics for the whole year, the next
step was to analyze how machine learning models perform in spe-
cific seasons. Therefore, we have also evaluated them in summer
where we included June, July, and August 2022. For autumn we
have included September, October, and November 2022, for winter
December 2022, January, and February 2023, for spring March, and
April 2023.

Boosting algorithms as well as FCN outperform ADCIRC for most
of the year except autumn time where they perform significantly
worse compared to our baseline. Moreover, also ADCIRC performs
slightly worse in this particular season compared to the rest of the
year. More extensive research is needed to see whether machine
learning models are able to successfully correct ADCIRC model
outputs in this particular season.

6.2 Multivariate time series
The next experiments were run including multiple variables such
as wind u, wind v, and wind speed to see whether the models’
performance can be improved. The results are presented in the tables
below and discussed later in the section. PyCaret [4] was one more
time run to see whether different models present significantly better
than boosting algorithms. The results present greater differences
between each other compared to running PyCaret for univariate
time series. Despite the fact that boosting algorithms were already
assessed for univariate problems, they will be re-evaluated in the
multivariate section of this research to provide a comprehensive
overview.

Table 4. Metrics for the whole year of testing data for multivariate time
series

Model MSE RMSE MAE
ADCIRC 127.73 11.30 8.63
Cat Boost 174.42 13.21 8.19

Gradient Boosting 179.05 13.38 8.34
Light Gradient Boosting 176.62 13.29 8.20

FCN 226.50 15.05 10.31

After running experiments for multivariate time series it can be
observed that there is a slight improvement in terms of validation
metrics for boosting algorithms. They improved in all criteria, MSE,
RMSE, and MAE in the scope of the whole year. After deeper analy-
sis, we can see that there is an improvement in winter, and autumn
and for some of the algorithms in spring table 3. They still show di-
minished results than ADCIRC during autumn. Nevertheless, there
is a marginal improvement compared to the model which used only
water levels as inputs.

On the other hand, FCN dropped its performance in every season
for the whole year compared to univariate time series. A possible
reason for that may be overfitting where the model may have mem-
orized the patterns and specific details of the training data without
learning to generalize well to unseen examples. Another possible
reason could be that this model architecture may not be well suited
for such a long sequence input length. Therefore, a more compre-
hensive analysis is needed to understand this phenomenon. Several
concepts are described in detail in the Future work section 8.

6.3 Lead time
Since these algorithms were used as a post-processing technique it
is vital to look at to what extent these algorithms correct outputs
depending on how long in the future ADCIRC model predicts. As it
has been already described in the Data Preprocessing 5.3 section,
every row in the dataset consists of the upper time range in which
the model predictions were produced. That allowed us to filter the
data, based on the time horizon it was generated and analyze to
what extent ADCIRC model outputs are corrected depending on the
time interval.
Both tables show MSE, RMSE, and MAE for the specific lead

times in the scope of the whole year for predictions on the testing
data. Table 5 and Table 6 present that the ADCIRC model in all the
lead times has lower RMSE compared to boosting algorithms as
well as to FCN. In contrast, boosting algorithms have lower MAE
almost in every lead time compared to the ocean circulation model.
We can see that univariate time series perform better compared to
multidimensional when it comes to predicting water levels closer
in the future whereas multivariate has lower MAE when looking at
longer time horizon.

Table 5. Metrics for the specific lead times for the whole year of testing
data for univariate time series

Metric MSE RMSE MAE
Model 0-12h 12-48h 48-240h 0-12h 12-48h 48-240h 0-12h 12-48h 48-240h

ADCIRC 19.89 55.50 153.26 4.46 7.45 12.38 3.64 5.92 9.66
Cat Boost 24.60 63.20 239.32 4.96 7.95 15.47 3.55 5.47 9.66

Gradient Boosting 26.72 64.48 240.25 5.17 8.03 15.50 3.64 5.50 9.73
Light Gradient Boosting 27.46 64.80 229.52 5.24 8.05 15.49 3.61 5.51 9.68

FCN 37.45 83.54 253.13 6.12 9.14 15.91 4.35 6.18 9.95

Table 6. Metrics for the specific lead times for the whole year of testing
data for multivariate time series

Metric MSE RMSE MAE
Model 0-12h 12-48h 48-240h 0-12h 12-48h 48-240h 0-12h 12-48h 48-240h

ADCIRC 19.89 55.50 153.26 4.46 7.45 12.38 3.64 5.92 9.66
Cat Boost 48.86 81.00 206.21 6.99 9.00 14.36 4.02 5.78 9.08

Gradient Boosting 35.76 70.56 215.50 5.98 8.40 14.68 3.88 5.62 9.33
Light Gradient Boosting 47.75 77.09 210.25 6.91 8.78 14.50 4.25 5.77 9.07

FCN 64.64 84.45 243.67 8.04 9.19 15.61 5.92 6.87 10.41

6.4 Experiments with non-boosting algorithms
PyCaret [4] enabled us to conduct experiments involving a wider
variety of models, going beyond just boosting algorithms. Never-
theless, to narrow down the focus of this research and to make an
extensive analysis of boosting algorithms’ application on correcting
ADCIRC model, other machine learning models were not analyzed
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Table 2. Metrics for the specific seasons for testing data for univariate time series

Season Summer Autumn Winter Spring
Model MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

ADCIRC 115.77 10.76 8.02 220.79 14.85 12.02 51.90 7.20 6.28 126.22 11.23 7.95
Cat Boost 88.29 9.40 7.00 594.28 24.38 17.72 22.20 4.71 3.35 84.72 9.20 5.81

Gradient Boosting 89.14 9.44 7.08 597.23 24.43 17.77 19.10 4.37 3.36 84.90 9.21 5.77
Light Gradient Boosting 88.42 9.40 7.03 603.56 24.57 17.78 22.10 4.70 3.36 79.00 8.89 5.69

FCN 96.53 9.82 7.56 583.01 24.15 17.64 21.25 4.61 3.41 83.93 9.23 5.95

Table 3. Metrics for the specific seasons for testing data for multivariate time series

Season Summer Autumn Winter Spring
Model MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

ADCIRC 115.77 10.76 8.02 220.79 14.85 12.02 51.90 7.20 6.28 126.22 11.23 7.95
Cat Boost 96.62 9.83 7.22 500.91 22.57 16.26 16.71 4.10 3.02 82.57 9.08 5.83

Gradient Boosting 89.43 9.45 7.16 541.89 23.27 17.05 18.39 4.29 3.21 71.18 8.44 5.41
Light Gradient Boosting 100.57 10.02 7.27 514.42 22.68 16.23 17.03 4.13 3.06 83.77 9.15 5.88

FCN 118.79 10.76 8.01 582.49 24.15 17.60 106.52 10.32 8.97 124.76 11.16 8.95

to such a broad extent. To see the metrics after running PyCaret
please see Figure 6 and 7.

6.5 Visualizations
Figure 3 shows visualizations for the selected months where AD-
CIRC model outputs are plotted together with a chosen boosting
algorithm, FCN, and NCOC observations. Looking at the graphs it
affirms what can be observed in the tables 2 and 3. We can examine
on the graph that indeed post-processed ADCIRC model outputs
are successful in spring since boosting algorithm follow observa-
tions much closer than the original ADCIRC model. Nevertheless,
boosting algorithms as well as FCN fail to near NCOC observations
during autumn.

6.6 Discussion
After thorough research, we have obtained results relevant to our
primary research question.

(1) Our first sub-research question How do traditional models
perform in predicting water level in a closed reservoir compared
to Fully Convolutional Network? is depicted in the tables in
the sections 6.1, 6.2 and in 6.5 sections where evaluation
metrics, as well as visualizations, are shown for both boosting
algorithms and FCN.

(2) To answer our second sub-research question Under what cir-
cumstances can the Machine Learning model be used and not be
used ? we started by first runnning experiments with PyCaret
[4] to choose suitable algorithms for this regression problem.
We observed that boosting algorithms show promising re-
sults. Secondly, after thoroughly analyzing the performance
of the models in each of the seasons both for univariate and
multivariate we can conclude that using Machine Learning
model can be used when it has lower RMSE as well as MAE
compared to the ADCIRC model. Only then the corrected
outputs are closer to the actual observations since they have

smaller significant errors and perform better on average for
most of the data points.

As has been shown in the experiments, FCN has a better perfor-
mance in univariate time series compared to multidimensional. The
possible cause for that may be that when dealing with shorter input
sequences, the receptive field of the convolutional layers can cover
a larger portion of the sequence, capturing more context and cap-
turing patterns effectively. This is because the information from the
input sequence has fewer steps to propagate through the convolu-
tional layers, allowing the network to consider more comprehensive
context information within a shorter distance. On the other hand,
when processing longer input sequences, the receptive field of the
convolutional layers might not cover the entire context required
for accurate predictions. The limited receptive field means that the
network may only consider a portion of the context, potentially
missing out on important patterns or long-term dependencies in the
data of the context. In this research all variables were used in the
multivariate experiments. That significantly extended the length
of the input sequence for the FCN network and as it has been al-
ready explained convolutional layers may have not captured all the
important patterns or long-term dependencies in the data.

7 CONCLUSION
In conclusion, we have proven in our research that ML can be used
to successfully correct ADCIRC model outputs depending on the
season of the year. Overall, for the whole year, the ADCIRC model
still has a lower RMSE than other machine learning models used
in this research, which indicates that has smaller overall errors
and fewer outliers. Nevertheless, boosting algorithms show better
average precision for both univariate and multivariate compared
to ADCIRC. FCN still shows relatively good performance when it
comes to univariate times series but significantly dropped when
other variables were included in the experiments.
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(a) November 2022, ADCIRC post processed by CatBoost Regressor and FCN
for univariate time series

(b) April 2023, ADCIRC post processed by CatBoost Regressor and FCN for
univariate time series

(c) November 2022, ADCIRC post processed by CatBoost Regressor and FCN
for mutlivariate time series

(d) April 2023, ADCIRC post processed by CatBoost Regressor and FCN for
multivariate time series

Fig. 3. Graphs presenting ADCIRC post processed by CatBoost Regressor and FCN for November 2022 as well as April 2023 both for univariate and multivariate
time series

8 FUTURE WORK
This research has shown that boosting algorithms and FCN for
univariate time series may be very beneficial in correcting ADCIRC
outputs. Nevertheless, future work is needed to further investigate
whether it is possible to exceed current results.

In this research, only a window of 9 timestamps was used for
both univariate and multivariate time series. In future research
experimenting with different window sizes may bring promising
results.

Furthermore, within this study, all lead times were included in
the training process. Possibly in the future, the models could be
trained only in specific lead times to see whether themodels perform
remarkably well only in specific time horizons.
Another factor that could allow to understand the data more

in-depth and enhance the results could be Principal Component
Analysis PCA when running experiments with multivariate time se-
ries. PCA would allow to simplify and understand multidimensional
data. It would identify the most important directions of variation
in the data and project the data in these directions. PCA requires
data to be standardized to remove differences in scales and units. It

7



TScIT 39, July 7, 2023, Enschede, The Netherlands Krzysztof Wiesniakowski

then calculates the covariance matrix to capture the relationships
between the features. Next, it performs an eigenvalue-eigenvector
decomposition on the covariance matrix, where the eigenvectors
represent the directions of maximum variance.

The eigenvectors, known as principal components PCs, are ranked
based on their eigenvalues, indicating the amount of variance they
explain. By selecting a subset of the PCs, it is possible to reduce the
dimensionality of the data while retaining most of the important
information. This could be very beneficial for improving the results
for multivariate time series specifically for experiments which in-
clude FCN since it would reduce the data dimensionality and would
enable convolutional layers to capture all important patterns.
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A APPENDIX

A.1
Figure 4 visualizes how convolutional neural network handles a
time series of length 𝑛 and width 𝑘 . The length is the number of
timesteps, and the width is the number of variables in a multivariate
time series.

Fig. 4. Sample 1D CNN architecture [13]

Figure 5 shows the network structure for a fully convolutional
network developed by Wang et al. [23] for the time classification
problem. In 2021 Tan et al. [21] have adjusted the architecture to
the regression problems as well where global pooling and Softmax
function was replaced with 1 dimensional global average pooling
and linear function to predict continuous value.

Fig. 5. The structure of the FCN network for the classification problem [23]

B APPENDIX

B.1

Fig. 6. Results of running PyCaret for univariate time series for one year

B.2

Fig. 7. Results of running PyCaret for multivariate time series for one year
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