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Abstract—Gaussian Frequency Shift Keying (GFSK) is a
widely used type of continuous phase modulation (CPM), where
a Gaussian pulse shaping filter is used before frequency modu-
lation. Commercially available GFSK demodulators are mostly
optimised to minimise power consumption or bit error rate
(BER), but rarely consider the latency of demodulation. However,
in situations where the output of the demodulator is used in
a feedback loop, the demodulator’s latency is a crucial factor
regarding stability of the system. In this paper, we primarily
investigate which noncoherent GFSK demodulator architecture,
suitable for implementation on a field-programmable gate array
(FPGA), has the lowest latency of demodulated bits, while
considering BER performance secondary. Three demodulation
methods were modelled in Simulink: instantaneous frequency
estimation using zero-crossing detection, a quadricorrelator, and
matched filters with envelope detection. Simulation results show
the quadricorrelator demodulator is most suitable, introducing a
latency of 1 µs and a BER of 0.1% at Eb/N0 = 13.2dB. The
realistic model of this demodulator for FPGA produces a BER
of 0.1% with Eb/N0 = 14.6dB.

Index Terms—Frequency shift keying, Low latency communi-
cation, Field programmable gate arrays, Simulink.

I. INTRODUCTION

Since the first digital communications between devices in
the 20th century, countless wireless communication standards
have been defined. One such standard is Bluetooth Low Energy
(BLE), using the Gaussian Frequency Shift Keying (GFSK)
modulation scheme [1]. GFSK is a modulation type that filters
the baseband message with a Gaussian filter, after which it
is frequency modulated with continuous phase (CPM). This
results in less required transmission bandwidth compared to
regular frequency shift keying (FSK). Other than in BLE,
GFSK is also used in many other standards, including Im-
proved Layer 2 Protocol [2], DECT [3] and IEEE 802.15.4
[4]. This research is done in accordance with the BLE 1M
PHY standard.

Currently available GFSK demodulators are primarily con-
cerned with reducing BER and power consumption, since
these are the most important attributes of a demodulator in
most contexts. Ongoing research in the field of BLE at the
Integrated Circuit Design group at the University of Twente,
however, makes use of the demodulated message in a control
loop, meaning low latency of the demodulator is of high
importance regarding stability of the system. In fact, any
control system where the demodulated message is used to give
feedback on a system, would benefit from low demodulation

latency. This research concerns itself with designing such a
demodulator for BLE of PHY type 1M. In Bluetooth, receivers
are predominantly noncoherent because of the cost efficiency
associated with them [5], which is why the focus of this
research is only on noncoherent demodulators.

This paper is structured as follows: in Section II-A, the
GFSK modulation scheme is explained and modelled, af-
ter which the three demodulation architectures are analysed
and designed in Section II-B. Simulations are done for the
demodulators and results are then compared in Section III
using the self-defined metric. In Section IV, a test setup is
suggested, as well as a realistic implementation for FPGA. For
this realistic implementation, a model is made in Simulink,
followed by simulation results of a representative Simulink
model in Section IV-D. Finally, the research is concluded in
Section V with the implications of the results, as well as areas
for further research on the topic.

II. GAUSSIAN FREQUENCY SHIFT KEYING

A. Modulation

GFSK modulation is a modification of FSK, where the
baseband message is first pulse-shaped (i.e. filtered) using a
Gaussian filter before being frequency modulated (see Fig. 1).
The filter removes sharp frequency transitions, significantly
reducing spectral width of the transmitted signal, at the cost
of ISI [5]. A comparison of their spectra is shown in Fig. 2.

The transmitted signal can be expressed as [6]:

s(t) = A cos(2πfct+ ϕ(t)), (1)

where

ϕ(t) = 2π · hRs

2

∫ t

0

m(τ) dτ. (2)

Parameter fc is the carrier frequency, h is the modulation
index, Rs is the symbol data rate and m(t) is the pulse shaped
bit sequence.

The remainder of this research assumes the following pa-
rameters based on the BLE 1M PHY specification [1]:

• Rs = 1Mb/s,
• h = 0.5,
• The Gaussian filter’s bandwidth-time product BT = 0.5.

Furthermore, it is assumed s(t) is already down-mixed to fc =
1MHz upon reception at the demodulator.
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Fig. 1. Modulation stages from 1 Mb/s data to the transmitted GFSK signal
with BT = 0.5, fc = 1MHz and modulation index h = 0.5.
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Fig. 2. Baseband frequency spectrum comparison between FSK and GFSK
with a bit-rate of 1 Mb/s, a modulation index h = 0.5 and BT = 0.5.

A model of a demodulator is made in Simulink R2022b by
modulating a Bernoulli bit sequence with the CPM block from
the Wireless Communication toolbox (see Fig. 3) with a pulse
width of three symbols and oversampling rate sps = 1000. The
output of the CPM block is complex baseband, so it is then
converted to passband with carrier frequency fc. Fig. 4 shows
that the CPM block also introduces a delay of 1 symbol. This
delay is caused by the Gaussian filtering prior to modulation.

Next, the signal is downsampled to the sample frequency
fs of the demodulator, after which additive white Gaussian

Fig. 3. Simulink model used for GFSK modulation.
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Fig. 4. Plot of the stages of modulation using the CPM block in Simulink.

noise (AWGN) is added to the signal. This way, no additional
decimation filter is needed before downsampling to prevent
the noise from aliasing. This workaround is needed because of
the use of sps = 1000 in the first place, which is necessary to
accurately represent a signal coming from an ideal transmitter.

B. Demodulation

For the demodulation of the passband modulated signal pro-
vided by the GFSK modulator, three noncoherent demodulator
architectures are considered, after which their latencies and
BER performances are then compared.

The total time between transmission of a bit and its receival
consists of three parts: the 1 µs delay of the CPM block, the
delay of the demodulator, and the delay from symbol slicing.
The symbol slicer of all three approaches is done by sampling
the output of the demodulator exactly in the middle of a
symbol, adding a constant 1

2Rs
= 0.5 µs delay. The interested

reader is referred to Appendix A for implementation details.
In this paper, we define the latency L of a demodulator as

the time delay between the transmitted and detected bit, minus
the constant 1.5 µs from the CPM block and symbol slicing.

The presented demodulators all have at least one parameter
that trade latency for AWGN resilience. Therefore, multiple
BER against Eb/N0 simulations are done for the demodu-
lators, each with different parameters. Additionally, the BER
against Eb/N0 is plotted for an ideal noncoherent FSK demod-
ulator with the same modulation index, henceforth referred to
as the reference demodulator. We use FSK as a lower bound to
the BER against Eb/N0 performance of GFSK, since it does
not consider the ISI [5].

The maximum acceptable BER for BLE is 0.1% [1], which
is achieved with Eb/N0 = 11dB for the reference demodu-
lator. As a metric of noise resilience, we define

∆Eb ≡
[
Eb/N0

]
BER=0.1%

− 11 dB. (3)



Fig. 5. Simulink model of the zero-crossing detection based GFSK demod-
ulator.

This number represents how much less noise the demodulator
under consideration can handle in the channel, compared to
the reference demodulator. To compare the demodulators with
their different parameters, we define a figure of merit as

FoM ≡ 1

L2 ·∆Eb
, (4)

representing a better demodulator when FoM is larger. For
simplicity, L is in symbol periods (equivalent to 1 µs for Rs =
1MHz) and ∆Eb is in dB.

For fair comparison, each demodulator uses the same sam-
ple frequency fs = 20MHz.

It must be noted this research only makes use of symmetric
finite impulse response (FIR) filters because of their ease of
construction in Matlab and because they have a constant group
delay (of half their order) [7]. Constant group delay, however,
is not required in most cases presented here, making this a
topic for future research.

1) Zero-Crossing Detection Demodulator: The first de-
modulator, illustrated in Fig. 5, is based on estimating the
instantaneous frequency of the passband signal, suggested
by [8].

We do this by constructing a signal zc_Ind that indicates
zero crossings of the GFSK signal by sending a pulse for one
sample when either a rising edge or falling edge is detected
from the received signal. This signal is connected to the
reset of a counter Cout which increments count every 1

fs
,

essentially timing the zero crossings. When the frequency of
the received signal is exactly fc, the value of Cout gets up
to Cmid = fs

2fc
. Therefore, if the final value of Cout > Cmid,

it means a 0 was transmitted, and if Cout < Cmid, a 1 was
transmitted. Hence, Cout is compared to Cmid and the result
(the estimated transmitted bit) is stored in a data flip-flop until
the next zero crossing. This is achieved by using the zero
crossing indication as a clock to the flip flop.

In the case a 0 is sent, however, it is not necessary to wait
until the next zero crossing to update the flip flop; the moment
the counter reaches Cmid, a hit pulse can be sent to the clock
of the flip flop to send through the 0 immediately. This reduces
ISI.

The latency of this part of the demodulator is the time
between two zero crossings, since this is how long the de-
modulator needs to conclude if a 0 or 1 was sent. Therefore,
the average latency of this part is 1

2fc
.

However, this method would be very sensitive to AWGN
because this can introduce additional zero crossings, com-

Fig. 6. Simulink model of the quadricorrelator GFSK demodulator.

pletely throwing off the counter. This is why a lowpass filter
(LPF) precedes the zero-crossing detectors. The filter is of
order N and has a cutoff frequency of 2 MHz, based on the
spectral width seen in Fig. 2. The consequence hereof is that
an additional latency of N

2 samples is introduced [7], making
the total latency of the demodulator 1

2 ·
(

1
fc

+ N
fs

)
.

2) Quadricorrelator: The second presented method is the
discrete-time quadricorrelator shown in Fig. 6, where the
conventional differentiation elements are replaced by delay
elements [9].

First, the passband GFSK signal is split and down-mixed
into its in-phase and quadrature components

sI(t) = LPF(cos(2πfct) · s(t)) =
A

2
cos(ϕ(t)) (5)

and

sQ(t) = LPF(− sin(2πfct) · s(t)) =
A

2
sin(ϕ(t)). (6)

Next, these signals are delayed by ∆T , cross multiplied and
subtracted from each other to produce

y(t) = sQ(t)sI(t−∆T )− sI(t)sQ(t−∆T ) (7)

=
A2

4
sin
(
ϕ(t)− ϕ(t−∆T )︸ ︷︷ ︸

∆ϕ(t)

)
. (8)

The argument of the sine, denoted ∆ϕ(t) can be expressed as

∆ϕ(t) = 2π
hRs

2

(∫ t

0

m(τ) dτ −
∫ t−∆T

0

m(τ) dτ

)
(9)

= 2π
hRs

2

∫ t

t−∆T

m(τ) dτ. (10)

Ignoring the latency introduced by the image rejection filter
of the mixers and scaling factors, this shows the output of
the demodulator at time t is the sine of the area under m(t)
from t−∆T until t. Assuming −π

2 ≤ ∆ϕ(t) ≤ π
2 (which we

will soon make sure of), the sine in (8) is a strictly increasing
function through 0, meaning the sign of y(t) is the same as
the sign of the mentioned area. See Fig. 7 for a graphical
relationship between m(t) and y(t).

To ensure −π
2 ≤ ∆ϕ(t) ≤ π

2 we look at the maximum value
∆ϕ(t) can reach and solve for ∆T accordingly. Equation (8)
shows the maximum ∆ϕ is achieved when m(t) = 1, so

2π
hRs

2

∫ t

t−∆T

1 dτ ≤ π

2
=⇒ ∆T ≤ 1

2hRs
. (11)
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Fig. 7. Illustration of the output y(t) of a quadricorrelator with ∆T = 1 µs.
(a) shows that a positive area under m(t) results in y(t) > 0. (b) shows that
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Fig. 8. Spectral analysis of passband GFSK signal before and after down
mixing, before the image rejection filter.

When two unequal bits are transmitted, it takes approxi-
mately ∆T

2 for the area under the new bit to make up for the
area of opposite sign of the old bit due to the close symmetry
around the zero crossings of m(t) (see Fig. 7b). This means
the latency of this part of the demodulator is ∆T

2 . It must be
noted this is not exact; there is slight asymmetry around the
zero crossing of m(t) caused by the history of the preceding
symbol. However, for a BT product of 0.5, this deviation is
less than 3 ns, which is insignificant compared to the symbol
time of 1 µs.

Another source of delay is due to the image rejection filter.
In Fig. 8 we see the cutoff frequency of the filter must be at fc
to reject the unwanted image. Notice no meaningful pass- and
stopband frequencies can be set because the unwanted image
is already interfering with the baseband image. The LPF is
created using the Matlab function designfilt, specifying
filter order N and normalised cutoff frequency fc

fs/2
.

The total latency of this demodulator therefore is ∆T+N/fs
2 .

The effects of N and ∆T on the BER are independently
simulated.

3) Matched Filter Demodulator: The last demodulator is
shown in Fig. 9. Here, s(t) is duplicated and passed through

Fig. 9. Simulink model of the matched filter GFSK demodulator.

two different filters, approximating matched filters; one filter
has a maximum output when 0 is transmitted and the other one
when a 1 is transmitted. Next, envelope detection is applied
and the outputs are compared to decide if a 0 or 1 was sent.

The filters used to discriminate the frequencies are bandpass
filters centered at fc±∆f , where ∆f = hRs

2 is the frequency
deviation of modulation. The width of the passband is set to
1 MHz. The result is two signals, roughly centered at fc±∆f .

After this, we use a square-law AM demodulator as an
envelope detector. Squaring the signals results in two terms:
the desired envelope, and an unwanted copy, centered at
2(fc ±∆f) [10]. Hence, the squaring blocks are followed by
LPFs with cutoff frequencies fc±∆f and using a rectangular
window for a sharper transition. The order of this filter shall be
kept at 14, since results in Appendix B show the performance
gets worse with both a higher order or a lower order.

The only parameter of the demodulator therefore is band-
pass filter order N , resulting in a latency of N+14

2fs
.

III. SIMULATION RESULTS

A plot of BER against Eb/N0 plot is made for each
demodulator architecture (see Appendix B), from which values
for ∆Eb are found and FoM is calculated. The resulting
summary is given in Table I. The demodulator with the highest
FoM is the quadricorrelator with a delay block of 1 µs and
filter order N = 20, producing a latency of 1 µs, and requires
2.2 dB more Eb/N0 than the reference demodulator at a BER
of 0.1%.

The fastest demodulator is the zero crossing detector with
a second order filter, and the best demodulator regarding BER
vs Eb/N0 performance is the matched filter kind with filters of
order 80. We are, however, only interested in the demodulator
with the highest FoM.

It must be noted that only a limited number of parameter
combinations were simulated due to time constraints, making
the optimal solution unlikely to be the one presented here.
However, the square in (4) was mostly chosen arbitrarily in
the first place anyway, so this is of no serious concern.

IV. FPGA IMPLEMENTATION

This section covers the generation of the GFSK wave,
followed by a realistic (quantised) Simulink model of the
demodulator. Finally, VHDL suggestions are given for final
implementation. The list of components used is given in
Table II.



TABLE I
COMPARISON BETWEEN DEMODULATION ARCHITECTURES

Architecture Parameter(s) ∆Eb [dB] L [µs] FoM

Z.C. detector (N) 2 11.2 0.55 0.295
10 5.6 0.75 0.317
60 4.8 2.00 0.052

Quadricorr. (∆T,N) 0.1 50 5.8 1.30 0.102
0.5 50 4.2 1.50 0.106
1 50 1.6 1.75 0.204
1 20 2.2 1.00 0.455
1 10 4.0 0.75 0.444

M.F. N 30 3.6 1.10 0.230
50 2.4 1.60 0.163
80 1.4 2.35 0.129

TABLE II
LIST OF COMPONENTS

Device Manufacturer Model Serial number
Signal gen Keysight 33622A MY59003394
FPGA Terasic SoCKit rev. C
ADC Terasic THBD-ADA
Scope Keysight DSOX2002A MY56273381

A. Signal Generation

In order to test the demodulator once implemented on
FPGA, a GFSK wave must be generated with a known bit
sequence, starting with a flag that the FPGA can easily
recognise.

The signal generator can loop an arbitrary signal (from a
file) of maximum length 4 × 106 samples and with maximum
sample frequency 250 MHz [11]. The amplitude is restricted
to 1.5 Vpp because this is the input range of the analog
to digital converter (ADC). Creating a GFSK wave with
the aforementioned properties results in the signal shown in
Fig. 10. The amplitude seems off by a factor 2, but this is
because of the high Z of the oscilloscope; the signal generator
accounts for the 50Ω input impedance of the ADC. The exact
Matlab script to generate the .arb file is given in Appendix C.

Although not done in this research, if BER performance
were to be simulated, care must be taken to ensure the AWGN
is band-limited to fs/2. The simplest way to ensure this in

Fig. 10. Oscilloscope aquisition of output from GFSK wave generation.

Matlab is to add the white Gaussian noise, and then filter the
signal with a very high order LPF. Alternatively, an analog
filter could also be used.

B. Optimisation for FPGA

A modification that simplifies implementation on FPGA is
the reduction of the local oscillator (LO) to a 1 bit resolution
instead of a full-scale sine wave. This way, a lookup table can
be omitted, at the cost of harmonic distortion. The Fourier
series of a 1 bit sine wave of frequency fc is

sinsq(t) =
4

π

∑
n odd
n≥1

1

n
sin(n · 2πfct). (12)

Using (12) and (1), the output of the mixer can be expressed
as

s(t) sinsq(t) =
∑
n odd
n≥1

4A

πn
· 1
2

[
sin
(
(n+ 1) · 2πfct+ ϕ(t)

)
+ sin

(
(n− 1) · 2πfct− ϕ(t)

)]
. (13)

For n = 1, this is same as the output of a mixer using a full
scale sine wave, scaled by a factor 4/π. The rest of the terms
are distortions, centered at frequencies 2fc, 4fc, 6fc, etc. This
is, however, insignificant, because the terms in the sum decay
by themselves, as well as get filtered by the mixer’s image
rejection LPF with cutoff frequency fc.

The second simplification regards the LPFs. The Cyclone V
on this FPGA board has a dedicated DSP chip which can only
be configured to have at most two parallel 18 bit multipliers
that run at a maximum frequency of 200 MHz [12]. Using a
filter order 20 and a sample frequency of 20 MHz, neither a
parallel nor a serial FIR filter can be implemented; a parallel
implementation would require 2 · 21 = 40 multipliers and
a serial implementation would require a speed of 21 · 20 =
420MHz. Potential solutions include a reduction in sample
frequency, as well as using a lower order filter.

However, a different approach is used in this case: all filter
coefficients are changed to 1. The result is a scaled moving
average filter, which is also a type of LPF. Fig. 12 shows the
frequency responses of the original filter compared to the new
moving average filter.

C. Implementation Suggestions

To simulate the performance of the realistic demodulator,
these two modifications are made in Simulink and the receiv-
ing input is quantised. The realistic model of the realisable
demodulator is shown in Fig. 11.

The ADC board used with the FPGA has a 14 bit offset
binary output [13], so the model’s modulator output is mapped
and rounded from 0 to 214 − 1 in the ADC block. For
the multiplication and filtering to work, the DC offset is
then removed by temporarily turning the bus into 15 bits,
subtracting the constant

⌊
214−1

2

⌋
, and then truncation by 1

bit, while keeping the sign bit.



Fig. 11. Simulink model of the realistic quadricorrelator GFSK demodulator, simplified for implementation on FPGA.
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Fig. 12. Frequency response of a 20th order moving average filter compared
to the order 20 filter designed by to reject the mixing image.

The 1 MHz LOs can be made by taking the existing 20 MHz
clock used for the ADC, and connecting it to a counter that
ranges from 0 to 19. From this, the − sinsq(2πfct) is created
by creating a signal that becomes 1 when the counter hits
0, and becomes 0 when the counter hits 10. Similarly, the
cossq(2πfct) is created by creating a signal that becomes 1
when the counter hits 5, and becomes 0 when the counter hits
15.

Mixing the signal with the 1 bit LO is efficiently done by
applying the appropriate bit operation rather than using a full
multiplier. Signed data is stored in two’s complement by the
IEEE.numeric_std library, so multiplication by −1, is
done by inverting every bit and adding one. The operation of
inverting the signal in case LO is 0 and leaving it unchanged
if LO is 1, is equivalent to a XNOR gate. Next, 1 must be
added to the signal in case LO is 0, and 0 must be added in
case LO is 1. This is achieved by negating the LO and adding
it to the output. The diagram of the multiplier is shown in
Fig. 13.

Next, the LPF is made by placing 20 data flipflops in series
with adders summing the individual stages. The corresponding
block diagram is shown in Fig. 15. The additional bus width
required is ⌈log2(21)⌉ = 5, making the output width of the
filter 19 bits.

Next, the signals are delayed by 20 by putting 20 data
flipflops in series. Multiplication is done with the dedicated
18 by 18 bit multipliers available. The result is 36 bits wide.

Fig. 13. Diagram of a N by 1 bit multiplier.

Subtraction can be achieved by constant multiplication by -1
and an adder. The output after this stage is 37 bits, from which
only the MSB is used, since this is the sign bit. This bit is
considered the output of the demodulator. The full model is
shown in Fig. 11.

At this stage symbol slicing is performed. As can be seen
in Fig. 10, the wave is generated such that the middle of the
pulses fall on multiples of 1 µs since the starting flag. This
starting flag can be turned into a signal by comparing the
ADC output to 5

6 (2
14 − 1). If a data flipflop samples the

output of the demodulator with period 1
Rs

= 1 µs, starting
at the rising edge of the starting flag, then the output of the
demodulator is sampled exactly in the middle of each symbol.
This bit sequence can then be stored in random access memory
(RAM), where also the known bit sequence is stored. A BER
calculation can then be made and displayed using the LCD
screen on the board.

Note it is very important for the clocks of the FPGA and
the signal generator to be synchronised. This can be achieved
by either providing the signal generator with a square wave
generated from the FPGA by using the DAC, or by providing
the FPGA with the clock from the signal generator using the
second ADC channel.

D. Realistic Simulation

The transient analysis shown in Fig. 14 gives an overall idea
of the stages of demodulation of the quadricorrelator. From
it, we see the ripple from the intermediate signal due to the
square local oscillator. In Fig. 16, the realistic demodulator
does not perform much worse than the original model it was



Fig. 14. Simulation result of the Simulink model of the realistic quadricorrelator GFSK demodulator, simplified for implementation on FPGA.

Fig. 15. Scaled moving average filter of order 20.

derived from. The latency remains 1 µs and Eb/N0 = 3.6 dB,
resulting in FoM = 0.28. This worsening is partially caused by
quantisation (modeled by rounding of integers), the introduced
harmonics from the square wave, as well as the simplified
LPFs.

Although the FoM is lower than the original 0.44, this is
still high in comparison to most demodulators listed in Table I.

V. CONCLUSION

This research presented three non-coherent demodulation
architectures for GFSK with parameters in accordance with
the BLE 1M PHY standard. The considered architectures
were a zero crossing detector, a quadricorrelator and matched
filters with envelope detection. Each demodulator was anal-
ysed, based on which multiple designs were made for every
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Fig. 16. BER against Eb/N0 for the realistic Simulink model of the
quadricorrelator, compared to the model from which it descended and the
reference FSK demodulator.

demodulator and the models were simulated for varying levels
of AWGN.

With the primary objective of designing a low-latency
demodulator, which still has a good AWGN resilience, a FoM
was defined for comparison. Results show the quadricorrelator
with a delay ∆T = 1 µs and filter order N = 20 presents the
highest FoM.

Next, a test setup, as well as specific FPGA implementation
ideas were suggested, based on which a realistic version of the
aforementioned best performing demodulator was made. Re-
alistic implementation did reduce the FoM, but still remained
amongst the best ones, suggesting it is a suitable demodulator.

However, further research should be done into the design
of more appropriate filters, namely by considering IIR filters,
or by constructing FIR filters differently. This research also
only considered AWGN as a disturbance, but the demodulators
might react differently to different disturbances, such as fre-
quency drift, DC offset, jitter, etc. Additionally, changing the



sample frequency might also have effects not observed in this
paper. This research also only investigated the architectures for
GFSK parameters in accordance to the BLE 1M PHY stan-
dard. FoM results may vastly differ for GFSK with different
parameters. Finally, only a few versions of each demodulator
were simulated, meaning there might still be (combinations
of) parameters that produce better results than seen here.
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APPENDIX A
SIMULINK MODELS

For every model it is required to run the following code to
load the necessary variables into workspace:

Rs = 1e6; % symbol rate (= bit rate)
BT = 0.5; % bandwidth-time product
Tw = 3; % FIR filter length/symbol length
h = 0.5; % modulation index
fc = 1e6; % carrier frequency
sps = 1000; % samples per symbol
fs = 20e6; % sample frequency of demodulators

A. Modulator

The exact parameters of the blocks used for modulation are
listed below:

• Bernoulli Binary Generator
– Pr(0): 0.5;
– Initial seed: 0
– Sample time: 1/Rs
– Samples per frame: 1
– Output data type: boolean

• CPM Modulator Baseband
– M-ary number: 2
– Input type: Bit
– Symbol set ordering: Binary
– Modulation index: h
– Frequency pulse shape: Gaussian
– BT product: BT
– Pulse length: Tw
– Symbol prehistory: 1
– Phase offset: 0;
– Samples per symbol: sps
– Rate options: Allow multirate processing
– Output data type: double

• cos and sin
– Sine type: time based
– Time (t): Use simulation time
– Amplitude: 1
– Bias: 0
– Frequency (rad/sec): 2*pi*fc
– Phase: 0 for cos, pi/2 for sin
– Sample time: 1/(Rs*sps)

• Zero-Order Hold
– Sample time: 1/fs

• AWGN Channel
– Initial seed: 67
– Mode: Signal to noise ratio (Eb/No)
– Eb/No (dB): EbN0
– Number of bits per symbol: 1
– Input signal power: 1/2
– Symbol period: 1/Rs

B. Zero-Crossing Demodulator

The following code needs to be run first, where the value
for N is not strict.

Cmid = fs/(2*fc);
N = 10;
filtZC = designfilt('lowpassfir', ...

'FilterOrder',N, ...
'CutoffFrequency',2e6/(fs/2));

The blocks in the Simulink model have the following param-
eters:

• Discrete FIR Filter
– Coefficients: filtZC.Coefficients

• Pulse Generator:
– Pulse type: Sample based
– Time: Use simulation time
– Amplitude: 1
– Period: 2
– Pulse width: 1
– Phase delay: 0
– Sample time: 1/fs

• Counter
– Count direction: Up
– Count even: Either edge
– Counter size: User defined
– Maximum count: Cmid*2
– Initial count: 0
– Output: Count and Hit
– Hit values: Cmid + 1
– Reset input: Check
– Count data type: double
– Hit data type: Logical

C. Quadricorrelator

The following code needs to be run first, where the values
for DT and N are not strict.

DT = 2;
N = 50;
filtDM = designfilt('lowpassfir', ...

'FilterOrder',N, ...
'CutoffFrequency',1e6/(fs/2));

The blocks in the Simulink model have the following param-
eters:

• Sine Wave
– Sine type: time based
– Time (t): Use simulation time
– Amplitude: 1
– Bias: 0
– Frequency (rad/sec): 2*pi*fc
– Phase: pi/2
– Sample time: 1/fs

• Discrete FIR Filter
– Filter structure: Direct form,
– Coefficients: filtDM.Coefficients

• Delay
– Delay length: DT



D. Matched Filter

The following code needs to be run first, where the values
for DT and N are not strict.

N1 = 50;
N2 = 14;
hMF1 = designfilt('bandpassfir', ...

'FilterOrder',N1, ...
'CutoffFrequency1',(0.75-0.5)*1e6/(fs/2), ...
'CutoffFrequency2',(0.75+0.5)*1e6/(fs/2));

hMF2 = designfilt('bandpassfir', ...
'FilterOrder',N1, ...
'CutoffFrequency1',(1.25-0.5)*1e6/(fs/2), ...
'CutoffFrequency2',(1.25+0.5)*1e6/(fs/2));

hLP1 = designfilt('lowpassfir', ...
'FilterOrder',N2, ...
'CutoffFrequency',0.75e6/(fs/2), ...
'Window','rectwin');

hLP2 = designfilt('lowpassfir', ...
'FilterOrder',N2, ...
'CutoffFrequency',1.25e6/(fs/2), ...
'Window','rectwin');

The blocks in the Simulink model have the following param-
eters:

• Discrete FIR Filter

– Coefficients: <X>.Coefficients, where <X> is
hMF1 for the low bandpass filter, hMF2 for the high
bandpass, hLP1 for the low lowpass, and hLP1 for
the high lowpass.

E. Symbol slicing and BER computation

First, the transmitted bits are oversampled with fs and
delayed by the exact amount of samples that correspond to
the demodulator’s latency. Next, we need to resample exactly
in the middle of the bits. This is done in Simulink by delaying
the oversampled bitstream such that the middle of a bit falls
exactly on an integer multiple of the sample time 1

Rs
. For

fs = 20MHz and Rs = 1MHz, the middle of a symbol is
after 10 samples, and the entire symbol is 20 samples. So by
adding a delay of

mod(10-<latency in samples>,20), (14)

the bit stream is delayed by the smallest amount such that the
middle of the bits fall exactly on multiples of 1 µs. Then, a
zero order hold block samples the bit stream at these instances
and the signal is given to a BER calculation block.

APPENDIX B
SIMULATED BER PLOTS
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Fig. 17. BER vs Eb/N0 plot of the zero-crossing based demodulator for
varying filter order N .
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Fig. 18. BER vs Eb/N0 plot of the quadricorrelator with constant N = 50
demodulator for varying ∆T .
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Fig. 19. BER vs Eb/N0 plot of the quadricorrelator with constant ∆T = 1 µs
for varying filter order N .
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Fig. 20. BER vs Eb/N0 plot of the matched filter demodulator with constant
BPF order N1 = 80 and varying LPF order N2.
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Fig. 21. BER vs Eb/N0 plot of the matched filter demodulator with constant
LPF order N2 = 14 and varying BPF order N1.

APPENDIX C
WAVEFORM GENERATION

The follwing code was used to generate the ARB file that
was manually transferred to storage of the wave generator
through USB.

% %% generate GFSK for KEYSIGHT 33600A
% set params
fs = 250e6; % max Sa/s for this device
length = 4e6; % max Sa for this device
Rs = 1e6; % symbol rate (= bit rate)
BT = 0.5; % bandwidth-time product
Tw = 3; % FIR filter length
fc = 1e6; % Carrier frequecy
Df = 250e3; % frequency deviation

% therefore
sps = fs/Rs; % samples per symbol
Nsyms = length/sps - Tw; % -Tw due to filtering

% generate bits
rng(0)
bits = (randi(2,[Nsys,1]) - 1)*2-1;
msg = repelem(bits,sps);

% GFSK
msg_filtered = conv(gaussdesign(BT,Tw,sps),msg);
y = fmmod(msg_filtered,fc,fs,2*Df);

% add beginning mark
y(1:50) = 1.5;
y(51:100) = -1.5;

% remove bleed from filters abruptly

y(101:sps*Tw/2) = 0;
y(end - sps*Tw/2:end) = 0;

% normalise
y = y/1.5;

% make ARB file
header = "File Format:1.10\n" + ...

"Channel Count:1\n" + ...
"Sample Rate:250E6\n" + ...
"High Level:0.75\n" + ...
"Low Level:-0.75\n" + ...
"Data Type:'short'\n" + ...
"Data:\n";

dataspec = "%d\n";

fileID = fopen("GFSK.arb","w");
fprintf(fileID,header);
fprintf(fileID,dataspec,round(32767*y));
fclose(fileID);

%%% remove last \n manually using text editor,
%%% else insuficient memory prompt!!!
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