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Abstract

As part of their services, Wiirth Phoenix has been helping its customers comply with the General Data Pro-
tection Regulations. However, building up compliance requires a considerable amount of investment in terms
of both time and money. Given that the regulation does not apply to anonymous data, instead of setting up
a compliant data management system of high complexity, companies might opt for data anonymization, thus
freeing themselves of any obligatory compliance measures. This is why anonymization has become of interest
to Wiirth Phoenix as a potential pathway for extending their GDPR-related service portfolio. This thesis pro-
poses a flexible architecture for an anonymization module based on the k-anonymity model. The flexibility of
the architecture makes it possible to easily replace both the algorithm and the database technology so that
the changing requirements of the company and its customers can be promptly addressed. A proof-of-concept
implementation serves as a demonstration of how this architecture works in practice. In addition to the theo-
retical discussion, it highlights practical challenges, limitations and trade-offs to be taken into account in future
implementations.
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Chapter 1

Introduction

As a software service company, Wiirth Phoenix offers a wide range of services to its customers, among others in
the field of system management and cybersecurity. The software product of the company, NetEye, is a holistic
system management tool that makes the centralised monitoring and controlling of the company IT infrastructure
possible.

With the coming into force of the GDPR, i.e. General Data Protection Regulation of the European Union, in
2016, all companies managing personal data needed to put serious effort into strengthening their data protection
and privacy measures. Thanks to the system monitoring, log management and alerting capabilities already
included in NetEye, Wiirth Phoenix could help its customers to make their operations GDPR-compliant. Besides
offering already available services, the company has also been interested in extending NetEye with additional
functionality that facilitate other aspects of compliance with the regulation. For example, the R&D team
leveraged the blockchain technology in order to introduce strong guarantees for log integrity.

Anonymization is one of the fields that has gained traction due to the GDPR. The regulation does not apply
to anonymized data. This means that once a dataset has been rendered anonymous, the owner of the data is
not obliged to build up the complex compliance measures any more. Given that the regulation has meant a
heavy burden for the majority of the companies, anonymization, as a potential ”escape route”, has raised their
curiosity. And this is also how Wiirth Phoenix got interested in the integration of anonymization into their
service portfolio.

This thesis project aims to come up with an anonymization solution integrated into NetEye. When it
comes to use cases, it is log anonymization that currently seems the most relevant for Wiirth Phoenix and
its customers. Since NetEye uses Elasticsearch for log management, initially the idea was to focus entirely on
anonymization inside Elasticsearch. However, taking into account that the company might decide to pivot to
another log management tool, which is a realistic scenario with the rapidly evolving technological landscape
of today, it seemed more reasonable to consider a higher abstraction level. Therefore, this thesis proposes an
anonymization module with a flexible architecture that makes the replacement of both the data source and the
anonymization algorithm easy.

When considering the various use cases where rendering data anonymous makes sense, an anonymization
taxonomy has started to take shape. This helps to categorise the use cases, and also facilitates the discussion
about which anonymization model is relevant in which scenario. Using the proposed taxonomy, the sort of log
anonymization that Wiirth Phoenix is most interested in belongs to static, one-time, server-side anonymization.
As this can be addressed with k-anonymity, the proposal for the anonymization module focuses entirely on this
model.

The thesis project goes on to provide a proof-of-concept implementation of the proposed anonymization
module. The goal of this proof of concept is twofold. On the one hand, it aims to demonstrate the feasibility
of the proposed architecture, and prove that the abstractions indeed work and the components are easily
replaceable. On the other hand, it helps to find and pinpoint any practical weaknesses, challenges or limitations
that have not been take into account in the theoretical proposal. Besides these two points, the proof-of-concept
implementation can also help the company initiate an internal discussion about anonymization. Developers and
other stakeholders can get a real feel of how data anonymization works, they can test their assumptions and
eventually decide which path to follow when attempting to integrate anonymization into NetEye.

The proof-of-concept implementation comes with two database connectors and two algorithms. One of
the databases that the algorithms can interact with is Elasticsearch. This one is of the greatest interest for
Wiirth Phoenix, as they offer their log management services using this technology. The other database for
which a connector is implemented in the proof of concept is MySQL. Considering that the most popular data
management systems are still SQL-based[3], it is a reasonable choice to include in the proof of concept. When it
comes to the algorithms, an implementation of Datafly and Mondrian are provided. Datafly is one of the earliest
k-anonymization algorithms. Mondrian was proposed some years later. It is a greedy algorithm, still frequently
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referenced in scientific papers. Furthermore, the proof of concept is preconfigured for the anonymization of two
datasets. One of them is the well-known UCI adults dataset, commonly used to demonstrate the functioning
and performance of anonymization algorithms. To showcase the anonymization of data types other than the
usual numerical, categorical and hierarchical ones, the proof of concept comes with a configuration file for the
artificially generated web logs shipped with the Kibana tool. Even though semantically this anonymization does
not make sense, it is sufficient for demonstration purposes.

The chapters of the thesis go through the above mentioned topics in detail and are structured as follows:
Chapter 2 introduces the context of the work in general. It briefly presents the history of Wiirth Phoenix
and its main activities. Then, NetEye, the system management product of the company, is presented, along
with a short introduction into the Elasticsearch-Logstash-Kibana Stack which constitutes the log management
component of NetEye. The GDPR and anonymization is presented next, followed by a section on k-anonymity
with the two algorithms used in the proof-of-concept implementation.

Chapter 3 lays out the main motivation of the work, introducing an anonymization taxonomy, relevant use
cases, and state of the art anonymization solutions. It then goes on to narrow down the scope of the problem
and clarifies the exact problem to address.

Chapter 4 is dedicated to the proposal of a solution for the previously defined problem. It presents the
flexible architecture of the anonymization module, along with the details of the two main components.

Chapter 5 describes the details of the proof-of-concept implementation. The sections elaborate on the
implementation of the Elasticsearch and MySQL backends, as well as the Datafly and Mondrian algorithms.
They highlight what were the main challenges that had emerged along the way and how they had been addressed.
The datasets and the corresponding configuration files are also presented in detail. Finally, the anonymization
of new data types is introduced.

Chapter 6 summarises the most important takeaways from the implementation of the proof of concept on
the one hand, and from the generation of and working with the anonymous datasets on the other hand.

Chapter 7 talks about the limitations of the thesis, and Chapter 8 goes on to propose some directions for
further developing the presented solution. Finally, Chapter 9 concludes the work with a brief summary of what
has been achieved in the thesis project.



Chapter 2

Context

2.1 The company

The Wiirth company was established, with a primary focus on selling screws, in 1945 by Adolf Wiirth[45]. It
was his son, Reinhold Wiirth, who, taking over the company, turned it into a global trading business, and
eventually an international group. The company has its origins in the sale and distribution of assembly and
fastening material, and, as a world market leader by today, ”the Wiirth Line companies continue to serve this
segment [...]. In addition, the Wiirth Group comprises the Allied Companies trading under their own name.
Their business activities are either closely related to the core business or diversified and are developed further
and expanded successfully” [46].

An exquisite example of the latter is Wiirth Phoenix[47], founded in 2000 as part of the Wiirth Group.
Initially, the company provided services solely for the Wiirth Group, continuously expanding its activities and
also starting to develop their own, internal solutions. Their products and services were eventually made available
to the external market in 2007. The customers of Wiirth Phoenix are primarily located in Italy and Germany,
but the company provides services to enterprises in various European countries, and also internationally to
other members of the Wiirth Group[33].

Wiirth Phoenix is a software service company, today offering a wide range of solutions in the field of Business
Intelligence (BI), Enterprise Resource Planning (ERP), Customer Relationship Management (CRM), System
Management and Cybersecurity. The company boasts of a series of strategic partnerships with companies like
Microsoft, Atlassian or Elasticsearch. There is a constant collaboration with these partners to provide services
of the highest quality and to cater for all demands of the Wiirth Phoenix customers.

2.2 NetEye

Their system management solution, NetEye[44], was originally developed for the Wiirth Group. The entire IT
infrastructure of the organization can be mapped into, monitored and controlled through the product. Once the
customer onboarding is done and NetEye has been deployed successfully, Wiirth Phoenix, on demand, provides
further consulting and assistance to maintain the current setup or address any newly emerging requirements.

NetEye builds upon various open source tools. Among them is Icinga[21], a powerful infrastructure mon-
itoring tool that provides NetEye’s foundation and basic frame. ”Icinga’s modular architecture allows on the
one hand to reuse all of its modules within NetEye, on the other hand it enables the NetEye team to develop
new modules and integrate them seamlessly within the existing infrastructure”[16].

NetEye incorporates five major categories of service. The first one, constituting the core functionality of the
product, is monitoring. Building upon the capabilities of Icinga, monitoring can be activated for entire systems,
specific networks or desired services. The monitored objects provide an overview of, and when required, more
detailed insights into the health of the IT infrastructure of the organization through dashboards and performance
graphs. The option to create detection rules helps to spot anomalies and act quickly on the malfunctioning of
some system components.

The second major category is IT operation analytics (ITOA). Features like complex event processing fa-
cilitate the investigation of correlations and cause-effect relationships. ITOA ”complements the monitoring
functionalities by collecting telemetry data from network traffic and from systems and applications”[16].

Thirdly, NetEye also comes with application performance monitoring (APM), leveraging the respective
module of Elastic[6]. As the name suggests, this functionality zooms in on the performance and overall health
of applications. By quickly identifying anomalies and spotting abnormal behavior, APM helps the organization
react and address the root cause of the problem, and thus assists in providing a reliable, high-quality experience
for end users.



The fourth pillar of the product offers service management and incident response. The creation and man-
agement of organizational IT assets, remote control over hosts, software-as-a-service solutions and ticketing
systems provide additional assistance in streamlining the management of the IT infrastructure.

Last, but not least, NetEye is shipped with a security event and information management (SIEM) solution,
building upon the open source Elasticsearch-Logstash-Kibana technology stack (ELK Stack). Working with
SIEMs starts with the collection and processing of machine logs. They are first ingested, normalized according
to a schema and enriched with any additional information. At this point, the logs are ready to be queried,
visualized, and analyzed manually or in an automated manner. Through predefined detection rules, STEMs
assist in finding and keeping track of anomalies, threats and vulnerabilities present in the monitored systems.
Sophisticated alerting mechanisms make it possible to react in time and facilitate the investigation of any
suspicious behavior occurring on the machines under supervision.

2.3 The ELK Stack

The ELK Stack[42], comprising Elasticsearch, Kibana and Logstash, is the result of years of evolution. The first
component, that eventually triggered the evolution, is Elasticsearch, a document-based, distributed database.
Document-based, that is it stores unstructured data. Its distributed nature means that multiple instances
of Elasticsearch can be run at the same time on multiple machines. On the one hand, this provides high
performance and scalability when it comes to data ingestion, manipulation and querying. On the other hand,
the database being distributed across multiple instances comes with robustness, reliability and high availability:
even in the case of a subset of the underlying machines breaking down, the ones still alive can seamlessly take
over the workload.

Elasticsearch is built on top of an open source search engine called Lucene. The Lucene library comes with
"powerful indexing and search features, as well as spell checking, hit highlighting and advanced analysis [...]
capabilities”[4]. Communication with Elasticsearch happens through a REST API over HTTP. The ingestion
of new documents, modification or deletion of existing ones, querying and security settings are all carried out
via the web API, transmitting data in JSON format.

Kibana provides an intuitive graphical user interface (GUI) for Elasticsearch. The majority of the function-
alities available through the API is directly accessible through the Kibana GUI. The visual overview helps to
get a holistic understanding of the monitored systems, thus facilitating for example the management of Elastic-
search indices and security roles. In addition, building on the query API of Elasticsearch, Kibana comes with
a powerful toolset for data visualization through charts of all sorts. Charts, representing different views of the
data, can then be added to dashboards. Applying filters to your dashboard will update all of the charts, thus
letting the user carry out a visual drill down into the desired aspect of the data.

Logstash serves as a powerful collector, transformer and forwarder of data. It supports a wide variety of
data sources and formats, from reading files and listening on a port for Syslog messages to directly pulling
documents from Elasticsearch indices. Once the data has arrived, it is pushed through pipelines based on
predefined conditions. Logstash can carry out practically any sort of data transformation. Once the processing
is finished, data is then sent to an output. Elasticsearch is only one potential destination, through Logstash it
is possible to write the result of the transformations to a file or forward it to any web server via the desired
protocol, like UDP, TCP or syslog.

The original ELK Stack was extended with the concept of so-called Beats - and at a loss where to fit the ”B”
into the ELK acronym, the development team decided to refer to the technology stack as the ”Elastic Stack”
from that point on. Beats are light-weight data shippers that are meant to read or listen for incoming data.
Having carried out some basic preprocessing, for instance the parsing of the timestamp in Syslog messages,
Beats can forward the documents to Logstash for further processing or directly send them to Elasticsearch for
ingestion.

Beats allow the additional transformation and enrichment of data before forwarding it. Its real strength,
however, comes not from the option to manually manipulate data, but from prepackaged modules, so-called
integrations. Endpoint security software, firewalls or Windows services generate logs in widely varying, custom
formats. It is not rare that documentation, or at least a detailed one, is not publicly available. Thus, the
manual parsing and normalization of various logs is usually cumbersome and time-consuming. Vendors address
this problem precisely, by writing and publishing their own integrations, which are practically vendor- and
product-specific log parsers.

Beats might be installed on each machine that is meant to be monitored. Activating and managing integra-
tions after the installation requires directly accessing each of these machines around the organization. And this,
from a scalability point of view, is problematic. This issue led up to the latest evolution in the Elastic Stack,
namely the introduction of Elastic Agents and Fleets. Elastic Agents provide an abstraction over Beats which
facilitates their configuration and the workflow in general. Fleets provide central access to all Elastic Agents
installed on the monitored machines of the organization, and make it possible to add or remove integrations
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and modify their configuration directly through Kibana.

The Elastic Stack comes with an immense amount of functionalities. These are spread across different
components of the technology stack. Certain capabilities are even duplicated and can be found in various parts
of the stack.For example, the enrichment of logs is available through Beats and Logstash processors, but the
same functionality can be implemented through an ingest pipeline directly in Elasticsearch. The point of entry
into the stack is again a choice of the operations team. As Figure 2.1 shows, there are multiple ways for logs to
reach Elasticsearch.

Kkibana

Elastic Agent

logstash
e ms elasticsearch
»! Beats L Iogstash—I
0*!, Beats T

Figure 2.1: Various ways for ingesting data into Elasticsearch

They can arrive through a Beat or an Elastic Agent. However, if needed for some specific reason, these two
can forward logs first to Logstash. And a log source can also directly send its output to Elasticsearch. Thus,
the Elastic Stack provides huge flexibility so that organizations can tailor their setup according to their exact
needs and address as many use cases as efficiently as possible.

2.4 GDPR

In Europe, privacy was first discussed and declared as a fundamental human right during the European Con-
vention on Human Rights in 1950. It took almost a half century for the next formal milestone to arrive. With
the rapid advancements in technology, the concept of privacy had to go through profound revisions. As per-
sonal data processing was increasing continuously and seemed to be getting out of hand, the European Union
answered with the Data Protection Directive of 1995, also known as Directive 95/46/EC[14]. Restating that
privacy was indeed a fundamental human right, and emphasizing the harmonization of the internal market as
a main motivation, the directive set out a series of guidelines. Based on these the member states were then
expected to enact national laws restricting the processing of personal data and guaranteeing the right to privacy
to all of their citizens.

By 2012, it became apparent that the directive had not been able to sufficiently address its original aims.
On the one hand, nobody anticipated the pace of technological development. Personal computers, the internet,
finally followed by smartphones have become accessible for anyone around the European Union, and, impor-
tantly, at an affordable price. In 15 years, the majority of the European population stepped into cyberspace in
one way or another. Browsing the internet, using digital services, shopping online, posting on social media sites
and chatting through various applications have become everyday activities. Accordingly, the magnitude of the
data being generated per second exploded. And a significant portion of this data was personal.

On the other hand, the harmonization of the internal market was not particularly successful either. Given
that the directive was only meant to show a direction that the national legislation should then have interpreted
and implemented, member states ended up with rather differing privacy laws. Keeping track of and adhering to
these turned out to be at times a direct obstacle, but at least a heavy burden for companies with the intention
of providing cross-border digital services.

Thus, the European Commission started working on a draft in 2012, keeping in mind the trend of rapid
technological change and the excessive data processing, neither of which showed any signs of slowing down in the
years to come. Legal certainty across the Union, as a means of facilitating cross-border services and cooperation,
also became of vital importance. This led to the pivoting from the directive format to the definition of a
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regulation, which was finally approved and published in 2016 under the, by now well-known, infamous name:
the General Data Protection Regulation[37], or the GDPR in short.

The primary focus is on data protection and privacy. Besides, the regulation also emphasizes that companies
must provide more transparency about their data management practices towards their customers. Customers
must be made aware of what sort of data is being collected about them, how it is collected, which parties
have access to it and are involved in the processing, what the customers’ exact rights are and how to exercise
them. And all this must be communicated in a clear, simple and comprehensible manner, avoiding legal jargon
or endless complex sentences that usually hinder comprehension and make people consent to terms they do
not even understand. In general, access to, information about and deletion of one’s own personal data must
be available on a short notice and without excessive administrative steps. Users must have the opportunity
to reject privacy policies. Furthermore, short of legitimate interest service providers cannot track many user
activities before the users give explicit permission by opting in such tracking on a consent form.

Companies were granted two years of preparation time, thus the GDPR only became applicable in 2018,
at this point repealing the directive of 1995. The regulation is rather extensive. It sets out complex, but
at the same time abstract requirements that allow plenty of room for interpretation. The rationale behind
this is to remain technology-agnostic so that the regulation remains applicable even as the technical context
keeps changing. All in all, however, this extensiveness, complexity and abstraction left quite some uncertainty
around how to approach compliance. The two-year preparation period was indeed necessary for companies to
experiment with and eventually clarify what constitutes compliance in practice.

2.4.1 Terminology

The regulation comes with a list of definitions clarifying the terminology used throughout the document. For
the upcoming discussions of this work the following four concepts are the most relevant and are worth being
elaborated on: personal data, processing, data processor and data controller.

According to the GDPR, ”‘personal data’ means any information relating to an identified or identifiable
natural person (‘data subject’)”. As alluded to by the bracket at the end, another piece of terminology is
resolved here right away: ”"data subject” refers to an identified or identifiable natural person. The paragraph
then goes on to define what makes a natural person identified or identifiable: it is someone ”who can be
identified, directly or indirectly, in particular by reference to an identifier such as a name, an identification
number, location data, an online identifier or to one or more factors specific to the physical, physiological,
genetic, mental, economic, cultural or social identity of that natural person”. In short, a piece of information
must be regarded as personal data once the individual, whom the data describes, can be identified through
some combination of the information available at the given time and place.

Processing is defined as any sort of manual or automated operation carried out on personal data, such
as 7collection, [...] structuring, storage, adaptation or alteration, retrieval, consultation, use, disclosure by
transmission, dissemination or otherwise making available, [...] erasure or destruction”. That is, it concerns,
not surprisingly, the entire data lifecycle from ingestion to deletion. The GDPR also makes an important
distinction between two types of entities that have access to personal data. A ”‘controller’ means the natural
or legal person, [...] which, alone or jointly with others, determines the purposes and means of the processing
of personal data; [...]”. Once the exact purposes and the means are clarified, it is the ”processor”, who, as the
name suggests, processes, i.e. works with and manipulates the data on behalf of the controller. This distinction
is relevant, there are significant differences in the obligations concerning one and the other.

Outsourcing to third-party digital service providers has become a common practice. For instance, website
operators can receive advanced insights into the behavior of their users through third-party analytics tools. Or,
webshops can share the purchase history of their customers with external recommendation service providers in
the hope of thus improving their advertisement campaigns. The controllers are the companies outsourcing, while
the processors are third-party service providers. The GDPR also explicitly addresses working with and handing
over the personal data of European citizens to entities operating in non-EU countries. Even in such cases, as
stated by Recital 101, ”the level of protection of natural persons ensured in the Union by this Regulation should
not be undermined”. Chapter V explicitly clarifies what measures data controllers must make to ensure that
processors in third countries or international organizations provide the same guarantees as set out and required
by the GDPR and that European citizens can exercise their rights and enjoy the same level of data protection.

2.4.2 The “way out”

Heeding the claim of the frequently recited ”data is the new gold”, companies, regardless of their size, have been
trying to collect and analyze as much of their customers’ data as possible. However, simply the registration of
information about employees is already considered personal data processing. Accordingly, the GDPR, applies
to virtually every organization. And the wide range of obligations turned out to be a huge challenge for many,
from a technical as well as a financial point of view.
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Thus, it is no wonder that, with the promise of freeing data controllers from GDPR compliance, Recital
26 of the regulation has drawn plenty of attention. It states that ”data protection should [...] not apply to
anonymous information”. The paragraph defines anonymous information as one ”"which does not relate to an
identified or identifiable natural person” and any “personal data rendered anonymous in such a manner that
the data subject is not or no longer identifiable”.

While the definition of personal data already explains the notion of identifiability, Recital 26 lays some
further ground to help with the interpretation of the concept: ”[tJo determine whether a natural person is
identifiable, account should be taken of all the means reasonably likely to be used, [...], either by the controller
or by another person to identify the natural person directly or indirectly.” Two main points are worth unpacking
in this sentence. Firstly, when evaluating identifiability, it is not only third parties, but also the data controllers
themselves that must be taken into consideration, as they can potentially identify individuals, regardless of
whether it happens intentionally or by happenstance. Secondly, ”all the means reasonably likely” refers to
“all objective factors, such as the costs of and the amount of time required for identification, taking into
consideration the available technology at the time of the processing and technological developments”. Arguably
a rather challenging requirement that introduces yet another layer of abstraction and vagueness.

The text of the regulation goes on to point out the important distinction between anonymization and
pseudonymization. While in the process of anonymization all direct and indirect ways of identifying an individual
are made impossible, the data subject belonging to a pseudonymous record is easily reidentified in one simple
step. In the process of pseudonymization direct identifiers are replaced with another unique identifier. For
instance, the ID number, name and birth date are removed from every record, and a new, seemingly random
set of characters, derived from these three values, is added as a new attribute. The mapping between the
original values and the newly generated identifier is only known to the data controller. The regulation regards
pseudonymization as a means of privacy protection, since people with access to and working on pseudonymous
data are not able to identify the underlying individuals directly. Still, the data controller or anyone managing
to get access to the ”"pseudonym-to-direct identifiers” mapping is capable of deanonymizing the dataset and
accessing all the information about the data subjects. For this reason the GDPR does not consider the output
of pseudonymization as anonymous data, and accordingly, the regulation applies to any pseudonymous dataset.

As quickly as anonymization, presented to be a means to freedom from GDPR compliance, might raise one’s
hopes, reading Recital 26 from beginning to end makes it clear that anonymization is not a simple and quick
workaround. Similarly to other parts of the regulation, the wording of the definitions above leave quite some
room for interpretation. With the intention of remaining as universal as possible, and with the introduction of
technical concepts into the legal domain, the regulators undoubtedly set a hard challenge for those who must
make sense of the GDPR.

Some practical clarification is provided by the Data Protection Working Party 216 of the European Data
Protection Board. They published an opinion on anonymization techniques in 2014[32] with useful, more
technical guidelines on, among others, what criteria must be met for a dataset to be considered properly
anonymized. Before looking into this, however, let us take a look at what anonymization actually is.

2.5 Anonymization

With the anonymization of personal data the goal is to make sure that the information, output at the end of
the procedure, cannot be linked back to the individual it originally belongs to. This requirement can occur,
for example, in the field of research. Detailed medical databases about patients are invaluable sources of
information, especially with the rapid development of machine learning. However, it is rather hard to find
any individual that would willingly make their medical history public. Therefore, by anonymizing such data,
researchers are able to hide the identity of individuals while retaining the information they are interested in.
Other than a layer of privacy protection, anonymization also serves as a means of risk mitigation against cyber
attacks. If the organization only stores an anonymous version of its clients’ data, even in case of a successful
intrusion and subsequent extracting of databases, personal data is not leaked in any way. This can save the
company the loss of their clients’ trust on the one hand, and immense fines on the other hand, that would be
applicable due to the GDPR.

To make further discussion and the demonstration of concepts easier, let us assume that the Table 2.1
below, containing personal information about four individuals, has been extracted from a medical database.
The columns are called attributes, representing one piece of information about the individuals, while the lines,
called records, show all the data per individual contained in the database.

When it comes to personal data, attributes can be divided into two main categories: personally identifiable
and sensitive information. Personally identifiable information (PII) can be further separated into direct and
indirect. Direct identifiers are attributes based on which an individual can be directly singled out, such as the
number of one’s identity card, or in some cases, your name. In the sample dataset above, for example, Julia
Miller and Sarah Parker can be singled out by their name with complete certainty, thus for them the name
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H 1D name date of birth address weight marital status illness H

1 Julia M 1970.01.22.  12,A St,York 62 never married tuberculosis
2 John S 1968.04.12 24,B St Hull 82 divorced liver cancer
3 Sarah P 1977.12.12.  36,C St,York 70 married - civil lung cancer
4 Peter T 1972.12.02.  48,C St,York 75 married - AF kidney fail.
5 John S 1974.05.01. 60,B St,Hull 90 widowed liver cancer
6
7
8

Carl B 1980.09.03.  72,C St,York 85 married - civil  heart dis.
Frank W 1969.08.30.  80,D St,York 65 never married liver fail.
Julia M 1970.01.22.  12,A St,York 62 never married tuberculosis

Table 2.1: Personal information and illness of individuals from a fictional medical database

attribute is a direct identifier. However, in the case of the two individuals called John S.; the same attribute
is not enough to tell exactly which record belongs to whom. For them, their name, along with their date of
birth, address, weight and marital status are indirect identifiers. Having these pieces of information separately,
it is not possible to single out an individual, but combining more of them can already prove to be sufficient for
identification. Indirect identifiers are also called quasi-identifiers.

Personally identifiable information is thus any information that makes the direct or indirect identification of a
natural person possible. Sensitive data, on the other hand, covers special categories of personal data that ”"merit
specific protection as the context of their processing could create significant risks to the fundamental rights and
freedoms” of individuals. Any personal data is deemed sensitive that “reveal racial or ethnic origin, political
opinions, religious or philosophical beliefs, or trade union membership, and the [...] genetic data, biometric data
for the purpose of uniquely identifying a natural person, data concerning health or data concerning a natural
person’s sex life or sexual orientation”. In Table 2.1 the illness attribute contains sensitive, health-related
information.

The first obvious step in anonymization is the complete removal of any direct identifier. From this point
on, there are essentially three ways to publish an anonymized view of the dataset. First, the data can be
anonymized record-by-record, the output of which is anonymized microdata. It looks similar to the input,
but some attributes are removed and the value of others are modified in a way to prevent the identification
of individuals. For instance, an anonymized view of Table 2.1 above could look like Table 2.2. It is a 2-
anonymous dataset, the definition and details of which is provided in the next subsection. As a second option,
anonymity is also achievable through publishing only an aggregate view of the data. Referring again to Table
2.1, instead of making microdata publicly available, the aggregation statement can be published: ”50% of the
hospital’s patients have cancer”. The best-known model for aggregation-based anonymization is differential
privacy[15]. Thirdly, synthetic data can serve as yet another means of anonymization. In this case, through
mathematical methods the distribution of the attributes is extracted, and using these properties of the original
dataset new, artificial data can be generated. Despite being practically fake, synthetic data shows the same
statistical characteristics as the dataset it is based upon.

H sex  date of birth address weight marital status illness H
* 1969-71 York 62-65 never married  tuberculosis
male 1965-75 B St, Hull  82-90 * liver cancer
* 1970-81 C St, York  70-85 married lung cancer
* 1970-81 C St, York  70-85 married kidney failure
male 1965-75 B St, Hull  82-90 * liver cancer
* 1970-81 C St, York  70-85 married heart disease
* 1969-71 York 62-65  never married liver failure

Table 2.2: A potential anonymized view of Table 2.1

2.5.1 Anonymization techniques

The focus of this work is on the first way of anonymization, i.e. publishing an anonymized view in the form
of microdata. There are multiple anonymization techniques for the transformation and modification of the
attribute values, the five most common ones being data masking, generalization, suppression, perturbation and
data swapping[11].

During data masking, some portion of the attribute value is ”masked”, i.e. some digits or characters are
replaced with other values. For example, instead of publishing a five digit ZIP code, like 41837, the last
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three digits can be masked with a ”*” sign, resulting in the value ”41***”. This still allows the approximate

identification of the geographical region, but with lower precision, thus providing more privacy to the data
subjects. Data masking in the example above is irreversible. However, encrypting the original value and storing
the encryption key results in a reversible data masking. The encryption of the same value yields the same
masked value, thus the relationships among records are retained. If the last three digits of the 41837 ZIP code
is encrypted to “4labc”, each record with this ZIP code will have the exact same encrypted value.

The second technique is generalization where some concrete attribute values are grouped together, thus
constructing ”generalized” information that hides the original one. Let’s assume the dataset includes four
records with the ZIP codes 41837, 48596, 57586 and 59647. The grouping ”40000-60000” encompasses all four
records. For reduced information loss, but also reduced privacy guarantees, two smaller groups can be created
740000-49999” and ”50000-59999”. There is some overlapping between generalization and data masking: the
group of 740000-49999” has the same semantic meaning as the masked value of “4****”  However, generalization
is more expressive and flexible, 740000-60000” cannot be expressed with data masking any more.

Thirdly, anonymization is achievable through the complete removal or ”suppression” of the attribute value.
This technique practically intersects with the extreme forms of data masking and generalization. All information
is lost both when masking out all digits in the ZIP code to obtain the ”*****” yalue, and when creating one
group, like 70-99999” | to encompass the entire range of possible ZIP codes.

Data perturbation is yet another way for protecting the privacy of data subjects. In this case, some small,
random noise is added to the original attribute value that for instance turns the ZIP code of 41837 into 41866.
Thus, the ”contours” of the data subjects are blurred, the perturbed information does not describe the original
individuals any more. The resolution of the data is still maintained, and through well-designed random noise
the statistical properties of the dataset remain the same. Thus, data analysts can keep working on seemingly
raw data with the characteristics of the original one, and possibly extract the same insights that are present in
the original dataset.

The final technique is data swapping. It does not directly manipulate data on an attribute-level, but swaps
the values belonging to two different records. By swapping the ZIP codes 41837 and 78596, the resolution of
the information also in this case remains high. However, from a statistical point of view, this technique might
introduce significant distortions when considering the example of ZIP codes. This must be taken into account
before deciding for this technique. For instance, trajectory anonymization is one domain where data swapping
has already proved to be useful[38].

Depending on the use case and the requirements, any of the options above might come into handy. Regardless
of the choice, however, anonymization ultimately always comes down to finding a trade-off between privacy and
utility. The more the published information is distorted in the hope of hiding the underlying individuals,
the less detailed, and thus the less usable the anonymized view becomes for data analytics. The engineering
task is therefore developing models and algorithms that are capable of reaching the right balance: the privacy
guarantees must be strong while keeping the resolution of the data as high as possible.

2.5.2 Opinion of the Data Protection Working Party

The Data Protection Working Party 216 of the European Data Protection Board points to three ”essential
risks” that must be taken into consideration during any anonymization: singling out, linkability and inference.
Singling out refers to the possibility of pointing to the records of one exact individual in a dataset claimed to be
anonymous. Linkability examines whether it is possible to link anonymized records of an individual or a group
of individuals with other records belonging to the same individual or group of individuals in the same dataset
or potentially in another one. The third risk to consider comes from inference attacks: one should evaluate if it
is possible to derive, “with significant probability”, the value of an attribute from a set of other attributes.

The Working Party states that “a solution against these three risks would be robust against re-identification
performed by the most likely and reasonable means the data controller and any third party may employ”. Thus,
when evaluating whether the level of anonymity of a dataset complies with the notion of anonymity according
to the GDPR, one can primarily rely on these three criteria.

2.6 k-anonymity

One of the models for microdata-level anonymization is k-anonymity, originally proposed by Samarati and
Sweeney([39]. The basic idea is to group records into “buckets” of size k, so that it is not possible to tell the
records inside a group apart from one another. As each group contains k or more elements, someone aiming at
the reidentification of an individual has at best 1/k probability of guessing which record belongs to their target,
even if they can precisely point to the target’s group. Thus, the privacy guarantee can be fine-tuned through
the adjustment of the parameter k: the higher the value, the stronger the protection of privacy, but also the
lower the resolution of the data.
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Building a k-anonymous dataset, similar to any anonymization procedure and as presented already in the
previous section, starts with the categorization of the attributes into direct, (indirect or) quasi-identifiers and
sensitive attributes. All direct identifiers are removed and sensitive attributes are retained in their original
form. The task at this point is to create the groups or the “buckets” from the quasi-identifiers. These groups
are called equivalence classes. From the anonymization techniques presented in the previous section, the k-
anonymity model relies primarily on generalization and partly on suppression.

Table 2.2 represents a k-anonymous, more precisely a 2-anonymous view of the dataset in Table 2.1. Deriving
the sex of the individual from their name and using the other four quasi-identifier attributes, namely the date of
birth, address, weight and marital status, three equivalence classes can be generated: (*; 1969-71; York; 62-65;
never married), (male; 1965-75; B Street, Hull; 82-90; *), (*; 1970-81; C Street, York; 70-85; married). The
“*” gymbol means that the value of the attribute is completely suppressed. The first two equivalence classes
cover two, while the last one three records from the original dataset. That is, each "group” contains at least 2
elements which makes the anonymized dataset in Table 2.2 a 2-anonymous one.

While it might seem relatively straightforward to come up with a generalization just by looking at the data
on a small example, translating it into an algorithm or code can prove to be trickier. Various categories of
attributes can be differentiated when aiming at the generalization of data. The most common attribute types
are numerical, categorical, hierarchical and date.

Numerical values, like the age or the salary of an individual, can be generalized rather simply, by placing
them into ranges. In Table 2.1, the one numerical attribute is the weight: the values 70, 75 and 85 are generalized
by replacing them with a range of ”70-85”.

Categorical attributes can be split into two further categories based on whether there is a natural ordering
among the values. The level of education, for instance, comes with a natural ordering: primary school, secondary
school, high school, bachelor’s degree, master’s degree, PhD, etc. Such categorical attributes can be encoded
into numerical values, starting from 1 and incrementing by one for each new value: primary school - 1, secondary
school - 2, high school - 3, etc. The value of the encoding is that from this point on these categorical attributes
can be treated as numerical ones and the generalization again becomes trivial. If a natural ordering does not
exist, as in the case of race, there is no way to generalize the values. The only two options are completely
suppressing or retaining them in their original form during the process of anonymization.

The third type of attribute is called hierarchical. Such attributes are similar to categorical ones without a
natural ordering. The difference is that a hierarchy tree can be defined for generalization. Let’s take geographical
areas as an example. From a specific address with street and house number, it is easy to zoom out and start
reducing the precision of the data. In every step of the generalization the resolution of data is reduced. First,
remove the house number, and publish only the name of the street. Then keep zooming out and share the
residential area only, then the district, the city, the region, the country and finally the continent. It is not
trivial (although in the case of addresses it might be feasible) to create an algorithm that is capable of this
“zooming out” automatically for any arbitrary input it receives. However, it is possible to define a tree, a
so-called generalization hierarchy, that has the original values in its leaf nodes and generalized values in its
internal node. Such a tree is already easy to traverse programmatically, and thus makes the generalization of
this sort of attribute possible. Figure 2.2 presents a generalization hierarchy for the marital status attribute of
the frequently used UCI adult dataset|8].

Never married

Married — civil
spouse

Married

Married —armed
forces spouse

Divorced

Marriage left

Separated

Widowed

Singled

Married — spouse
absent

[VARVARY

Figure 2.2: A generalization hierarchy defined for the marital status attribute of the frequently used UCI adult
dataset

Finally, dates seem to be somewhere between numerical and hierarchical attributes. As long as the date field
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only contains the year and perhaps the month, it is not particularly challenging to manage the generalization
logic. When it is timestamps that must be generalized, with days, hours, minutes and seconds also included,
the solution is less trivial.

2.6.1 Algorithms

Optimal k-anonymization means producing the maximal number of equivalence classes while keeping their size
as close to k as possible. Achieving this was proven to be NP-hard shortly after the proposal of the anonymity
model[30]. At that point the main objective of researchers became to find and construct algorithms that are
capable of approximating optimal k-anonymization as efficiently as possible.

Several algorithms have already been published and the research is still going on[23]. Depending on the
efficiency of the algorithm used and the underlying dataset, the quality of the created equivalence classes might
show great differences. Certain algorithms, for example, support the definition of overlapping equivalence classes
that can reduce the information loss during the anonymization. If the dataset comes with outliers, they force
the definition of equivalence classes that cover huge chunks of the domain. An unsophisticated generalization
approach can produce equivalence classes that contain a number of elements way above k.

DataFly[40] and Mondrian[24] are two early k-anonymization algorithms that are used for demonstration
purposes in this thesis project. The former follows a bottom-up, while the latter a top-down approach for
carrying out the anonymization.

Datafly

The bottom-up approach of DataFly means that on launching the generalization process it creates an equivalence
class for each individual record. The algorithm goes on to then merge these equivalence classes into new ones
with increasing sizes, until all of them contain at least k elements.

Datafly starts with grouping all records together that have identical quasi-identifier attribute values, thus
creating a so-called frequency list. This contains all the unique combinations of quasi-identifier values present in
the dataset, i.e. practically the equivalence classes inherently present in the dataset without any generalization
step. For each equivalence class in the frequency list the number of records covered is also stored.

In each consecutive step, the algorithm checks whether there exists any items in the frequency list with less
than k elements, that is if there are any equivalence classes that still do not fulfill the expected privacy guarantee.
If so, the algorithm finds the attribute with the most distinct values among the items of the frequency list, and
generalizes this attribute in all of the records of the dataset. The algorithm runs as long as there are less than
k elements that do not belong to any equivalence class with a size greater than k. At this point these elements
are simply suppressed, i.e. thrown away, and the algorithm terminates.The current state of the frequency list
is returned, which represents the generated equivalence classes.

The original algorithm proposes some additional parameters through which the generalization process can.
This work focuses on a simplified version, presented as pseudo-code in the paper of Sweeney[41]. Figure 2.3 shows
a visual representation of how the Datafly algorithm generates the equivalence classes. Each circle represents a
data point with two attributes: the first attribute takes values from the x axis and the second one from the y
axis. Accordingly, the algorithm can generalize along either of these two axes.

(0) The data (1) Create a (2) Generalize all (3) Generalize all (4) Generalize all (5) Generalize all
points of the dedicated equivalence equivalence equivalence equivalence
original dataset equivalence class classes along they classes along the x classes along the x  classes along the x
for each data axis axis axis axis
point

~ B - )

® o S e & \: o ° ‘
° 0
o ° o @ r
L] ® ] L) u !0

Figure 2.3: A visual representation of how the Datafly algorithm generates the equivalence classes through
generalization
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Mondrian

Mondrian’s top-down approach refers to the fact that the algorithm starts with one equivalence class encom-
passing the entire dataset, and goes on to split this one equivalence class into multiple smaller ones. It is a
greedy, recursive algorithm.

Its 7 greediness” means that the algorithm uses the heuristic of always picking the ”widest” attribute, assum-
ing that this will result in the most balanced split of the current equivalence class. The width of an attribute
must be defined per attribute type. For numerical attributes it translates to the range covered. For instance,
a generalized value of ”70-80” has a width of 10. The width of the hierarchical attribute can be defined as the
number of leaf nodes belonging to the current generalized value.

The algorithm is recursive: it practically operates similar to a depth-first tree traversal. It takes one
equivalence class and splits it into two: let’s call the first newly output equivalence class ”left” and the second
one "right”. The algorithm goes on to split the “left” equivalence class, again obtaining a new ”left” and ”right”
one. It moves on to do another split on the ”left” one, and so on, until reaching a ”left” equivalence class that
cannot be split further. A split in invalid if the size of at least one of the two output equivalence classes is less
than k. Then, it tries to split the "right” one, drilling down further in the ”tree” through recursive calls until
there are valid splits. Otherwise it moves back up in the ”tree”, that is along the recursive call stack.

Figure 2.4 shows a visual representation of how the Mondrian splits are executed. Similarly to Figure 2.3,
each circle represents a data point with two attributes taking value from the x and the y axes.The algorithm
can split the equivalence classes along either of these two axes.

(4) There are no more

(0) The data points of (1) Place all data (2) Split the (3) Split the left valid splits on the left,
the ori inalfﬂataset points in one equivalence class into  equivalence class into so do a split on the
g equivalence class two two right equivalence
class

e T R

Figure 2.4: A visual representation of how the Mondrian algorithm generates the equivalence classes through
the creation and splitting of partitions

Comparison of the two algorithms

The DataFly algorithm is way more rigid than Mondrian. The generalization in Datafly is synchronized across
all equivalence classes: it forces all equivalence classes to carry out the same generalization step regardless
of their current state and number of elements. DataFly can easily produce equivalence classes with very low
resolution and a size way above k. Mondrian, however, by its ”drill-down” approach introduces way more
flexibility into the generalization procedure. It is capable of producing equivalence classes that approximate an
optimal k-anonymization.

Comparing the steps and outcome of Figure 2.3 and 2.4 gives an intuition of rigidness of Datafly and
the flexibility of Mondrian. Both algorithms “run” on the same set of data points and aim to produce a 2-
anonymous dataset. Mondrian manages to split the eight data points perfectly into four equivalence classes.
However, Datafly produces three bigger equivalence classes that result in a lower resolution outcome with more
information loss.

2.6.2 Weaknesses and updated models

The Data Protection Working Party 216 of the European Data Protection Board also takes k-anonymity under
the scope and points out common mistakes and weaknesses in connection to the anonymity model. While k-
anonymity protects against singling out attacks, it is less robust when observed from the perspective of linkability
and inference. As the Working Party points out, the major problem occurs when all records of one equivalence
class have the same sensitive attribute values. Considering Table 2.1, the two people of the equivalence class
(male; 1965-75; B Street, Hull; 82-90; *) both have liver cancer. Despite the anonymization attempt, if someone
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knows that their target belongs to this specific equivalence class, they can with complete certainty say what the
sensitive attribute value of their target is. The anonymity and the privacy of the individual is broken.

This shortcoming of the k-anonymity was addressed by an updated model, called I-diversity[27]. Other
than hiding individuals in groups of size greater than or equal to k, [-diversity also makes sure that each
equivalence class contains at least [ diverse sensitive attribute values. This prevents the most basic inference
attack, presented above as the major flaw of k-anonymity. However, [-diversity is not without its weaknesses
either. Probabilistic inference attacks are still possible against this model. Let’s assume an [-diverse dataset,
with £ = 20 and | = 5: each equivalence class contains at least 20 records and at least 5 different values for the
sensitive attribute. With, for example, 28 records in the equivalence class, it might happen that one sensitive
attribute value is present 24 times, while each of the other four values occur only once. In this scenario, someone
looking at the data can tell with high probability (namely 24/28) which sensitive attribute value an individual
from this equivalence class possesses.

T-closeness|25] aims to prevent the above mentioned probabilistic inference attack against I-diverse datasets.
It makes sure that not only does each equivalence class have more than k members with more than [ diverse
sensitive attribute values, but that the distribution of the sensitive attribute values also approximates that
of the entire dataset. The parameter ¢ represents a threshold: a t-close dataset guarantees that the distance
between the distribution of the sensitive attribute values in the original dataset and in any of the equivalence
classes remains within the defined threshold.

The Working Party, while acknowledging the merits of the [-diversity and t-closeness, still emphasizes their
concern that a linkability-based attack is possible against these models, given that they are based on the
clustering mechanism of k-anonymity. Once it is clear which equivalence class an individual belongs to, anyone
has approximately 1/k chance of correctly guessing which record belongs to their target, which is far greater
than 1/N, where N is the size of the entire dataset.
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Chapter 3

Motivation

Talking to one of the colleagues about various services that the company offers in the field of security, he
mentioned that Wiirth Phoenix also assists customers with GDPR compliance from a technical point of view.
A webinar of the company presented in 2020, but still available on their website, introduces the requirements
of the regulation and presents how to explicitly address these with the help of the tools offered by NetEye.

Around the same time that my colleagues shared this webinar with me, one of the customers showed interest
in the Elastic Blockchain Proxy of Wiirth Phoenix. It is an extension of the Elastic Stack, developed by the
research and development team of the company. The proxy places each incoming log in a blockchain so that
there is no way to manipulate the ingested information later on. This provides strong guarantees for data
integrity during upcoming audits. The main purpose of the Elastic Blockchain Proxy was again facilitating
GDPR compliance.

3.1 GDPR compliance with NetEye

With the coming into force of the GDPR in 2018, service providers and tools promising to facilitate the building
up of compliance came into the centre of attention. The ecosystem of NetEye also contains a series of components
and functionalities through which the requirements of the regulation, like data protection by design, the principle
of accountability and the obligation of the timely reporting of data breaches, can be explicitly addressed.

Data protection by design, as set out by Article 25 of the GDPR, expects organisations to design and
carry out their data processing activities with security and privacy in mind from the very beginning. Security
Information and Event Management, that is SIEM solutions provide technical measures that can serve as a
strong pillar of data protection. Their primary aim is to track and record the activities of users all around
the IT infrastructure of the company. Any time data is accessed, changed or deleted, the account information
along with the exact set of operations are stored. The more sensitive or valuable the data, the more detailed the
records can be. The integrity of the information stored is secured through various mechanisms, like the definition
of security roles. The Elastic SIEM Module integrated into NetEye provides the framework for designing an
architecture that makes responsible data governance possible, with security and privacy guarantees in place.

As the website of the European Data Protection Supervisors explains, ” [tjhe General Data Protection Regu-
lation integrates accountability as a principle which requires that organisations put in place appropriate technical
and organisational measures and be able to demonstrate what they did and its effectiveness when requested”[1].
Once the technical guarantees are established through the Elastic STEM Module in NetEye, a centralised, holis-
tic overview of the entire SIEM system is made available through the graphical user interface of Kibana. Thus,
it becomes easy for the Data Protection Officer of the organisation, the point of contact during GDPR audits,
to demonstrate compliance and present the set of measures put in place.

As frequently mentioned, compliance is not fulfilled by a one-time deployment of a well-designed system.
Instead, it is an ongoing procedure that necessitates the continuous supervision, maintenance and updating of
the means of data processing and protection. The SIEM module assists in the designing, implementing and
maintaining the security measures across the organisation. Starting to track newly deployed IT assets and
activating the corresponding detection rules, tweaking security roles or involving the latest machine learning
models for regular security checks are all available through the centralised view of Kibana.

”In the case of a personal data breach, the controller shall without undue delay and, where feasible, not later
than 72 hours after having become aware of it, notify the personal data breach to the supervisory authority
[...]”, states Article 33 of the regulation[37]. When a data breach occurs, a series of questions must be answered
about the IT assets around the organisation. Information about the physical devices, the softwares installed,
network connections and access rights are essential to locate and isolate vulnerable points of the infrastructure.
NetEye is also shipped with IT Asset Management capabilities that assists in yet another aspect of GDPR

21



compliance: addressing the obligation of timely data breach reporting.

There are a number of functionalities offered out of the box by NetEye through which compliance with the
requirements of the regulation can be explicitly addressed. Furthermore, Wiirth Phoenix is actively looking to
further extend its services that will assist their customers in complying with other obligations set out by the
GDPR. A good example is the Elastic Blockchain Proxy developed by the R&D team of the company. In the
case of some log sources, it might be required to prove their originality and their unmodifiable nature in general.
With the Elastic Blockchain Proxy activated, the specified logs must pass through it. Each of them is signed
and placed in a blockchain. Thus, it becomes possible to demonstrate during upcoming audits that all logs of
the specified type have been kept in their original form. This, again, adheres to the principle of accountability.

3.2 Compliance through anonymization

My bachelor thesis also revolves around the data protection regulation and proposes a protocol for client-side
anonymization[29]. The company’s apparent interest in and its activities around the GDPR made me wonder
whether they also have some services related to anonymization. As it turns out, anonymization is not part of
the Wiirth Phoenix portfolio, primarily because the Elastic ecosystem does not come with supporting tooling
in this field.

Nevertheless, the colleagues also mention that anonymization has been a recurring topic of discussion at
the company. Promising freedom from GDPR compliance, anonymization attracted quite some attention after
the publishing of the regulation. As colleagues from Wiirth Phoenix recall, this was also reflected in increased
demand and interest in the concept from their customers. However, the NetEye ecosystem does not offer any
solution for anonymization, thus these demands could not be catered for.

Even though the interest in anonymization gained quite some traction from the part of organisations, it
disappeared almost just as quickly as it came. One of the colleagues suggests that, as far as their customers are
concerned, there is one main reason behind the general loss of interest: the integration of fine-grained access
control into Elasticsearch shortly after the GDPR became applicable.

It is not only the visibility of an index that can be defined per user role. Attribute- and document-level access
control has also been made available in Elasticsearch. It is even possible to filter out documents of an index
that a user is not allowed to see based on a predefined query. This also alludes to the use cases organisations
deemed relevant in connection with anonymization: restricting access to and visibility of data. This demand is
indeed easily satisfied through a fine-grained access control mechanism. However, this is also not the primary
aim of anonymization.

Despite the decreased demand for anonymization, Wiirth Phoenix has not removed the topic from its agenda.
Taking into account the Elastic Blockchain Proxy as a solid proof of the company being willing to invest in the
development of new products and services, I proposed the development of an anonymization solution inside the
Elastic Stack, leveraging the experience I gained during the bachelors. The company welcomed the idea.

3.3 Scoping

In my bachelor thesis, I propose a protocol that allows the client device to anonymize the data it intends to
share with the server before sending it to. Both parties benefit from this. On the one hand, the clients do
not need to give away personal data, thus their privacy fully remains protected. On the other hand, if the
server only receives anonymous information, there is no need for the implementation of additional technical and
organisational measures to render the data processing GDPR compliant.

Even though the thesis includes a proof of concept implementation, the work is more of a theoretical nature.
The initial idea, therefore, was to provide a practical implementation based on the proposed protocol, embedding
it in the NetEye, and more specifically the Elastic ecosystem. Given that during log collection there are plenty
of client machines sending data with potentially personal information to a central server, the proposal seemed
reasonable.

3.3.1 Use cases

Before moving on with the discussions, it was essential to clarify some use cases that are of relevance to the
company. The most frequent goals of data anonymization are data monetization, publishing of open data and
building trust. The first and the third one are essential and provide great value for practically any company.
Accordingly, there is a set of anonymization use cases that can attract the attention of Wiirth Phoenix customers.
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Data retention beyond the allowed time frame

In general, the regulation expects data controllers to store personal data for the shortest period of time possible.
According to Article 5(1)(e), information that ”permits identification of data subjects” should be kept ”for no
longer than is necessary for the purposes for which the personal data are processed”. The article goes on to
add that "personal data may be stored for longer periods insofar as the personal data will be processed solely
for archiving purposes in the public interest, scientific or historical research purposes or statistical purposes”.
However, for improving some business processes or the services provided, companies often mean to hold onto
the information they obtained from their customers. This demand for information is constantly on the rise,
since artificial intelligence, and more specifically machine learning models require as much data as possible for
increasing the accuracy of their output.

One way to resolve the contradiction between the GDPR obligations and the need for data is to anonymize
customer data. Anonymization provides a means to remove the time limitation on data storage. By rendering
personal data anonymous and thus lifting the dataset out of the context of the regulation, data controllers are
allowed to retain valuable historical data. Big technological companies, for example Yahoo[12] and Google[20],
already applies this practice.

As one colleague points out, not only clients, but also Wiirth Phoenix itself could make use of extended
information storage times. The company has a security operations centre, which provides SOC services to
external companies. In case of an incident or detected anomaly in some part of the system, anonymized
historical data can serve as a useful source of information for forensics and trend analysis, for example.

Sharing data with third parties

Sharing personal data with third parties, while possible, has strict constraints according to the GDPR. Data
subjects must be informed about the circumstances of the processing and the involvement of a third party
therein. Such processing must have a legal basis and the data subject must explicitly consent to it. Furthermore,
an entire chapter, namely Chapter V of the regulation is dedicated to requirements of transferring data to
companies or international organisations based outside of the European Union.

Instead of implementing complex compliance measures and building all of the security and privacy guaran-
tees into the third-party data sharing procedure, data controllers can opt for the sharing of only anonymous
information. This can significantly reduce the financial investments and time required for teaming up with an
external organisation. The ultimate goal can be manyfold: outsourcing, creating partnerships and organising
hackathons, for instance. Whichever the case, not having to dedicate resources to establishing compliance with
the regulation provides more flexibility and removes several hurdles from the way of cooperating with any third

party.

Additional layer of data protection

Unless it is essential to store the personal data in its original form for the business purposes of the company,
anonymization can also provide an extra layer of data protection, and a means of risk minimization. The benefit
of having only anonymous data is that even in the case of a data breach, personal information cannot get leaked.
Additionally, data access can be provided to a wider set of employees that might facilitate everyday business
processes and the workflow in general.

Of course, it is not possible to anonymize all the data that the company stores. Still, aiming to keep as
many of the datasets anonymous as possible can help the company reduce risks and compliance-related costs.
Furthermore, communicating it might also help to build trust and attract security-aware customers.

3.3.2 A taxonomy of anonymization

When considering anonymization use cases, some patterns start to emerge. There is a difference if the
anonymization is carried out on the side of the client or the server. Some use cases require static, while
others dynamic anonymization.. And when talking about the static one, anonymization can be carried in two
ways: it is possible to anonymize an already ingested dataset in one go, or keep anonymizing data points con-
tinuously, as they arrive into the system. Organising these patterns into a taxonomy helps with understanding
and discussing the various scenarios that come up.

Server-side anonymization is the most trivial. Probably it is the one that comes to mind when hearing about
data anonymization in general. There is a machine collecting and storing incoming information in step one, which
it then goes on to anonymize in step two. This counts as data processing: before producing the anonymized
version, the data must be stored, preprocessed and then pushed through the anonymization procedure. As a
result, this machine and the entire workflow must be compliant with the regulation.

The question might arise whether it is possible to spare even these compliance measures on the server side.
This is where client-side anonymization comes into play. If data is already rendered anonymous on the device
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of the user, then only anonymous data reaches the server machine. Thus, the server side practically never deals
with any personal data processing, and accordingly does not have an obligation to comply any more. A similar
solution is already present in Apple devices[5]. The company is interested in application and hardware usage
information of various sorts that can be extracted from the devices of users. In order to hide the identity of
users and guarantee their privacy, Apples relies on local differential privacy for forwarding only anonymous
device usage data to their servers. Client-side anonymization can not only free the processor from compliance
measures, but it also provides higher privacy and more control over data for end users by not letting any personal
information leave their devices. Thus, it can also serve as a means to build trust with privacy-aware customers.

”Static” and ”dynamic” refers to the data view obtained after having conducted the anonymization. In the
case of the former, anonymous microdata is created. The outcome of the anonymization is static, one can access
and work directly on the anonymous dataset on a record-level. One example of static anonymization is using
any algorithm based on k-anonymity.

In contrast, dynamic anonymization does not produce one final anonymous dataset. Instead, an anonymiza-
tion layer is placed on top of the original dataset. From that point on, each user query must pass through this
layer. And, most importantly, the anonymization is carried out on a query-by-query basis. Differential privacy
follows this approach, for instance. What makes dynamic anonymization powerful is its ability to tailor the
anonymization to the needs of the current query. This ensures that the returned data is of the highest resolution
possible. It is important to note, however, that noise addition, which is at the core of dynamic anonymization,
has its limitations, as well. For one, after a certain amount of queries the added noise cancels out. This makes
it necessary to define a privacy budget that puts a hard limit on the number of queries that are allowed to be
made to the dataset[10]. Once this limit is exceeded, the privacy guarantees practically disappear. Thus, any
subsequent queries must be blocked, and practically the dataset becomes unusable. With static anonymization,
although the produced microdata is of lower quality, it has no limitation in terms of querying.

There is one more important distinction to make inside the domain of static anonymization: whether it is
carried out once, or it goes on continuously. Let’s assume a hospital wants to publish a subset of their patient
data for research purposes, or a company organises a hackathon where the participants must extract insights
from customer data. Since the data to share is personal, in both cases it must be anonymized first. These are
typical cases, where a dataset or a segment thereof is anonymized once, and this chunk of data is sufficient for
the intended purposes.

In some cases, when data keeps coming in continuously, the requirement is to create an anonymous view
of the information right away. Data points must then be anonymized one-by-one or in small batches. The
major difference compared to the one-time subtype of static anonymization is the availability of the data to
digest. With one-time anonymization, the complete dataset is at hand: the statistical properties of the data
can be taken into account and used to generate an anonymous view. The same statistical properties cannot be
anticipated when anonymizing data as it arrives, since these properties are being shaped by each incoming data
point. Therefore, managing anonymization in such a scenario is far from trivial.

Taking into consideration the various combinations from the above presented taxonomy, six different ways,
presented in Table 3.1, emerge for approaching anonymization. All of them have their own needs and require-
ments, and might make good use of differing anonymity models. For example, k-anonymity aligns well with the
microdata-level operations of static anonymization. In comparison, dynamic anonymization is usually based
on some form of differential privacy. The attacker models and potential vulnerabilities to consider changes
considerably as the discussion moves from client-side to server-side anonymization. Similarly, the assumptions
to make vary widely depending on whether it is one closed dataset, or continuously incoming information that
must be anonymized. Accordingly, each cell of Table 3.1 necessitates a dedicated solution.

- Static Dynamic

- One-time | Continuous | Query-time
Client-side
Server-side

Table 3.1: Combinations derived from the above presented taxonomy

Practical examples

Beside the high-level use cases presented in the previous section, when zooming in from the perspective of this
taxonomy, it is possible to propose some further, more practical use cases. Considering them might also help in
grasping the distinctions between the various anonymization approaches. Since it is the anonymization of logs
that is of interest for Wiirth Phoenix, the examples are taken from this domain.

The simplest scenario is the one-off anonymization on the server side. One use case, already mentioned in
Chapter 2, is the retention of machine logs after the company would not have a legal basis to store personal
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information any longer. The information is already located on some machines on the premises of the organisation.
All the data points that should otherwise be deleted are rendered anonymous, and the original data is thrown
away.

If a security operations centre works with highly sensitive data, the data controller, taking into account
privacy-related concerns, might prefer to make only anonymous data available to the analysts. In this case,
however, the anonymization would need to be carried out at least in near real-time in order not to disrupt
the operations of the security team. Using static anonymization might still be possible. The server waits for
the accumulation of a larger quantity of data, and carries out the anonymization in batches. However, the
smaller the amount of data being anonymized, the worse the resolution of the anonymous data. This means
that static anonymization might reduce the utility of the information to an extent that renders the incoming
data practically unusable. A technique that allows the anonymization of incoming data points on the fly, and
continuously populates the anonymous dataset would instead come in handy for this use case.

Client-side static anonymization can prove useful for employers, if they want to receive insights about the
activities their employees indulge in during work. An employer, however, might not have the legal basis for such
data processing. Although probably the consent of the employees would be still necessary, by carrying out the
anonymization on the client machines, this might ease the mind of the employees and reduce their reluctance
to share their activity logs. If the employer intends to get such statistics for a one-month period, the client
machines can carry out a one-time anonymization at the end of the 30 days.

A demand for static, continuous anonymization on the client side might emerge when there is a need for
accessing the data as soon as possible. Still considering employee activity logs, an employer might want to
test how people around the company react to certain situations, for example to a simulated cyber attack.
Continuously anonymizing logs and forwarding them might provide a more realistic view of the timeline and the
employees’ activities, as opposed to every machine sending the anonymized data at the end of the experiment.

Analysts who do not require a microdata-level drill down into data, but instead only need answers for
aggregate queries, could make good use of dynamic anonymization. On the server side, this can be applied to
any dataset that contains personal information. When it comes to client-side dynamic anonymization, Apple’s
data collection practices, as mentioned in the previous section, demonstrate a real-life example. It would be
possible to collect end user or employee activity logs in a similar manner.

3.3.3 A better understanding of the needs of the company

The list of potential use cases along with the defined taxonomy facilitated considerably the conceptualization
of and discussions about anonymization. Soon it became clear that client-side anonymization would not bring
too much value for Wiirth Phoenix. Accordingly, focusing on the proposal of my bachelor thesis turned out to
be the wrong direction.

Nevertheless, the use case from the domain of server-side anonymization comes with immediate applicability
in the field of data retention. The desire to store valuable application usage data for business purposes after the
allowed time frame can realistically occur for the majority of companies. Consequently, the focus of the thesis
pivoted from anonymization on the client side to a server-side one.

3.4 State of the art solutions

Once the scope of the project is readjusted according to the needs and interest of the company, the next step is
to have a look around and see what solutions exist inside the Elastic Stack or on the market in general for the
anonymization of personal data. This helps in gaining a more profound understanding of the problem domain
and provides additional insights, inspiration and ideas for an eventual solution. First and foremost, however,
it assists in the identification of the gaps in terms of available services, and thus can further focus the project
scope.

3.4.1 Inside the Elastic ecosystem

Unfortunately, the Elastic Stack does not come with any tooling for the complete anonymization of personal
information. Despite the misleading naming of some solutions, the best one can achieve inside the ecosystem is
pseudonymization.

Around the time of the GDPR becoming applicable, Anonymize-it, “the general purpose tool for data
privacy”, was published[19]. While the name sounds promising, the tool simply replaces the specified fields
of documents with fake data with the same semantics. Leveraging the faker Python library, a wide number
of data types, like email addresses, names or credit card numbers, can be generated in a semantically correct
format. This is practically masking field values with synthetic data. As also the disclaimer of the article points
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out, the tool “is not intended to be used for anonymization requirements of GDPR policies, but rather to aid
pseudonymization efforts”.

SearchGuard is an open-source security plugin for the Elastic Stack. It offers a functionality called “field
anonymization”. It allows the replacement of string fields with the hash of the original value or with another
string derived from the original one through some string operation. Although the field is indeed anonymized,
its value is practically completely suppressed. The fields with the same value will have the same hash, so some
relationships in the data are retained, but the data utility is reduced almost to zero.

The same hashing functionality is already natively achievable through the fingerprint processor in the Elastic
Stack. One of the articles in the Elastic blog presents how to leverage it for pseudonymization of documents in
Elasticsearch|[26].

The two currently available features are thus the suppression of fields and pseudonymization. While both
of them serve as an additional layer of data protection, provide privacy guarantees and thus support GDPR
compliance, they certainly cannot be used for producing anonymous datasets from Elastic indices.

3.4.2 External tools

The implementation of various anonymization algorithms are readily available in open repositories. Unfortu-
nately, these are usually simple proof of concept projects that are rather limited in terms of scalability and
flexibility. There are, however, three tools that come with more robustness: Amnesia[13], ARX[7] and Air-
cloak[2].

Both Amnesia and ARX are open-source anonymization tools. They offer some ways for loading data.
Amnesia works with the k- and £™-anonymity models. During the configuration phase, the user categorises the
attributes, defines generalisation hierarchies and can specify the desired anonymization techniques per attribute.
All this functionality is also available in ARX, however this tool offers a much richer toolkit in general compared
to Amnesia. ARX is shipped with a wide range of anonymity models that the user can pick from. Various
metrics are available for the evaluation of the quality of the anonymized data. Besides, ARX is also made
available as a Java library, thus the tools can be embedded in other projects, as well. Accordingly, ARX is
considered to be more robust and to offer better usability in general[43].

Combining well-tested anonymization models, like k-anonymity and differential privacy, Aircloak has come
up with a unique solution. An anonymization layer is put on top of the target dataset through which each
query must pass through. Similarly to differential privacy, Aircloaks works with adding noise to the query
results. There is one major disadvantage of differential privacy: it comes with a privacy budget that is depleted
after a certain amount of queries. From that point on, answering any additional query would mean that a
potential attacker could break the privacy guarantees through statistical methods. Thus, as the privacy budget
is spent, the underlying database becomes unusable. In contrast, Aircloak has managed to engineer a specific
way of noise addition, thanks to which the noise added to the results does not cancel out, the way it does
in differential privacy. This removes the limitation on the number of available queries, while maintaining the
privacy guarantees.

Shortcomings

Unfortunately, it is not trivial how Wiirth Phoenix could offer an anonymization service to its customers based
on these external tools. The primary issue is scalability. For example, to use the two open-source solutions,
data would first need to be extracted in a CSV format and then ingested into the anonymization tool. They do
not offer a connector to Elasticsearch. In addition, they have limitations in terms of the dataset size they can
handle[34].

When it comes to Aircloak, deploying their solution is rather complex and time-consuming. For Wiirth
Phoenix customers, a more light-weight anonymization solution could easily be sufficient. Another concern
might be that partnering with an external company would make Wiirth Phoenix completely reliant on a third-
party service provider.

3.5 The problem statement

Given the various items of the taxonomy require specific, dedicated solutions, it only makes sense to pick one
and focus the attention entirely on that. As discussions with some colleagues at Wiirth Phoenix reveal, the most
relevant use cases for the company are from the domain of static, one-time, server-side anonymization. Let’s
take the example of data retention again. Whether deploying NetEye with a new Wiirth Phoenix customer or
ingesting a new data source for an existing one, data retention, as a fundamental component of data governance,
is an unavoidable topic of discussion. The most trivial way to include anonymization in the service portfolio
of the company is to replace the deletion of data with anonymization thereof in the data retention policy.
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Accordingly, this item of the taxonomy can bring the most value to Wiirth Phoenix. Besides, the static, one-
time, server-side anonymization is also the most clear and straightforward way of anonymization. It is the easiest
to grasp. Once a solution exists for the basic problem, the entire domain, in this case that of anonymization,
becomes more clear. New problems,; ideas and potential use cases can emerge in the process. From that point
on, it is thus easier to venture into the other directions.

From the point of view of Wiirth Phoenix, the currently existing anonymization tools have the three main
downsides: inflexibility, lack of scalability, and the need to involve a third party. Firstly, inflexibility refers
to the limited set of supported data sources. Secondly, available solutions do not scale well as the amount of
data to be anonymized increases. Inside NetEye it is the anonymization of logs that is of interest. Taking
into account the speed at which logs are generated, and the resulting size of the datasets to be anonymized,
scalability is crucial. Thirdly, partnering with and outsourcing anonymization to a third party, although a
common practice, would necessitate additional compliance measures for the period of the data processing.
When the ultimate goal of introducing anonymization into the service portfolio of the company is precisely
alleviating all the GDPR compliance-related efforts, introducing another layer of legal obligations might take a
toll on the usability, relevance and added value of the whole endeavour. Therefore, beside striving for a flexible
and scalable solution, providing it inside the NetEye ecosystem would be of great value.

The thesis project aims to find a solution that addresses all of the requirements derived from the analysis of
the use cases on the one hand and the currently existing solutions on the other one: a flexible, scalable, static,
server-side anonymization solution integrated into the NetEye ecosystem. A proof of concept implementation of
the presented solution will be provided to support and prove the practical feasibility of the theoretical proposal.
Such an implementation helps to discover and address flawed assumptions. In addition, it highlights the practical
challenges and limitations of the proposal.
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Chapter 4

Solution

By addressing the scope of the problem, as laid out at the end of the last chapter, an anonymization solution that
brings value to Wiirth Phoenix should have four main characteristics. Firstly, it should be able to handle large
quantities of data and provide scalability in this regard. Secondly, it should be able to work with Elasticsearch
indices so that there is no need to export every dataset that a customer decides to anonymize. Thirdly, it should
be integrable into NetEye and should not introduce excessive complexity into the currently existing workflows.
And finally, referring back to the taxonomy proposed in the previous chapter, the solution should focus on
static, one-time anonymization on the server-side and address the use cases relevant for the company.

4.1 The first approach

The database technology to use is rather straightforward, given that the company relies on Elasticsearch for
the collection of logs. It is a valid assumption that the data source will be stored in Elasticsearch and that the
anonymized information should be ingested into another index of the same database. The one decision to make
is which of the two industry-standard anonymity models to rely on: k-anonymity or differential privacy.

The two models take a fundamentally different approach, thus it makes sense to choose one and focus the
proposed solution entirely on that. The model of k-anonymity provides syntactic privacy[28]. “The syntactic
mechanism revamps the dataset before release to link any tuple/record to more than one sensitive value in
the dataset”. In case of k-anonymity, this is achieved by placing each record in an equivalence class of size k.
Syntactic privacy guarantees are in general considered weaker than those provided by semantic mechanisms.
“The semantic mechanism restricts the impact of individual values on the query/analysis output based on the
dataset”. Differential privacy applies noise addition to prevent attackers from spotting the deletion or insertion
of a record from the dataset.

When making a decision between the two approaches, the well-known trade-off in anonymization must be
faced: does the use case at hand attribute more importance to privacy or to utility? Applying differential
privacy as an anonymization measure yields a dataset of lower utility due to its manipulating the original
attribute values[9]. However, it hides the single individuals better, and thus provides more privacy compared
to k-anonymity. So, what is the most reasonable trade-off in case of Wiirth Phoenix and its customers?

There are two main reasons for choosing the k-anonymity model with the use cases in mind that the
discussions with the colleagues revealed as most realistic and relevant. Firstly, the anonymized datasets are
primarily meant for internal use, or sharing it with trusted partner companies. Usage data that has been
anonymized instead of deletion for analytical purposes will be processed by the analysts of the company. Sharing
an anonymized dataset with an external company also happens with the intention of extracting additional
analytical insights. In neither of the cases will the data be available to a wider public. Thus, the risk of an
attacker launching a sophisticated de-identification attack against such an anonymous dataset seems rather low.
At the same time, data utility is of huge importance for the analytical processes. The second, and even stronger
argument for k-anonymity is that once the algorithm produces the anonymous dataset, the original one can
be completely removed. However, differential privacy requires the retention of the original dataset: it works
by carrying out the user query on the original data and modifying the results through noise addition in order
to render it anonymous. Considering the use case of retaining anonymous data after reaching the limit of the
allowed time frame for storing personal information, the data controller is legally obliged to delete any personal
data. Thus, differential privacy is not even an option for some of the use cases.

Once the decision for k-anonymity has been made, the only thing left to do is choosing an algorithm that is
capable of producing anonymous data of high utility. Mondrian is one of the most common and most referenced
algorithms, but there are a series of more modern ones that might offer better performance in terms of privacy,
utility and runtime.
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4.2 A revised solution

The first approach does address the requirement of supporting the anonymization of Elasticsearch indices, and
by directly focusing on the Elastic Stack would probably be easily integrated into NetEye, as well. Through
the right choice in terms of the algorithm, also scalability can be provided. However, such a solution ends up
with the same shortcoming that the other, currently existing anonymization tools are criticised for: inflexibility.
By focusing on one specific technology and algorithm, the proposed solution would not be ready to adapt
to changing circumstances in technology and follow the new directions in the industry or the strategy of the
company, for example. Accordingly, the updated objective becomes to provide a flexible architecture for an
anonymization module that allows the replaceability of both the database technology and the algorithm. This
is achieved by dividing the architecture of the module into an algorithm- and a database-specific component.
They should only communicate through abstract interfaces using standard message formats when exchanging
information.

4.2.1 k-anonymity

It is possible to support multiple anonymity models, as demonstrated by the ARX data anonymization tool.
However, proposing an architecture that works with an abstraction of the anonymity model seems overly
ambitious, especially considering how differently for example k-anonymity and differential privacy approach
anonymization. Moreover, this would considerably increase the complexity of the proof of concept implementa-
tion. Narrowing the scope of the proposal to the model of k-anonymity helps to come up with an architecture
that is abstract enough to provide flexibility, but still remains low-level enough to be put to practice.

The model is an industry-standard that the biggest companies, like Google, rely upon when anonymizing
personal data. This clearly demonstrates the current relevance of the model. k-anonymity is an active field of
research and the largest players in the technology industry relying on it suggests that the research efforts around
the model will continue in the future with high probability. Since achieving optimal k-anonymity is an NP-hard
problem, researchers are constantly looking for new ways to approximate optimal k-anonymization leveraging
more and more sophisticated techniques. To be able to make use of the latest results of research, it should be
easy and straightforward to plug in new, more performant algorithms into the anonymization module. This
replaceability would provide flexibility in terms of the anonymization logic.

Building a solution around one specific model allows for the extraction of standardised elements. Let’s recap
what are the steps of producing a k-anonymous dataset to be able to point out the algorithm-agnostic parts
of the process. It all starts with an analysis of the dataset to be anonymized. As presented in Chapter 2, k-
anonymity differentiates between three major categories of attributes. Direct identifiers cover any information
that allows the direct singling out of individuals. These pieces of information are removed completely from the
dataset at the very beginning. Sensitive attributes contain the information that is valuable for the analysts,
from which they intend to extract some sort of insights. Accordingly, such attribute values are retained in their
original form. Note that sensitive attributes are only necessary for the second phase of the anonymization,
when the anonymous dataset is created. The first step focuses entirely on indirect identifiers. It is usually not
possible to identify individuals based on one single indirect identifier, but once more and more pieces of such
information is revealed about the data subject, their combination can already single out the person behind the
data. Equivalence classes, i.e. the "buckets” of size k, are created by generalising the values of these attributes.

So what does a k-anonymization algorithm do from a bird’s-eye view? As an input, it expects three pieces
of information. The size of the equivalence classes, that is the definition of the parameter k. The dataset
based on which the equivalence classes should be created. And the categorization of the attributes present
in the dataset. Referring back to Chapter 2 again, it is also essential to further split the indirect attributes
into categories based on the data type they contain. An indirect attribute can be numerical, categorical or
hierarchical, for example. Accordingly, the input of the algorithm should contain any additional information,
like the generalisation hierarchy trees of hierarchical attributes. Finally, an algorithm might also need some
further parameterization per indirect identifier. Once each piece of the above-mentioned input information is
provided, the algorithm is ready to run and construct the equivalence classes, placing the individual records
into k-sized buckets. The quality of the resulting anonymous dataset highly depends on how sophisticated the
anonymization logic of the algorithm is.

Standardised elements

All this input information is easily summarised in a configuration file, which can then be passed to the k-
anonymity algorithm as one single input. The simplest format to define a configuration file is JSON: using
key-value pairs, the input parameters are easily described. The parameter k is, of course, a simple number. it
is not necessary to explicitly list the entire set of direct identifiers. By not mentioning them, it is an implicit
implication that attributes should be entirely suppressed. Since there can be multiple sensitive attributes in
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the dataset, these can be listed in a string array. At this point it is only the indirect identifiers that need to be
described.

Indirect attributes can be mapped into a set of key-value pairs, with the key being the name of the attribute
and the value representing all the information about it necessary for the anonymization. One such mandatory
piece of information is the type of the attribute. Then, depending on the attribute type, additional data might
be required. For example, the handling of hierarchical attributes necessitates the definition of generalisation
hierarchy. Generalisation hierarchies are trees, which are also easily mapped into a recursive JSON structure.
Each node in a tree has a value, and a set of children. Accordingly, each JSON object representing a tree node
has these two properties, the value being a string and the children stored in an array of objects with the same
structure.

Listing 4.1 shows what such a configuration file could look like. It is taken directly from the proof of concept
implementation presented in the next chapter of the thesis. The configuration file shows one way of mapping the
generalisation hierarchy of marital status, presented in Figure 2.2 of Chapter 2, into a JSON format. In addition
to the structure described above, this configuration file also demonstrates how algorithm specific information
can be attached to the indirect identifier attributes. In this case, some additional information is added for the
Datafly algorithm, the exact semantics of which are presented in the next chapter.

{
", 10’
"sensitive_attributes": ["class"],
"indirect_identifiers": {
"age": {
"type": "numerical",
"datafly_num_of_buckets": 20
Lo
"marital_status": {
"type": "hierarchical",
"datafly_init_level": 2,
"tree": {
"Value": ||*ll .
"children": [
#
{
"value": "Married",
"children": [
{
"value": "Married-civ-spouse",
"children": []
Yo
{
"value": "Married-AF-spouse",
"children": []
¥
]
Fo
#
]
}
}
}
}

Listing 4.1: A snippet from the configuration file for the UCI adult dataset

Based on this configuration file, the algorithm can already carry out the anonymization and produce a series
of equivalence classes. These serve as the output of the procedure. Since each k-anonymity algorithm eventually
creates equivalence classes, the format of the output can also be standardised. The generalised form of the data
typically varies per attribute type. Once it is clearly defined which type of data should be transformed to which
format, each algorithm can generate output of the exact same standard. Thus, the receiver of the equivalence
classes becomes completely independent of the algorithm producing them.

There are, of course, various ways to describe equivalence classes. Numerical attributes generalised as ranges
will contain the minimum and the maximum of the corresponding range, separated by a comma or a hyphen.
When describing a hierarchical attribute in an equivalence class, the most straightforward approach is to map it
into the generalised value of the internal node from the generalisation tree. Alternatively, instead of returning
the generalised value of internal nodes, the hierarchical attribute can also be mapped to the leaf values of
internal nodes. An example for the potential description of equivalence classes in JSON format is presented in
Listing 4.2.
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"age": "20,30",
"marital_status": "Married-civ-spouse"
Po
{
"age": "45",
"marital_status": "Married"
}

Listing 4.2: A potential description of equivalence classes in JSON format

The configuration file and the equivalence class can thus become two standardised descriptors, independent
of the algorithms used. This makes it possible to treat algorithms as black boxes and easily replace one with
another, an important step towards the replaceability of the architectural components.

4.2.2 The algorithm-specific component

For the functioning of the algorithm-specific component, two pieces of input are required. On the one hand, the
algorithm requires the standardised configuration file that defines the general properties essential for working
with the k-anonymity model along with any further algorithm-specific settings. On the other hand, the com-
ponent needs the data that it should carry out the anonymization on. Once the algorithm has received all of
the information necessary for its initialisation, it can be launched. There are no further interactions required
from outside. Thus, the only two methods that the algorithm-specific component needs to make available to
the external world is one for its initialization and another one for starting the anonymization process.

With a standard already defined, constructing the configuration file and sharing it with the component is
straightforward. However, how should the component get access to the data to work with? The currently
existing anonymization tools and libraries usually expect the data to be extracted from their host database
in CSV format that the anonymization solution is then capable of understanding and processing. This is how
these tools achieve independence of any database technology. The scalability of this approach is questionable.
As the number of the data sources and the volume of data increases, the continuous extraction of CSV files and
reading them into a program can become inconvenient and time-consuming. Furthermore, the operations that
are now carried out from programme code are most probably accessible natively in the database technology
itself, implemented in a more efficient and performant way.

To leverage these native database operations and avoid the CSV extraction step, the component follows a
query-based approach: every information necessary for the anonymization is obtained by directly querying the
data in the database. However, the component should not rely on any one specific database technology. A layer
of abstraction must therefore be introduced here. The algorithm-specific component should communicate with
an API only. This API must implement all the necessary queries that the algorithm would intend to make to
the database.

It is important to note that there are a set of queries that each k-anonymity algorithm most probably relies
on. Such queries are, for example, obtaining the count of records belonging to an equivalence class, or getting
the minimum and maximum value of a subset of the dataset. All these queries can be extracted into a general
API. An operation that allows the algorithm to push the generated equivalence class to the database backend
should also be part of this general API. Then, each of the different k-anonymity algorithms might have a specific
set of queries that they need for the anonymization, and accordingly must define their own APIs. The definition
of the algorithm-specific API can serve as a contract between the algorithm and the backend. From this point
on, instead of working with raw data, the algorithm communicates with an API that is capable of responding
to the set of predefined queries. As long as the API returns the expected information, the algorithm can treat
it as a black box and completely disregard the database technology serving the requests sent.

During the anonymization process, it is often necessary to formulate some queries about a certain equivalence
class. For these queries, the component can rely on the same, standardised equivalence class format that is used
for sending the output of the algorithm to the backend. Figure 4.1 presents the architecture of the algorithm-
specific component. The algorithm takes a standard configuration file and outputs equivalence classes in a
standardised format. The server implements the “universal API” which covers the common queries across the
various k-anonymity algorithms along with the operation that allows the sending of the generated equivalence
classes to the server. If the backend wants to support one specific algorithm, it also implements the algorithm-
specific API. Relying on the abstraction of these two interfaces, the algorithm-specific component can treat the
backend, which manages the data to anonymize, as a black box.
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Figure 4.1: The architecture of the algorithm-specific component

4.2.3 The database-specific component

There are two main parts that the database-specific component is made up of: the database and the backend.
The database stores the dataset to anonymize and provides a set of functionalities that makes it possible to
effectively query and work with the data. The backend is the point of entry to the database. It is the backend
that makes the API available for any client that intends to interact with the database.

The backend starts with implementing the algorithm-agnostic functionalities: the mapping of the equivalence
class descriptor to database queries, the functions like the minimum and maximum, the count operation, and the
final digestion of the equivalence classes for producing the anonymous dataset. It then goes on to implement the
contracts that have been defined by the various algorithms. Once the backend working with a specific database
technology decides to support a specific type of algorithm, it needs to implement the list of operations that are
necessary for the functioning of the algorithm.

Not exporting the data, but addressing the queries directly to the database can increase the performance of
the anonymization compared to working with an exported CSV file. The backend can make sure to implement
the queries in the most efficient way, while the database engine itself performs further optimizations before
eventually executing the query.

Figure 4.2 presents the architecture of the database-specific component. The backend implements and makes
a set of operations available for external clients. Other than the specification of the methods they need, the
backend does not need to know anything about the entities using its public interface. The component receives
requests, transforms them into queries, the database answers these queries. Finally, the backend responds to
the clients with the query results.

4.3 The final architecture

Figure 4.3 presents how the two components eventually interact relying only on the introduced abstractions.
For each new algorithm that the backend intends to support, it must implement the operations as defined and
expected by the algorithm. Once the algorithm knows where to find the backend, it can call the endpoints that
return the relevant information for carrying out the anonymization.

To make the solution technology-agnostic, the backend should make its functionality available through a
web API. The component implementing the algorithm should communicate with the backend only via this web
interface. The communication thus becomes standardised and also remains independent of one specific technol-
ogy. From this point on, the algorithm- and the database-specific components can be separately implemented
in the preferred languages and frameworks of the development team.

Both components are aware of the standardised JSON format of describing equivalence classes, as both of
them must work with them. Feeding in the configuration file to the backend, however, is not necessarily a must,
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Figure 4.2: The architecture of the database-specific component

if the implementation of the algorithms make sure to send data in a format that the backend can directly use
for querying. Let’s take generalisation hierarchies as an example. If the equivalence class contains values of
internal nodes from the generalisation hierarchies for some of the attributes, and the backend does not know
the generalisation hierarchy, it is not able to map these generalised values to the actual ones that are present
in the database. Without the configuration file, the backend also does not know which attributes are sensitive
ones that should be extracted and combined with the equivalence classes when producing the final, anonymous
dataset. Nevertheless, this introduces additional complexity for the algorithms, and necessitates the duplication
of the same operations across algorithms. Thus, it is best to share the configuration file with the backend
directly, as well.

Configuration
file

Database-specific environment | ] semmmee e

Backend

Algorithm

Map to database query

Universal

Create anonymous dataset

Equivalence
classes

Figure 4.3: The architecture showing the interactions between the two components

4.4 Integration into NetEye

The ultimate goal is to integrate the module into the NetEye ecosystem. Thanks to the flexibility and modular
architecture of the Icinga user interface, a new item is easily added to the menu of NetEye. Similarly to other
optional feature modules, like Log Management and Command Orchestrator, the anonymization module would
only be installed on demand.

On setting up the anonymization of a data source, the user needs to define the configuration file and specify
the dataset to anonymize. Accordingly, the page of the module should provide a simple user interface for the
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easy management of these two options. As a matter of fact, only the definition of the generalisation hierarchies
would require a more elaborate design.

Once all the parameters have been specified, the user should be able to either launch the anonymization
right away, or schedule it as a recurring task.
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Chapter 5

Proof of concept

Once the high-level architectural design, as a proposed solution, has been completed, the next step of the thesis
project was to provide a proof-of-concept implementation of the anonymization module[35]. A proof of concept
is a sort of prototype, the main purpose of which is to demonstrate that the solution introduced on a theoretical
level can be realised and has practical value. The ultimate goal of this proof-of-concept implementation of the
anonymization module is twofold. On the one hand, it is meant to prove that the proposed architecture provides
the promised flexibility. It must demonstrate that the abstractions work, and through them the database- and
algorithm-specific components are indeed easily replaceable. On the other hand, by implementing anonymization
for an Elasticsearch backend, it presents to the company how anonymization could be integrated into their
ecosystem.

The proof of concept is implemented in Python. The language has a number of advantages that make it a
particularly good tool for developing a proof of concept. The flexibility of Python, for example, helps with quick
prototyping and trying out various ideas. Moreover, there are several anonymization libraries implemented in
the language, which were of help when implementing the two k-anonymization algorithms. Also, a wide set of
easy-to-use database connectors are written for Python.

To reduce the complexity of the implementation, instead of using web interfaces as proposed in the previous
chapter, the abstractions are modelled through abstract classes. The proof of concept is constructed in the
form of a single Python project. Thus, the technology-agnostic property is not fulfilled. However, the web
APT is simulated by making the algorithms communicate through interfaces only. This makes it possible to
demonstrate the replaceability of the components. Considering that the implementation is meant to be a proof
of concept, this simplification is acceptable.

5.1 Overview of the implementation

When it comes to the database-specific components, the proof of concept comes with support for two tech-
nologies, namely Elasticsearch and MySQL. Given that Wiirth Phoenix provides its log management services
based on the Elastic Stack, currently the Elaticsearch backend is of the greatest importance and interest for the
company. It serves as a hands-on demonstration of what an anonymous Elasticsearch index looks like, and can
thus contribute to the first discussions about how to best make use of them for data analytics. The rationale
behind choosing MySQL is on the one hand its widespread use, and on the other hand the popularity of SQL
databases in general. It might be valuable for a number of stakeholders to see how the anonymization module
can work using this query language.

There are two algorithms included in the proof-of-concept implementation: Mondrian and Datafly. Mondrian
is a frequently-referenced, top-down, greedy k-anonymization algorithm. It is capable of producing a good
approximation of an optimal k-anonymous dataset. Datafly is one of the early k-anonymity algorithms. It
follows a bottom-up approach, which provides a good contrast to the top-down Mondrian. The implementation
relies on a simplified version of the algorithm[41]. Chapter 2 contains a more detailed description of how these
two algorithms work.

Configuration files are provided for two datasets. The adult dataset is a subset of the US Census Data from
1994. It is frequently used for trying out new anonymization algorithms or for comparing existing ones. It has
attributes of the most common types, namely numerical, categorical and hierarchical ones. The other dataset,
shipped by default with Kibana, contains artificially created web requests. Other than the most basic data
types, it also has fields containing timestamps and IPs. Given that attributes of these types are often found in
machine logs, the Kibana web logs come in handy for demonstrating how the anonymization of such data could
be carried out.

Figure 5.1 gives an overview of the parts of the proof-of-concept implementation, using the building blocks,
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namely the database- and algorithm-specific components, presented in the previous chapter. The database-
specific component is implemented for Elasticsearch and MySQL. They each come with a corresponding database
connector, i.e. a backend that initiates the queries and communicates with the clients. The proof of concept
includes an implementation for the Mondrian and Datafly algorithms. It is important to note that while the
adult dataset is available in both databases, the web logs of Kibana are only reachable in Elasticsearch.

Config for
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dataset

—— ———— ————
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1
1
1
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Figure 5.1: Overview of the proof-of-concept implementation with the database- and algorithm-specific compo-
nents

5.2 The timeline

The implementation of the proof of concept started with the getting to know and refactoring of a publicly
available Mondrian repository. From its original approach of carrying out the anonymization directly on the
data read into memory, the implementation of the algorithm was redesigned to work with database queries.
For this, a Mondrian-specific API had been extracted for each operation that was necessary for running the
algorithm. The next step was to set up the connector for Elasticsearch and create the queries based on the
Mondrian API. Pivoting from working on in-memory data to a query-based approach required the tweaking
and adapting of the implementation of the original repository.

With Mondrian using an Elasticsearch backend already capable of anonymization, the next milestone was
to come up with an implementation for Datafly. The bottom-up way of data anonymization using database
queries required a fundamentally different approach compared to the Datafly implementations available in
public repositories. Therefore, the algorithm had to be developed from scratch. The Datafly API could then
be extracted, and the corresponding queries were implemented in the Elasticsearch backend. Relying on the
experience with the Python library of Elasticsearch, gained during the realisation of the universal and the
Mondrian APIs, the development of the Datafly-related operations on the backend went rather smoothly.

The following step was to implement a backend for MySQL with support for both of the algorithms. The
change of the query language, of course, required a different approach for implementing the two API definitions.
The abstractions worked well: once a solution had been found for answering all of the required queries through
SQL, the Elasticsearch backend could indeed be seamlessly replaced in one step with the new MySQL backend,
without having to change anything on the side of the algorithms.

Up until this point, the proof of concept focused entirely on the adults dataset. The next objective was to
create a new configuration file for the Kibana sample logs and try out the anonymization on another dataset.
On the one hand, it shows how the currently supported data types can be extended with new ones. On the
other hand, a potential way for the anonymization of timestamps and IP addresses, both recurring fields in
machine logs, can be demonstrated with the help of this sample dataset.
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5.3 Datasets

The proof of concept shows how the anonymization module works using two datasets. The UCI adult income
dataset[8] is a subset of the 1994 US Census data that contains some basic demographic information about
individuals, along with an indication whether their salary is above or below $50,000 per year. It is often used
for the demonstration of how various anonymization algorithms work. The sample web logs included in Kibana
of the Elastic Stack presents a series of artificially generated web requests. The fact that it contains timestamps
and IP addresses makes it valuable for this proof-of-concept implementation, for it allows to showcase how these
two further data types can be rendered anonymous.

5.3.1 UCI adult income

The UCI adult dataset, also referenced as Census Income dataset, was extracted from the US Census data
of 1994. It was originally meant for training and evaluating machine learning models. The task was binary
classification: predict whether a person makes above or below $50,000 yearly based on the 14 available attributes.
As a side note it is worth mentioning that the entries in the dataset do not cover specific individuals, but they
cover groups of people who are described by the given attributes values. The number of people corresponding
to one entry is represented by the final weight (fnlwgt) attributes. When using the data for anonymization,
however, the entries are assumed to belong to single individuals.

Among others, the dataset contains attributes like age, level of education, marital status, race and sex, among
others. These count as personal information, more precisely they are indirect identifiers. Therefore, besides
building machine learning models, this dataset is also a good candidate for testing various anonymization
algorithms. The salary attribute, the target variable to predict in the classification exercises, is regarded as a
sensitive attribute when anonymizing the dataset.

Typically, only a subset of the 14 attributes are used in anonymization tasks, and this proof of concept follows
the same practice. In total eight attributes are taken into account when creating the equivalence classes. Two
of them are continuous, numerical attributes, namely the age and educational number fields. The educational
number is the equivalent of the education attribute, mapped into a numerical form. The education attribute
is a categorical one, however it has a natural ordering: from primary school until a doctorate degree, the
levels of education follow each other in clear succession. Categorical attributes with a natural ordering can be
mapped into numerical values, and from that point on they can be treated as numerical attributes during the
anonymization procedure. This comes in handy for demonstrating the anonymization with multiple numerical
attributes, otherwise only the age could be used.

There are three categorical attributes: occupation, sex and race. And the last three attributes, namely
marital status, native country and workclass, are hierarchical. The proof of concept takes an open repository
with a Mondrian implementation as a starting point. This project treats each of the three above mentioned
categorical attributes as hierarchical ones, with a two-level hierarchy tree. The root simply contains an asterisk,
meaning that the value is completely suppressed, while the leaves store the original attribute values in the
second level. This precisely reflects how categorical attributes, without any means for generalisation, should
be treated: they are either kept in their original form or are suppressed completely. However, mapping them
into either hierarchical or, in case of categorical attributes with a natural ordering, into numerical attributes
makes the implementation simpler, since instead of three only two attribute types need to be handled and
the end results remain the same. The proof-of-concept implementation follows the same approach, using the
generalisation hierarchies defined in the open Mondrian repository.

The dataset comes in the format of a text file that contains each entry in a new line, with the attribute values
separated by commas. After each comma, a space is included that causes problems during parsing. Besides,
some entries have missing values, denoted with a question mark, for some of the attributes. For the sake of
simplicity, these should be filtered out before launching the anonymization. Therefore, a simple preprocessing
of the original file is required. The spaces must be removed, along with any empty lines and lines that contain
a question mark. This can easily be done, for example, with the default grep and sed Linux programmes, or
practically with any other word processor.

At this point, the dataset is ready to be ingested into a database and to be anonymized. Figure 5.2 shows
a sample of the adults dataset with the attributes used during the anonymization.

5.3.2 Kibana web logs

The Kibana web logs is one of the three artificially generated datasets shipped with the tool. They can be
ingested into an Elasticsearch index on demand with one click. Once in the database, the data can be explored
through the KlIbana Ul with the help of premade visualisations and dashboards. The web logs contain general
information about web requests made by some fictional clients. The fields of the Elasticsearch documents
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Figure 5.2: A sample of the UCI adult dataset

present some details about the machine used, the client IP address, the user agent and geographical data about
both the server and the client, among others. Figure 5.3 shows a document of the Kibana web logs.

(3 @timestamp Apr 6, 2823 @ 22:49:29.444

t agent Mozilla/5.8 (X117, Linux xB6_64; rv:6.8al) Gecko/28118421 Firefox/6.8a1l
# bytes 2,958

@ clientip 99.76.183 .49

t geo.dest TR

t geo.src us

t geo.srcdest US:TR

t host artifacts.elastic.co

t index kibana_sample_data_legs

@ ip 99.76.183.49

t request Jelasticsearch/elasticsearch-6.3.2.deb
t response 288

t tags success, info

3 timestamp Apr 6, 2823 @ 22:49:29.444

Figure 5.3: A document of the Kibana web logs

The main reason for choosing this dataset for anonymization is the presence of timestamps and IP addresses.
These are attribute types the anonymization of which could not be demonstrated on the adults dataset. Given
that timestamps and IPs are frequently recurring fields in logs and that the company is primarily interested
in log anonymization, demonstrating the anonymization of these two data types in the proof of concept is
essential. For this reason, the clientip and the timestamp fields are chosen to be anonymized. Other than these
two, the bytes field, as a numerical attribute, and the geo.dest field, as a hierarchical one, are also included in
the anonymization. The former represents the size of the response, while the latter contains a two-letter country
code that describes where the server is located. In this dataset, two attributes are considered sensitive: the host
and request fields, describing the domain and the path of the requested URL. Semantically, the anonymization
of these logs does not make much sense, but it serves well the demonstration of how the two new data types
can be rendered anonymous.

For the geo.dest field, containing two-letter ISO country codes, a four-level generalisation hierarchy is con-
structed. Following the asterisk, i.e. the completely suppressed value, in the root node, the internal ones contain
continents, their regions, and finally the two-letter country codes stored in the leaf nodes[22]. Listing 5.1 shows
a segment of the description of the generalisation hierarchy from the configuration file of the Kibana web logs. It
is important to note that some country codes used in the web logs were not part of the standard ISO definition.
The small set of documents containing such country codes are ignored during the anonymization.

{

"value": "Europe",
"children": [
{
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"value": "Central Europe",
"children": [

{
"value": "AT",
"children": []
}’
{
"value": "CH",
"children": []

Listing 5.1: A segment of the description of the generalisation hierarchy from the configuration file of the Kibana
web logs

5.3.3 The configuration files

For each new dataset, a dedicated configuration file must be constructed. The configuration file contains the &
parameter for the minimal number of records each equivalence class must have, the list of sensitive attributes
and information about each indirect attribute to be involved in the anonymization. Such information is the
attribute type, for hierarchical attributes the generalisation hierarchy and any additional algorithm-specific
properties. Listing 4.1 in Chapter 4 shows a segment of the configuration file for the adult dataset. Listing 5.2
below presents the layout of the configuration file for the Kibana web logs. A fragment of the generalisation
hierarchy for the geo.dest field is included in the previous section. The configuration files in their entirety are
to be found in the GitHub repository.

{
llk“: 10,
"sensitive_attributes": ["host", "request"],
"qids": {
"timestamp": {
"type": "timestamp"
¥s
"clientip": {
||type||: llip“
Yo
"bytes": {
"type": "numerical",
Yo
"geo.dest": {
"type": "hierarchical",
"tree": {
"value": "x",
"children": [
{
"value": "Africa",
"children": [...]
},
]
}
}
}
}

Listing 5.2: The layout of the configuration file for the Kibana web logs

5.4 Mondrian

In the hope of speeding up the development, the proof of concept takes as a starting point one of the several
Mondrian implementations readily available in open repositories. The Basic Mondrian implementation of Qiyuan
Gong has been chosen[18]. As it is clarified in the description of the repository, Basic Mondrian is an extension
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of the original Mondrian algorithm with support for categorical and hierarchical attributes besides the numerical
ones.

The Mondrian algorithm is introduced in more detail in Chapter 2. Briefly, the top-down approach of the
algorithm can be summarised as follows. The entire, original dataset is taken as the initial equivalence class,
or as the Mondrian terminology calls it, the initial partition. This initial partition sets the most generalised
value for each of the quasi-identifier attributes. For numerical attributes it is the range that covers all of the
values in the dataset, while hierarchical ones take the value of the root node. Mondrian is a greedy algorithm.
In every step, based on a predefined heuristic, it chooses an attribute. It assumes that splitting the current
partition along this attribute creates more or less two subpartitions of equal size. The splitting of a numerical
attribute means the splitting of the range, for example along the mean or the median value of the items in the
partition. While these examples produce two subpartitions, there might be different methods for splitting a
numerical range into multiple new ones. The splitting of a hierarchical attribute is done by moving one level
down in the generalisation hierarchy tree. Depending on the number of child nodes, such a split results in two
or more subpartitions.

Once the new subpartitions are successfully created, the algorithm recursively tries to split these further.
Mondrian terminates once there are no more valid splits available. A split is valid, if the created subpartitions
contain at least k elements. It is important to note that this description of the algorithm relies on the assumption
made in the previous section that categorical attributes are mapped into hierarchical ones for the sake of
simplicity.

5.4.1 The open Mondrian implementation

It is completely up to the implementation to decide on, firstly, what heuristic to use for picking the attribute
to split along, and, secondly, on the methods for how exactly to split numerical ranges and the values of
the generalisation hierarchy tree. This proof of concept relies entirely on the approach followed by the Basic
Mondrian repository of Qiyuan Gong.

The heuristic for choosing the attribute to split uses the normalised width of the attributes. The width of a
numerical attribute equals the size of the range it covers, i.e. the difference between its minimum and maximum.
The normalised width is calculated by dividing the width of the current attribute value by the width of the
attribute value in the initial partition, i.e. by the greatest width the attribute can have. The heuristic always
picks the attribute with the greatest normalised width for splitting the current partition.

For example, in the adults dataset the age attribute of the initial partition covers the range from 17 to 93,
while the domain of the educational number attribute is between 1 and 16. This yields a width of 93 — 17 = 76
for the age attribute, and 16 — 1 = 15 for the educational number. Let’s assume a subpartition with a range
of (24-30) for its age attribute, and its educational number already having been split to the specific value of
14. In this case, the age attribute of the partition has a normalised width of (30 — 24)/76 = 0.079, while the
educational number yields (14 — 14)/15 = 0. In this case, the heuristic picks the age attribute as the next
attribute to split.

The width of a hierarchical attribute is defined as the number of child nodes that belong to the node, which
represents the current value of the attribute, in the generalisation hierarchy tree. Let’s take the marital status
attribute of the adult dataset as an example. Its generalisation hierarchy is presented in Figure 2.2 of Chapter
2. Seven leaf nodes belong to the root value, thus its width equals 7. Let’s assume the subpartition, mentioned
in the previous paragraph with the range of (24-30) for its age attribute, and 14 for the educational number,
contains the internal node value ”"Married” in the marital status attribute. This “Married” node has two
children, thus the width of the subpartition with regards to the marital status is 2. Furthermore, its normalised
width is 2/7 = 0,28. In this case, given that the normalised width of the marital status is greater than that of
the age, the heuristic would pick the marital status as the next attribute to split.

Once the attribute has been chosen, it must be defined how to split a partition along this type of attribute.
The Basic Mondrian implementation splits each numerical range into two. The split is carried out at the median
value of the attribute inside the partition. The implementation allows the creation of overlapping partitions.
For example, if one partition with a range of (54-55) for the age attribute has a median of 55, the split creates
one partition with the (54-55) range, and another one with the value 55. This detail becomes important when
rewriting the implementation to carry out the anonymization based solely on database queries.

Hierarchical attributes are split by stepping one level down in the generalisation hierarchy and creating new
partitions using the child nodes of the node representing the current value of the attribute. The implementation
only deems a split valid, if each of the created subpartitions have either at least k number of elements or exactly
zero elements in which case the subpartition can be discarded. This means that overlapping values in terms of
hierarchical attributes cannot be created. Overlapping subpartitions would mean that a dedicated subpartition
is created for each child value that covers more than k elements, and the rest of the elements are kept in the
original partition that is being split - provided, of course, that the number of such elements exceeds the k
number. Let’s take again the marital status as an example. On splitting a partition with the root value for this
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attribute, it might happen that the child values ”Married” and ”Singled” can constitute their own subpartitions,
but both the ”Never married” and ”"Married left” cover only k — 1 elements. In this case, the elements belonging
to the latter two values could be grouped together under the root node value, and the splitting of the partition
would be valid.

A discussion about overlapping attribute values is relevant, because allowing the creation and usage of
overlapping attribute values gives more flexibility to the algorithm, and can thus contribute to the generation
of an anonymous dataset with higher utility. At the same time, it can considerably increase the complexity of
the implementation.

After the termination of the Mondrian algorithm, i.e. having created all of the equivalence classes, the
implementation goes on to carry out the anonymization itself in a second step. The anonymized entry is
constructed by concatenating the sensitive attribute values of the original entry with the attribute values of
the equivalence class that the entry belongs to. The implementation iterates through each final partition,
that is each equivalence class, takes the original entries covered by this equivalence class and executes the
previously presented concatenating operation. The anonymized dataset along with its corresponding Global
Certainty Penalty or GCP score[17] constitutes the output of this Mondrian implementation. GCP measures
the information loss incurred during anonymization, thus the aim is to minimize this metric. Converted to
percentage as done in this implementation, 0% means that no information has been lost, while 100% suggests
that practically all of the attribute values have been suppressed and the anonymous dataset does not contain
any information at all.

The implementation relies on two data structures for storing information about numerical and hierarchical
attributes, and one for keeping track of the created partitions. These have become fundamental building blocks
of the proof of concept, as well, therefore it is worth introducing them briefly. The NumRange class represents
basic information about numerical attributes, like their range and width, in the original partition. The GenTree
is a recursive data structure that is capable of describing a generalisation hierarchy tree. Each instance of the
class represents one node in the tree. Other than the strictly necessary properties for a tree data structure,
it stores additional information that facilitates the operation of splitting and generalisation. The NumRange
and GenTree classes are essentially used for obtaining metadata about the various attributes while running
the algorithm. Accordingly, instances of these two classes are filled up at the very beginning, when reading
the dataset and constructing the initial partition. The original implementation does not use a configuration
file. Instead, the generalisation hierarchies are described in text files. The format is the following: each line
describes one path in the tree, going from the root to a leaf value, dividing the value of the nodes along the
path with a semicolon. Thus, the descriptor files of the generalisation hierarchies contain one line for each leaf
value. The NumRange instances are filled up after the reading through of the entire dataset and the extraction
of the attribute-specific metadata.

Finally, the Partition class describes the partitions produced by the Mondrian splits. Considering that the
final partitions generated by the algorithm correspond to the output equivalence classes, the Partition class
is suitable to be used as the standardised descriptor for equivalence classes. Accordingly, this class is passed
around during the communication between the database-specific backend and the algorithm implementation.
In case of pivoting to the use of a web API, as proposed in the architecture of Chapter 4, this class can also be
easily used after serialisation.

The original repository uses these classes for basic data storing. As the implementation of the proof of concept
progressed, the structure of all three of them were adapted and changed. The attribute related information,
scattered and stored as multiple dictionaries in the original repository, were extracted into a new, dedicated
Attribute class. Some helper functions were added to the classes, like that of GenTree, for instance, for
obtaining all of the nodes from a specific level in the generalisation hierarchy tree. And eventually some
functionality from the original codebase was also extracted, mainly as dedicated functions into the Attribute
class. Such are, for example, the functions for mapping an attribute to a condition in the desired database
technology. This is discussed in more detail in Section 5.8.

The data to be anonymized is read from a text file in CSV format. It is read line-by-line and the cleaning of
the data, like the removal of spaces and entries with missing values presented in Subsection 5.3.1, is managed
entirely from code, with the help of if statements and string operation. Each entry, i.e. each line of the CSV file,
is stored as a list of strings. The index of the string value in the list corresponds to the index of the attribute
in the original file. Thus, the input dataset is eventually read into memory as a list of lists of strings. The
original implementation works directly on this representation of the dataset in memory. While this approach
is sufficient for demonstration purposes with small datasets, when it comes to data sizes of higher magnitudes,
this type of in-memory anonymization faces scalability issues very soon. The reading of millions of rows of data
into memory, even if done using powerful data handling libraries, like pandas, instead of simple lists, has its
clear limitations.
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5.4.2 Adapting the codebase

For a better readability of the code, the work started with refactoring the original codebase of the repository.
This refactoring considerably contributed to developing a profound understanding of the implementation. This
was fundamental, given that the original repository carries out in-memory anonymization from which the proof
of concept needed to pivot to a database query-based approach.

The refactoring primarily focused on the renaming of variables, the splitting of large functions and the
introduction of Python type hints into the code. Once a deep understanding of the implementation was es-
tablished and the codebase was easier to navigate, the next step was the extraction of the Mondrian API, i.e.
the construction of the contract that describes for future backend ”contractors” precisely what operations the
algorithm expects them to provide. The three aggregate queries, which are required for the extraction of the
attribute specific metadata, and then eventually throughout the anonymization, include the calculation of the
minimum, maximum and the count of the desired attribute. As a matter of fact, these three operations will
constitute the so-called universal API that any k-anonymization algorithm most probably needs to function,
and that every database backend must implement accordingly.

There is only one Mondrian-specific query that makes up the algorithm-specific API: obtaining the median
and the next value after the median for the specified attribute. The heuristic, as introduced in Subection 5.4.1,
assumes that the splitting along the median divides the current partition the most efficiently. The maximum
of the first subpartition will be the median, while its minimum is that of the original partition. The value
following the median determines what the minimum of the second subpartition should be, and the maximum
of the original partition is assigned to the maximum of the second new subpartition.

The universal API can be mapped into an abstract Python class definition. On creating a new algorithm-
specific API, this abstract API class can be taken as the parent to inherit from. Once the APIs are defined,
the algorithm implementation can take the algorithm-specific API class as a constructor parameter. From that
point on, the algorithm can legitimately expect that calling the ”endpoints”, i.e. the public functions of the
object they obtain through their constructor, gives them the correct answers which they can trust and use for
carrying out their further operations. Accordingly, the code blocks of the original implementation carrying out
these operations, like the calculation of the attribute minimum, maximum and median, can be replaced with
calls to the algorithm-specific API.

The abstract parent class, i.e. the universal API, also contains a function for forwarding the generated, final
equivalence classes to the database backend. The production of the anonymized dataset is thus delegated to the
database-specific component. Consequently, the logic carrying out this step in the code can also be removed
and substituted with a simple call to the API object received in the algorithm constructor.

These steps significantly simplified the codebase, and also allowed the further refactoring of the used data
structures. The next milestone was the implementation of the Elasticsearch backend, as presented in Section
5.6. The challenges and bugs in the Mondrian implementation explained in the following subsection were only
discovered after running the algorithm with the Elasticsearch backend. For the sake of cohesion, however, their
discussion is included in this section.

5.4.3 Challenges encountered

During the first runs of the query-based proof-of-concept implementation of Mondrian, the execution was
stopped due to a "maximum recursion depth exceeded” error. As it turned out, the code got stuck when
trying to split the partition with a numerical range of (18-19): it kept creating one subpartition with the
same numerical range, i.e. (18-19), and another one with a numerical value of 19. Then, it recursively calls the
anonymization function on the first subpartition. However, this was the exact same partition that was originally
split. The numerical attribute range was still (18-19), and, of course, the other attributes were not modified at
all. As presented in Subsection 5.4.1, the original Mondrian implementation allows the creation of overlapping
numerical ranges. And this is precisely what happened here, as well. The code produced the subpartitions the
way it is supposed to. So what went wrong here?

Once the cause of the infinite recursion was found, it was not so difficult to understand how this approach
was problematic in the query-based approach. If the splitting along the (18-19) numerical range produces a
subpartition that looks exactly the same as the original one, the query generated from this partition always
covers the same set of records, as shown in Figure 5.4. Thus, despite theoretically having executed a split, the
algorithm cannot divide the partition any further.

In contrast, the in-memory anonymization approach keeps track of the records belonging to the various
partitions through direct references. After the split, the entries covered by the subpartitions are not obtained
through queries: when the split is being carried out, the entries are explicitly placed into the new subpartitions
using their references, as Figure 5.5 demonstrates.

The problem of infinite recursion only occurs when the splitting of the partition results in a subpartition
of width 0, i.e. when the attribute contains a concrete value instead of a range. As long as splitting results in
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Figure 5.4: The result of querying overlapping ranges

age Subpartitions

18

18 A
19
19
19 B
19

Figure 5.5: When creating partitions with overlapping ranges, explicitly defining which record goes to which
partition

subpartitions with ranges of greater width, the algorithm seems to progress correctly. However, the functioning
of the algorithm is only seemingly correct. Splitting the range of, for example, 30-40 into two subpartitions
with ranges 30-35 and 35-40, the two subpartitions are overlapping. When formulating a query for these two
ranges, records with a value of 35 for the given attribute will be included in both of the subpartitions, which
corrupts the functionality of the algorithm already early on.

Undoubtedly, there would be ways to come up with some workaround that allows a query-based Mondrian to
support overlapping equivalence classes. For example, by initialising each partition with an additional identifier
number, the records owned by a partition could be flagged by its ID. Updating the records this way would,
however, come with a significant amount of additional database operations, considerably slowing down the
running of the algorithm. There might be other smarter, optimised workarounds that inflict less overhead on
Mondrian. However, considering that the implementation provided in this thesis project is meant purely as a
proof of concept, the above described problem is addressed through the simplification of avoiding overlapping
ranges altogether, instead of crafting a sophisticated workaround. This change solved the issue of the ambiguous
query results.

By preventing the generation of overlapping ranges, the recursion depth was not exceeded any more, the
algorithm terminated and produced the desired equivalence classes. The simplification, however, led to a
reduction in the quality of the produced anonymous dataset: its GCP score increased, i.e. more information
was lost during the anonymization procedure compared to the results of the original implementation. This did
not come as a surprise, such a compromise naturally results in a decrease in data utility. What was unexpected,
however, was a reduction in the number of equivalence classes created. Despite running the algorithm with
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k = 10, there were final partitions of size greater than 150. Frequently, one of the numerical attributes in
these partitions had a width of 1. This could already have raised some suspicion that perhaps a bug had been
introduced during the simplification described above. And indeed, that was the case.

The splitting of partitions along a numerical attribute in the original implementation is carried out the
following way. First, the records in the partition are sorted according to the numerical attribute. Then the
median, i.e. the record at the middle index in the sorted list of records, is stored, along with the record
right after the median. The first subpartition is created using the minimum value for the attribute range in
the original partition as the lower bound, and the value of the "median record” as the upper bound. The
smallest value of the record right after the "median record” is assigned to the minimum value of the second
subpartition, and its maximum value is copied from the maximum for the given attribute range in the original
partition. To prevent the creation of overlapping ranges, simply a new condition has been introduced: if the
median equals the upper bound of the attribute in the original partition, the split is deemed invalid and the
partition is left as is. Let’s consider what this means for the range of (18-19). The only valid split is creating
one subpartition for 18 and another one for 19, for both of which the number of records covered must exceed
k. If the median for the attribute in this partition is 18 (and also the subpartition sizes exceed k), the two
subpartitions are created. However, if the median is 19, then, using the condition introduced to prevent the
creation of overlapping partitions, the split is regarded invalid. Thus, the partitioning is aborted, even though
the split could be made. Once this bug was found and fixed, the output of the proof of concept approximated
that of the original implementation, both in terms of the partition sizes and the GCP metric.

5.5 Datafly

Given the availability of Datafly implementations in open repositories, the most convenient would have been to
base the proof-of-concept implementation on one of these, similarly to the approach followed for Mondrian in
the previous section. However, the bottom-up nature of Datafly did not allow it to simply reuse the existing
repositories due to scalability issues. Therefore, a new solution was required that is capable of executing query-
based anonymization. The original proposal of the Datafly algorithm includes various parameters that can be
finetuned per attribute. This provides a means to guide the heuristic that chooses the attribute to generalise in
each iteration of the algorithm. In one paper, Sweeney presented a simplified algorithm which assumes complete
homogeneity of the attributes in terms of their properties to fine-tune[41]. For the sake of the proof-of-concept
implementation, this simplified version of Datafly is used.

Datafly relies on the data structures defined and used for the Mondrian implementation. The configuration
file needs to be updated to involve an algorithm specific property per attribute, the details of which are presented
in the next section. The parser of the configuration file does not need to be changed, as it simply reads all of
the properties of each attribute.

A more detailed description of the algorithm is found in Chapter 2. Still, it makes sense to provide a brief
reiteration of the steps that the algorithm takes. The bottom-up approach means that the algorithm starts
by defining an equivalence class per unique record in the dataset and from there, by means of generalising the
attributes and merging equivalence classes, eventually creates and outputs the final set of equivalence classes
that already fulfil the k-anonymity property. The algorithm keeps track of a frequency list that contains all of
the defined equivalence classes up to that point along with the number of records covered by them. Datafly
also uses a heuristic for choosing the attribute the values of which are then generalised in the current iteration.
The heuristic picks the attribute with the highest number of unique values. The algorithm then generalised the
value of this attribute in each of the equivalence classes. This generalisation step merges equivalence classes,
until there are more than k number of records that do not belong to an equivalence class of size greater than k.
If the number of such records goes below k, they are simply discarded and the algorithm terminates.

The so-called synchronised step of the algorithm, i.e. always generalising the value of the attribute chosen
by the heuristic for all of the equivalence classes, makes Datafly rather Inflexible. In addition, the heuristic
introduces unnecessary generalisation steps along the way, which leads to an overgeneralization of the data, as
Sweeney points out in his paper. These characteristics combined with the simplified version of the algorithm
results in an anonymous output with considerably lower utility compared to that produced by Mondrian.
However, the Datafly implementation serves as a demonstration of working with a bottom-up algorithm, and
also helps to prove that the algorithms are indeed easily replaceable in the anonymization module.

5.5.1 Addressing the scalability issue

Following the bottom-up approach of the algorithm, as described in the original proposal, would require an
enormous effort at the beginning of the anonymization procedure. To produce the frequency list, the implemen-
tation should go through all of the records in the dataset and find each of the unique values among them. This
solution does not scale well as the size of the dataset increases. Generating the frequency list directly from the

46



records generates quite an overhead. Instead of starting from the ”very bottom”, skipping the initial general-
isation steps and starting with higher-level equivalence classes would spare quite some time and computation.
And this can be achieved by generating a set of such high-level equivalence classes, i.e. the frequency list, prior
to launching the anonymizer.

Although the equivalence classes would not be constructed from individual records, thus they can already
contain generalised values for the attributes, the algorithm still follows the bottom-up approach. Thus, the
more specific an attribute value is kept, the more equivalence classes will need to be generated to cover the
entire set of attributes in the dataset. The more equivalence classes are generated, the more statistics must then
be extracted from the database through queries to construct the frequency list. It becomes clear quite fast that
scalability is not an intrinsic property of this approach either. To keep the number of generated equivalence
classes manageable, the parameters of the generation procedure must be set carefully . Let’s see what this
implies for the different attribute types.

Numerical attributes are generalised by placing them in wider and wider ranges. The database backend can
be assumed to be the most efficient in defining the initial numerical ranges, considering that, through its direct
access to the data, it has all the information to construct the ranges based on some statistical properties of the
attribute in question. The proof-of-concept implementation relies precisely on this assumption. A corresponding
function is extracted into the Datafly API that expects the spreading of a numerical attribute into a specified
number of numeric ranges. On receiving the numerical attribute name and the number of ranges to produce,
the database backend must return a list of numeric ranges in the form of NumRange objects.

When it comes to categorical attributes, only the level of the generalisation hierarchy tree needs to be
defined. Based on that, the corresponding node values can be extracted and used in the initially generated
equivalence classes.

The information about how to use the attributes for creating the initial equivalence classes, i.e. the width
of the range in case of numerical attributes and the level of the hierarchy tree for the hierarchical ones, is the
best to include in the configuration file. Thus, the parsing function can read all information about each of the
attributes, from which each algorithm implementation can extract the information that is relevant for their
operations. Listing 4.1 in Chapter 4 shows one segment of the configuration file for the adults dataset, with the
Datafly specific attribute properties already included. If there is no Datafly-specific property defined for one
attribute, the implementation assumes that the attribute is expected to be suppressed entirely. Accordingly,
for categorical attributes the asterisk, for numerical ones the entire domain of the attribute will be used in the
generated equivalence classes.

The initial equivalence classes are constructed in two steps. First, according to the configuration file, the
desired number of ranges is generated for each numerical attribute and the node values on the defined levels
are extracted for each hierarchical attribute. In the second step, all of the permutations are generated from
the list of ranges and node values of the attributes. The total number of the initial equivalence classes can be
easily calculated by multiplying the number of generated ranges for the numerical attributes and the number
of nodes on the specified levels of the generalisation hierarchies. Considering how quickly the number of the
generated equivalence classes increases, making this calculation serves as a quick check and assists in fine-tuning
the generation procedure. It is important to note that this approach makes sense as long as the magnitude of the
number of the initial equivalence classes stays below that of the number of records in the dataset. For example,
in the case of the two datasets used in this project, i.e. the UCI adult and the Kibana web logs dataset, which
contain only a small set of entries, the number of the initial equivalence classes quickly goes beyond the size of
the entire datasets.

5.5.2 The implementation

The proof-of-concept Datafly implementation starts with generating the initial equivalence classes, as described
in the previous section. For each equivalence class, the number of records covered by them is queried using the
database API. This process corresponds to the creation of the frequency set in the description of the original
algorithm. The Datafly-specific API only contains one ”endpoint”, or function in case of the proof of concept
written in Python, namely the one used for calculating the percentiles and creating the numerical ranges for
the initial equivalence classes. The rest of the functionality required by the algorithm is already part of the
universal API that all database backends are supposed to implement.

With the frequency set, i.e. the initial equivalence classes, already in place, the anonymization algorithm
starts. In each iteration the attribute with the greatest number of distinct values in the frequency set is picked
for generalisation. Hierarchical attributes are generalised by stepping one up in the generalisation hierarchy
tree and replacing the current node value with that of the parent node. Numerical attributes are generalised by
merging two adjacent ranges together. For example, in case of the ranges (48-49), (50-55), (56-66) and (67-80),
the generalised ones would be (49-55) and (56-80). It is important to keep in mind that Datafly generalises each
equivalence class, i.e. each item in the frequency set, at the same time.
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The algorithm terminates once there are less than k number of records that do not yet belong to an equiv-
alence class. Each of these records are suppressed completely, while the final equivalence classes are pushed to
the database backend.

5.5.3 Challenges

During the implementation of the algorithm, one anomaly appeared. Once the equivalence classes for the
adults dataset had been created and sent to the database backend, and the anonymization terminated, the
anonymous dataset ended up with more records compared to the original dataset. This suggested that some of
the equivalence classes might be overlapping. Looking into the generated equivalence classes, this indeed was
the case. The issue was caused by the marital status attribute.

Taking a look at Figure 2.2 that depicts the generalisation hierarchy of the marital status attribute, it
is easy to notice that the tree itself is unbalanced. And this is precisely what introduced the bug into the
implementation. If the configuration file prompts the anonymization module to include second-level node values
of the marital status in the initial equivalence classes, it cannot find any such node in the ” Never-married” branch
of the tree. In case the given branch is more shallow, i.e. does not have any nodes on the specified level, the
leaf nodes of the branch are taken instead. Since the generalisation steps are synchronised, the shorter branches
will reach the root node faster than the others. If this happens, then one partition is created with the fully
generalised root node value, while the other partitions contain internal node values. The one partition with the
root value will cover all of the records belonging to the other partitions. And thus, the same records will be
anonymized multiple times.

One solution would be, in case of unbalanced trees, to discard all other partitions as soon as another value
reaches the root node in the generalisation procedure. This would introduce yet another overgeneralization step.
Instead, the implementation, before carrying out the generalisation for a hierarchical attribute, checks whether
the attribute values in the partitions are on the same level. If not, only those partitions will be generalised that
have the node values of the greatest depth. This way, even if some partitions start from a deeper level in the
generalisation hierarchy tree, they can catch up with the other partitions. At some point, the node values across
the partitions will be aligned, i.e. each will be a node value from the same level, after which the generalisation
steps can be synchronised again for this hierarchical attribute, as well.

5.6 Elasticsearch

Having extracted the algorithm-specific API, it was time to set up the Elasticsearch database and the backend
that relays the communication between the database and the algorithm. For the proof of concept a NetEye
instance was used that comes packaged with Elasticsearch. NetEye currently supports and is shipped with
the version 7.17 of Elasticsearch. The proof-of-concept implementation, of course, also works with a pure
Elasticsearch instance without a NetEye installation. However, it cannot be guaranteed that the implementation
functions out-of-the box with other versions of Elasticsearch. It is tested for version 7.17 only. For example,
the dataset of web logs shipped with Kibana by default looks slightly different in the latest version. Similarly,
minor changes might have been or may be introduced to the query API of Elasticsearch, which could break the
current implementation of the proof of concept backend.

For ingesting the adults dataset, already cleared as described in section 4.2, into Elasticsearch, a Logstash
instance is used that also comes preinstalled with NetEye. Logstash provides support for a wide range of data
sources. It is capable of parsing CSV files, as well. The configuration for the Logstash pipeline that reads and
sends the adults data to Elasticsearch along with some general hints are included in the GitHub repository.
Besides, through the Kibana frontend it is also possible to directly upload CSV files. Thus, setting up a Logstash
instance can be entirely omitted.

5.6.1 Reaching Elasticsearch from Python

The proof of concept relies on the official Elasticsearch Client Python library[36]. It makes the Elasticsearch
API easy to reach and work with from code, providing access to the entirety of its functionality. The queries
are assembled as strings which is a rather error-prone approach. However, considering that the proof-of-concept
implementation operates with queries of moderate complexity, it is not a major problem. For more elaborate
queries, it is recommended to use the Elasticsearch-DSL library that serves as a higher level client library. It
comes with additional abstractions and data structures that facilitate the writing and manipulation of queries,
making the interaction with Elasticsearch through Python code even more convenient.

For the authentication of the Elasticsearch client, the current proof-of-concept implementation uses an API
key. An API key for Elasticsearch can be generated through a dedicated API request or directly from the
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Kibana UI. The main function reads the API key, along with the address of the Elasticsearch instance and the
name of the index containing the data to be anonymized from environment variables.

5.6.2 Implementation of the APIs

The operations required by the two algorithms along with the universal API for algorithm backends in general
are already defined. Although the corresponding queries in Elasticsearch are not particularly complicated,
the usage of the query API is not trivial. Elasticsearch comes with a thorough documentation with plenty
of explanations and examples, which helps to get through the initial hurdles relatively easily. The various
database operations of Elasticsearch are reachable through a REST API. The Kibana Dev Tools, available in
the Kibana user interface, is a helpful tool for preparing, executing and trying out any Elasticsearch API call.
Its autocomplete feature also assists the user in constructing requests with the correct syntax.

The universal API contains three simple aggregate queries: counting the number of documents, and calcu-
lating the minimum and maximum of an attribute. Each of these operations must be made available for subsets
of the dataset which are filtered using the descriptor of the equivalence classes. There is a dedicated endpoint,
namely index_name/_count, for counting the documents. All other types of queries are available through the
index_name/_search endpoint. Aggregate queries also return the documents that are used for the aggregation,
unless explicitly prompted not to do so. The syntax for filtering among documents is the same for both API
endpoints. The construction of the filter condition might be somewhat more challenging, otherwise the count,
minimum and maximum operations are, of course, provided out-of-the-box by Elasticsearch.

Both of the two algorithm-specific APIs only define one extra operation. Mondrian requires the splitting into
two of a numerical range along its median. The algorithm needs a new upper bound for one subpartition, and a
new lower bound for the other one. Accordingly, beside the median value, the next smallest or previous greatest
value must also be obtained. Keep in mind that the Mondrian implementation of the proof of concept does not
support overlapping numerical ranges. If the median equals the maximum of the range, the numerical attribute
of one partition is assigned the median. That of the other partition will be a range with the minimum of the
original range as its minimum and the greatest value before the median as its maximum. If the median, on the
other hand, is smaller than the maximum of the range being split, one of the subpartitions is assigned a new
range with the minimum of the original range as its minimum and the median as its maximum. The smallest
value after the median serves as the minimum of the new range of the other subpartition, while its maximum
will be that of the original range. Elasticsearch comes with an aggregate operation that returns the specified
percentiles for a numerical attribute. Querying the 50th percentile yields precisely the median of the attribute.
The greatest value before the median, or the smallest one right after is obtained in a second step through a
simple maximum or minimum aggregation filtering for values less or greater than the median, respectively.

The only operation that a database backend must implement to support the Datafly algorithm is the spread-
ing of the domain of a numerical attribute into the specified number of ranges. One way to define numerical
ranges is to obtain the minimum and maximum for the attribute in question, and decide on the width of the
ranges. For example, for an attribute with a minimum of 10 and a maximum of 100, and the range width of 10
defined would result in the ranges of (10-19), (20-29), (30-39), etc. This approach is rather naive, as it does not
consider the ingested data at all, other than considering its minimum and maximum. Instead, the distribution
of the data can be taken into account to generate equivalence classes better tailored to the actual data. In
this case, the parameter to fine-tune is the number of ranges that is meant to be defined. Combining this with
the calculation of percentiles yields a set of ranges more adapted to the underlying data. Thus, percentiles
aggregation of Elasticsearch is adequate for responding to this request. The total of 100 percentiles are divided
into as many steps as the number of ranges defined in the configuration file. For example, wanting to create
four ranges yields the percentiles of 25, 50, 75 and 100. For the given attribute a query must be formulated
for each percentile. The result of each query will determine the upper bound of the new range, while the lower
bound can be simply set to the upper bound of the previous range.

5.6.3 Data mapping

To formulate the filter conditions, the descriptor of the equivalence classes stored in the form of Python objects
must be translated into Elasticsearch queries. Besides, once the algorithms terminate and the final equivalence
classes are produced, the same descriptors must be mapped into Elasticsearch documents with fields of the right
data types.

Elasticsearch supports numerical range queries; this functionality can be leveraged for mapping the gener-
alised range values of equivalence classes directly to queries. Hierarchical attribute values are stored as strings,
or to be more precisely as keyword data types in Elasticsearch. It is important to note that the internal node
value of the generalisation hierarchy trees cannot be directly used for querying, as the database does not have
any means of resolving these values by default. Even though the resolution could be done, for example, through
runtime fields, it would require the maintenance of the generalisation hierarchy tree both in the backend and
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directly in the database. Instead, it is the backend that resolves internal node values to all of their corresponding
leaf values. The queries are then built using only values that correspond to the values stored in the Elasticsearch
indices. For fields of the keyword type an array of values can be provided and included in the query to filter for
multiple values.

The mapping of the generalised attribute values of an equivalence class works quite similarly. Not only
range queries, but also range data types are supported by Elasticsearch. Numerical attributes are mapped to
such numerical range fields. Hierarchical attributes are mapped to keyword fields with one or more values,
depending on whether the attribute value in the equivalence class corresponds to a leaf or an internal node of
the generalisation hierarchy tree. There is another type of attribute that comes into play when producing the
anonymized dataset, namely the sensitive attribute.

Due to the k-anonymity property each equivalence class contains at least k elements. Accordingly, when
constructing the anonymous dataset, there will be k number of entries from which the sensitive attributes
must be extracted and inserted into the anonymous index concatenated with the equivalence class attributes.
Creating a dedicated anonymous document with all this information for each original document introduces a
large overhead due to the attribute values of each equivalence class being stored at least k number of times. In
an SQL database the equivalence classes can be placed in a dedicated table, and the sensitive attribute values
can be stored separately in another one. Then, the sensitive attribute values are linked to the equivalence classes
through their ID number, thus preventing the duplication of data. However, this approach of splitting data
into tables, which can then be joined on demand, is not meant for NoSQL databases, like Elasticsearch. So the
challenge is to create a k-anonymous Elasticsearch index with the least amount of data duplication, while at
the same time keeping it easily and efficiently searchable.

The most straightforward solution is to map the original documents one-by-one to the anonymous ones.
While from the perspective of data storage it is rather wasteful, working with and querying the resulting
index is straightforward. Alternatively, if an equivalence class contains the same set of sensitive attribute
values multiple times, multiple anonymous documents can be merged. Such merged documents would contain
an additional count field representing the number of times the current sensitive attribute value occurs. This
already compresses the anonymous index to a certain extent, while not adding particular complexity to the
queries. Another approach is storing each equivalence class once, with an array of the sensitive values that
belong to them. Storage-wise this is undoubtedly the most efficient solution. However, during queries working
with these arrays needs quite an effort. In addition, this approach is not applicable in case of multiple sensitive
attributes: storing each of the sensitive attribute values in their separate, dedicated arrays would sever the link
between the sensitive attributes that belong together. To circumvent this, the unique sensitive attribute value
combinations could be stored together as objects inside an array per equivalence class. Since these sensitive
attribute value combinations are already objects, their count inside the equivalence class can also be easily
included, similarly to the second approach presented here. While from the perspective of human readability,
this approach provides the best solution, the obstacles inflicted on querying through this document structure
might not be worth the trade-off. The proof of concept contains an implementation for all of the four approaches
introduced above. Depending on the use case, one or another might prove to be the best to work with.

The most straightforward solution is to map the original documents one-by-one to the anonymous ones.
While from the perspective of data storage it is rather wasteful, working with and querying the resulting index
is straightforward. An anonymous document created from the Kibana web logs using this approach is presented
in Figure 5.6. Remember that there are two sensitive attributes in this dataset, namely the host and the request.
The rest of the attributes are indirect ones that are generalised for achieving anonymity.

Alternatively, if an equivalence class contains the same set of sensitive attribute values multiple times,
multiple anonymous documents can be merged. Such merged documents would contain an additional count
field representing the number of times the current sensitive attribute value occurs. This already compresses the
anonymous index to a certain extent, while not adding particular complexity to the queries. Figure 5.7 shows
that the anonymous document is simply extended with a count attribute.

Another approach is storing each equivalence class once, with an array of the sensitive values that belong to
them. Storage-wise this is undoubtedly the most efficient solution. However, during queries working with these
arrays needs quite an effort. In addition, this approach is not applicable in case of multiple sensitive attributes:
storing each of the sensitive attribute values in their separate, dedicated arrays would sever the link between the
sensitive attributes that belong together. Figure 5.8 presents the outcome of an attempt at using this approach
and how the arrays of values in the host and request attributes yield a confusing result.

To circumvent this, the unique sensitive attribute value combinations could be stored together as objects
inside an array per equivalence class. Since these sensitive attribute value combinations are already objects,
their count inside the equivalence class can also be easily included, similarly to the second approach presented
here. While from the perspective of human readability, this approach provides the best solution, the obstacles
inflicted on querying through this document structure might not be worth the trade-off. The sensitive attribute
of such an anonymous document is presented in Figure 5.9. The JSON format of the document, as it is stored
in Elasticsearch, is shown here, because Kibana visualises such an array of objects in a confusing way.
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Figure 5.6: An anonymous document created from the Kibana web logs, using the approach of mapping each
original documents to an anonymous ones

The proof of concept contains an implementation for all of the four approaches introduced above. Depending
on the use case, one or another might prove to be the best to work with.

5.7 MySQL

The primary goal of developing a second database backend for the proof of concept is demonstrating the replace-
ability of the database-specific component in the architecture of the anonymization module. The algorithms are
supposed to rely only on the abstract API that they are interacting with, and they should function the same
way regardless of the actual backend implementation they are communicating with. SQL databases have not
lost their popularity, and both the company and its customers probably store data also in relational databases.
Consequently, the demonstration of how anonymization works inside MySQL can be of value for Wiirth Phoenix.

5.7.1 Reaching MySQL from Python

Before loading the data into MySQL, it is necessary to create a dedicated database with two tables, one for
the adult data and another one for its anonymized version. CSV files are easily loaded into MySQL with the
dedicated LOAD DATA command. It is also a good practice to create a database user with limited access rights,
with which the anonymization module can authenticate itself to MySQL. The SQL commands for setting up
the database and parsing the adults data file can be found in the README file of the GitHub repository[35].

The Python library developed by MySQL[31] makes it easy to connect to and work with the database from
code. The connector requires the address of the database, the username and the password, and the name of the
database that needs to be available by this point. The database backend of the proof of concept, similarly to
the Elasticsearch backend, reads all information necessary for the connection from environment variables.

5.7.2 Implementation of the APIs

The implementation currently assembles the database queries with the help of simple string concatenation. To
prevent SQL injection, the Python library for MySQL provides an easy way to safely parse external data into
the queries.

The universal API is rather easy to implement with MySQL, as well. The aggregate operation of COUNT,
MIN and MAX are, of course, provided out of the box. However, in MySQL a default operator for calculating
percentiles does not exist. There are various solutions proposed by the community to produce the percentiles
for a numerical attribute. One of the most simple ways, used also in this proof of concept, is to first sort the
data according to the attribute in question in descending order, and then take the nth row where n corresponds
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# bytes {

“gte": @,
"lte": 19986
}
B clientip 0.6.8.8/8
@ count 3
t geo.dest 5

BI, CF, CG, RW, TD, ZR, DJ, ER, ET, KE, SO, TZ, UG, KM, MG, MU, RE, SC, YT, D
Z, EG, EH, LY, MA, SD, TN, AO, BW, LS, MW, MZ, NA, SZ, ZA, ZM, IW, BF, BJ,

C

I, CM, CV, GA, GH, GM, GN, GO, GW, LR, ML, MR, NE, NG, SL, SN, ST, TG, BZ, C
R, GT, HN, MX, NI, PA, SV, CA, GL, PM, US, AR, BO, BR, CL, CO, EC, FK, GF, G
Y, PE, PY, SR, UE, UY, AG, AI, AN, AW, BB, BM, BS, CU, DM, DO, GD, GP, HT, J
M, KN, KY,£ LC, MQ, MS, PR, TC, TT, VC, VG, VI, AQ, KG, KZ, TJ, TM, UZ, CN, H

@ host artifacts.elastic.co

@ host.keyword artifacts.elastic.co

@ request /beats/metricbeat/metricbeat-6.3.2-amd64.deb

@ request.keyword /beats/metricbeat/metricbeat-6.3.2-amd64.deb

) timestamp {

"gte": "2023-82-85T06:39:82.912Z",
"lte": "2823-83-87T13:34:49.6882"
}

Figure 5.7: An anonymous document created from the Kibana web logs, using the approach of merging anony-
mous documents in the same equivalence class with the same sensitive attribute value into one document, and
adding a count attribute

to the desired percentile. The value of n can be calculated by multiplying the size of the result set with the
desired percentile divided by 100.

Once an implementation for calculating percentiles is provided, the algorithm-specific APIs can be imple-
mented the same way it is done in the Elasticsearch backend. Delivering the median and the previous or next
value for Mondrian is again carried out in two steps. First, the median is obtained by querying the 50th per-
centile for the specified attribute. Then, depending on whether the median equals the maximum value of the
numerical range of the attribute, the previous greatest value before or the next smallest one after the median
is queried using the MIN and MAX SQL operators. Spreading the attribute range into the given number of
subranges for Datafly is achieved by executing the percentiles query multiple times.

5.7.3 Data mapping

Partitions must first be mapped to conditions for querying with the SQL WHERE statements, and at the end
of the anonymization procedure they must be transformed into SQL INSERT statements in order to be added
to the anonymous table. The difference between the two database technologies, MySQL and Elasticsearch,
becomes evident when observing the data mapping functions.

Similar to the numerical range queries and the possibility to use an array of values when specifying filtering
conditions in Elasticsearch, the SQL language supports the same functionalities through the BETWEEN and
IN operators. Thus, numerical attributes are trivial to query. When it comes to hierarchical attributes, it is
important to note again that the internal node values, i.e. the generalised attribute values cannot be directly
queried without explicitly implementing a function for resolving it inside MySQL. This would require the
maintenance of the generalisation hierarchies also on the database size: To avoid this, just like for Elasticsearch,
the resolution should instead be done on the backend side, and the database should obtain only leaf values
inside queries that it can directly work with.

Once the equivalence classes are created, it is more straightforward how to create the anonymous table in
MySQL than it is in Elasticsearch. To avoid data duplication the equivalence classes can be stored in a separate
table, and the sensitive attributes can be placed in another one, referencing their equivalence classes through
IDs. The proof of concept for now, however, stores the anonymous data in one single table.

SQL databases do not support range data types. Therefore, the values of generalised numerical attributes
must be mapped into two fields. The proof-of-concept implementation creates an attribute_from and an at-
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# bytes {

“gte": 8,
"lte": 19986
}
@ clientip 6.8.8.8/8
t geo.dest 5

BI, CF, CG, RW, TD, ZR, DJ, ER, ET, KE, SO, TZ, UG, KM, MG, MU, RE, SC, YT, D
Z, EG, EH, LY, MA, 3D, TN, AD, BW, LS, MW, MZ,6 NA, 6 SZ, ZA K6 ZIM, ZW, BF, BJ,
CM, CV, GA, GH, GM, GM, GO, GW, LR, ML, MR, NE, NG, SL, SN, ST, TG, BZ,
GT, HN, MX, NI,k PA, SV, CA, GL, PM, US, AR, BO, BR, CL, CO, EC, FK, GF,
PE, PY, SR, UE, UY,6 AG, AI, AN, AW, BB, BM, BS, CU, DM, DO, GD, GP, HT,
KN, KY, LC, MQ, MS, PR, TC, TT, VC, VG, VI, AQ, KG, KZ, TJ, TM, UZ, CN,

TE o= m M
I = S > R I o |

t host 5

www.elastic.co, artifacts.elastic.co, www.elastic.co, artifacts.elastic.co, ¢
dn.elastic-elastic-elastic.org, www.elastic.co, www.elastic.co, artifacts.ela
stic.co, artifacts.elastic.co, cdn.elastic-elastic-elastic.org, cdn.elastic-e
lastic-elastic.org, cdn.elastic-elastic-elastic.org, cdn.elastic-elastic-elas
tic.org, www.elastic.co, artifacts.elastic.co, artifacts.elastic.co, artifact
s.elastic.co, www.elastic.co, artifacts.elastic.co

t request 3

/elasticsearch, /beats/metricbeat/metricbeat-6.3.2-1686.rpm, /beats, /beats/m
etricbeat/metricheat-6.3.2-amdé4.deb, /styles/main.css, /enterprise, /beats/f
ilebeat, /beats/metricheat/metricheat-6.3.2-amd64.deb, /elasticsearch/elastic
search-6.3.2.tar.gz, /styles/pretty-layout.css, /styles/app.css, /styles/ads.
css, /styles/pretty-layout.css, /apm, /beats/filebeat/filebeat-6.3.2-1inux-x8
6.tar.gz, /beats/metricbeat/metricbeat-6.3.2-amd64.deb, /elasticsearch/elasti

B s T T S L B s T T [ FE R P,

3 timestamp {
“gte": "2823-82-B5TBB:39:82.912Z",
“lte": "2823-83-B7T13:34:49.6588Z"

Figure 5.8: An anonymous document created from the Kibana web logs, putting each sensitive value belonging
to the equivalence class into a single array

tribute_to column for each numerical attribute in the anonymous table. Currently, hierarchical attributes are
simply stored as the values that the equivalence class contains, i.e. they are not mapped to the leaf values sim-
ilar to the approach followed in the Elasticsearch backend. This, however, makes working with the anonymous
data rather difficult. Since only the internal node values can be queried directly, some sort of value resolver
mechanism should be inserted between the sending of the SQL query and its execution in the database. Stor-
ing the leaf values, as in the Elasticsearch backend, instead of the internal node values is problematic due to
the fact that, other than PostgreSQL, SQL databases do not support arrays as a native data type. There are
workarounds, like using join tables or leveraging the JSON data type, to make an array storage-like functionality
available. As always, these have their own advantages and disadvantages that are best considered based on the
use case at hand. The current proof of concept relies on the most simple approach.

5.8 New data types

The two algorithms with the two database backends were implemented focusing on the UCI adult dataset.
Accordingly, only the two most common attribute types, namely the numerical and hierarchical ones, were
supported at that point. The next step was to introduce new attribute types into the proof-of-concept im-
plementation. From the side of Wiirth Phoenix the greatest interest was shown in the anonymization of IP
addresses and dates, as these two are frequently recurring data types in logs.

Using logs from a production environment was considered, however extracting and working with them would
have required extra caution. For demonstration purposes, however, any sample data containing such attributes
is sufficient. Kibana comes with three sample dataset, from which the web logs have been chosen to present
the anonymization of IP addresses and dates. It is a convenient choice, as, similarly to the adults dataset, it is
accessible for anyone, anytime. The Kibana web logs dataset is presented in more detail in Section 5.3.2. The
bytes, geographical location of the request destination, the timestamp and the client IP addresses are assumed
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sensitive_attributes”: [

1

"host": "www.elastic.co"
"request”:! "/felasticsearch”
"count
{
"host": "artifacts.elastic.co",
"request”! "/beats/metricbeat/metricbeat-6.3.2-1686.rpm",
"count
{
"host": "www.elastic.co"
"request”: "/beats",
"count
{
"host": "artifacts.elastic.co”,
"request”: "/beats/metricbeat/metricbeat-6.3.2-amd64.deb’
"count”: 3
{
"host"”: "cdn.elastic-elastic-elastic.org”,
"request”: "/styles/main.css”
"count
{
"host": "www.elastic.co"

Figure 5.9: An anonymous document created from the Kibana web logs, storing the unique sensitive attribute
value combinations together as objects inside one array in each equivalence class

to be the indirect identifiers used for producing the equivalence classes. The request URL and path are treated
as sensitive attributes. Semantically, the anonymization does not make much sense, but it is adequate for
demonstration purposes.

In the current proof-of-concept implementation the anonymization of datasets with attributes of the IP
address or date types is only available using top-down algorithms, i.e. Mondrian in this case, on data stored
in Elasticsearch. The proof of concept only implements the splitting of these attribute types, and it is not
capable of the generation of initial equivalence classes and the generalisation of such attributes that is necessary
for running Datafly. The dataset is available by default in Elasticsearch. It could, of course, be exported
and inserted into MySQL. When it comes to MySQL, the date type is supported, just like in any other SQL
database. A dedicated data type for IP addresses does not exist, but IPs can be mapped to and stored as
integers. Storing and working with subnet masks in SQL is less trivial. However, for the discussion of dates
and [P addresses, this thesis focuses entirely on Elasticsearch.

5.8.1 Refactoring

The original Mondrian implementation, used as a starting point for the proof of concept, relied on if statements
to differentiate between the attribute types. Consequently, the proof-of-concept implementation ended up
following the same approach. As long as there were only two data types, this approach was acceptable. However,
when attempting to introduce new types, it became evident that this approach cluttered the code too much
and took a toll on the maintainability, extensibility and reusability of the implementation. This necessitated a
major refactoring of the codebase.
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The main focus of the refactoring was on the creation of a class hierarchy for attributes. The original
Attribute class became an abstract parent class for all of the attribute types that the implementation intends
to support. It retained its data storage functionality, i.e. information like the width or the generalised value
of the attribute was stored by the abstract parent class. It was then extended with database specific abstract
functions, like the mapping of the attribute to a query or into a database attribute. And, most importantly, the
responsibility of splitting the attribute was also moved from the codebase of the algorithm to the Attribute
itself through its abstract split() function.

This meant that a great portion of the original algorithm code had got moved to the Attribute imple-
mentation, which resulted in a cleaner codebase and the responsibilities being moved to where they belong.
Besides the abstract Attribute parents class, an implementation was needed for the numerical and hierarchical
attributes for a start. From this point on when reading the configuration file, each attribute is instantiated
according to its type and stored in the Partition class as an abstract Attribute object. The algorithm only
calls the abstract functions available on the Attribute class and for every new type a different implementation
can be provided for the splitting or mapping operations.

For Mondrian, a dedicated MondrianPartition class was also implemented. It extended the original data
storing Partition class with two functions that were handling the internal state of the partition: checking
whether it is splittable and choosing one of its attributes for splitting. The creation of the subpartitions are,
however, still part of the Mondrian codebase.

Since the Attribute was turned into an abstract class, the code was not backward compatible, and thus
the Datafly implementation needed to be adjusted. The only necessary step was to instantiate the right type of
attributes when generating the initial equivalence classes and when generalising the attributes. it is important
to note, however, that the current implementation of Datafly still treats the Attribute subclasses as simple
data storage classes. Consequently, it does not make use of the polymorphism of the Attribute class in any
way.

The refactoring has indeed made the codebase easier to extend by moving the responsibilities to where they
better belong. The next step was to introduce the two new data types. Numerical, date and IP addresses have
one thing in common: all three of them are rendered anonymous by placing them in ranges. On the level of
code this also implies some commonalities in implementation. Accordingly, a RangeAttribute abstract class
has been created that serves as the parent class for attributes of type integer, date and IP address.

5.8.2 Dates

The complexity of the anonymization of dates depends on the resolution, where resolution refers to how detailed
the date attribute is. A timestamp with milliseconds also included is of the highest resolution, while providing
only the year for a certain event is evidently a lower-resolution date. The anonymization of a year-only date is
trivial, it is practically a numerical attribute. However, as the resolution of the date increases, i.e. the months,
days, hours, etc. are also included, the generalisation can be carried out on multiple levels. Considering a top-
down approach, first the year ranges, like 1900-2000, are split as long as the splitting ends up with a concrete
year, for example 1968. At that point, the splitting can continue on the level of months, the first split yielding
for instance the ranges of 1968.01-06 and 1968.07-12. Once the month range is reduced to one specific month,
e.g. 1968.03, the days of the month can be split, resulting in two more ranges, for instance 1968.03.01-15 and
1968.03.16-31. And this can go on until the desired specificity. The higher the resolution of the date, the more
complex the anonymization logic becomes.

Probably the most common date format in logs is that of timestamps, with milliseconds also included.
Thus, it makes sense to focus on this type of date in the proof of concept. There is one lucky charac-
teristic of timestamps: they are represented as the number of milliseconds elapsed since 1st January 1970
00:00:00 UTC. This means that if the readable date format of timestamps is converted into the millisecond
format, they can be treated as numerical attributes. And this is leveraged in the proof of concept. The
TimestampAttribute inherits from the DateAttribute, which is a direct child of the RangeAttribute class.
This means that the TimestampAttribute cannot inherit the IntegerAttribute, even though this class has all
the functionality needed for the anonymization of timestamps. To solve this problem, instead of inheriting from
IntegerAttribute, the TimestampAttribute class stores an instance of it and forwards all the operations to
this IntegerAttribute instance.

As a matter of fact, when querying Elasticsearch, timestamp fields are returned in both numerical and string
formats. Similarly, when ingesting a document into an Elasticsearch field of a date type, the millisecond format
is automatically interpreted correctly. Thus, the only function the TimestampAttribute must implement is the
one specifying that the corresponding field in the anonymous index should be of the date range type.

There is one point to keep in mind. The width of timestamp attribute ranges is the number of milliseconds
between the upper and lower bound. This might result in a far greater magnitude in terms of width, and a far
lesser one if normalised, for this attribute compared to numerical or hierarchical ones. Consequently, timestamp
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attributes might always end up as the last ones being split. If this is a problem, a different width definition
should be constructed.

5.8.3 IP addresses

When it comes to IP addresses, a natural way for placing them in ranges already exists, namely by using subnet
masks. The Kibana web logs contain IPv4, i.e. IP version 4 addresses, thus this discussion and implementation
focuses on this type of IPs. A subnet mask defines which portion of the 32-bit IPv4 address determines the
addresses of the network and the host machines. Taking the subnet mask number of bits at the end of the
address describes the network that the hosts are part of. Accordingly, the other half of the bits in the address
provides the addresses of the hosts inside the subnetwork. For example, the address 143.192.89.156 with a
subnet of 24, concisely written as 143.192.89.156/24, says that the first octet, in this case 156, determines a
host machine inside the subnetwork with the 143.192.89.0 address.

Subnets masks can be leveraged for the anonymization of client IP addresses. Generalisation is achieved by
decreasing the subnet mask. And to make an IP range more and more specific, the subnet mask can be increased
in every step. Since the proof of concept only supports the anonymization of IPs with Mondrian, the discussion
focuses on the top-down approach, i.e. the splitting of generalised IP ranges. The initial Mondrian partition,
which must encompass all of the records in the dataset, starts with the 0.0.0.0/0 subnet mask. This covers
the entire set of available IPs on the internet. On splitting a range, similarly to numerical and date attributes,
two new ranges are created. The subnet mask is incremented by one, thus the number of bits that determine
the network address is increased by one. In the position of the new bit, now included in the network address,
one of the two ranges is assigned the value 0, while the other one takes 1, yielding the ranges of 0.0.0.0/1 and
128.0.0.0/1. Splitting the latter, again incrementing the subnet mask by one and assigning 0 and 1 to the new
bit position, results in 128.0.0.0/2 and 196.0.0.0/2.

Since Mondrian decides on the next attribute to split along based on the width of the attributes, this must
be defined for IP addresses, as well. An obvious choice is calculating the number of host addresses that the
current subnet mask covers, i.e. 232-subnet-mask T case of small subnet masks this yields huge numbers, which
implies the problem already mentioned for timestamps: due to the magnitude of the width, when normalised
this attribute will be one of the last ones to be chosen for splitting.

Elasticsearch, besides numerical and date ranges, comes with support for the IP range type, as well. There
are two ways to determine an IP range: either by simply specifying a starting and end point, or by using subnet
masks. The implementation stores the generalised value for IP addresses in the 143.192.89.156/24 format that
Elasticsearch recognises and parses correctly. Thus, on producing the anonymous documents, the generalised
value can be forwarded right away and it will be ingested as the desired IP range. Then, through range queries,
it is easy to work with these attributes.

This approach of systematically splitting the IPs in half starting from 0.0.0.0/0 is rather rigid. It does not
take into account any of the statistical properties of the attribute, for example. Unfortunately, functions for
calculating percentiles, minimum and maximum are not defined for attributes of the IP type in Elasticsearch,
thus the methods used for a smarter splitting of numerical and timestamp attributes are not applicable. The
logic, however, could undoubtedly be refined. Another issue is overgeneralization. For example, if there are
exactly k number of IP addresses in the 0.0.0.0/31 subnetwork, and eventually all of these belong to the
1.2.3.0/24 subnetwork, the anonymization procedure will produce an equivalence class with the generalised
value of 0.0.0.0/31, even though it could further refine the attribute value and increase the utility of the data
without decreasing the privacy guarantees.

Overall, the approach presented for the anonymization of IP addresses can be used as a starting point.
However, in order to maximise the utility of the anonymous dataset, this solution in the proof-of-concept
implementation must be made more sophisticated.

5.9 The final implementation

The wire_up() function in main.py shows how, leveraging the abstractions, the desired algorithm and database
backend combinations can be set in the anonymization module. Of course, it must be taken into account which
dataset is found in which database and whether the data types in them are supported by the chosen algorithm.
However, like in the case of the adult dataset, the components are indeed easily interchangeable depending on
which database and k-anonymization algorithm is preferred at the moment.

The proof-of-concept implementation currently comes with a connector for MySQL and Elasticsearch. The
two algorithms implemented are Datafly and Mondrian. Datafly only supports numerical and hierarchical
attributes, while Mondrian is prepared for the anonymization of IP addresses and timestamps, as well. Two
configuration files are provided, one for the adults dataset and another one for the Kibana web logs.
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Based on the proof of concept, the anonymization module is ready to be extended with new algorithms
and database connectors. Refining the code of Mondrian or implementing one of the more modern algorithms
opens the way for producing truly high quality anonymous data. Following the example of the attribute class
hierarchy, support for new attribute types can also be developed. And if the company intends to store and
anonymize data in any database technology other than Elasticsearch and MySQL, the anonymization module
can be easily extended with the desired connector.

It is important to keep in mind that the primary goal of the proof of concept is not to provide sound
and efficient implementations for the algorithms and the supporting database operations. Instead, it aims to
demonstrate how the proposed architecture can be leveraged to develop an anonymization module that is easy
to modify and extend on demand as the technology keeps evolving or the company and customers requirements
change. Accordingly, the usability of the implemented algorithms and database connectors is limited, and should
be revised and at least refined, if not reimplemented, for production systems.
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Chapter 6

Discussion

Implementing the proposed architecture for the anonymization module has provided valuable feedback and
brought to the surface issues that were not anticipated. Taking a look at the output, i.e. the anonymous
datasets, in the two different kinds of databases also highlighted some challenges when it comes to ingesting
and working with k-anonymized data. This chapter briefly recaps these insights and discusses some general
questions around anonymization and GDPR.

6.1 Takeaways from the implementation

To make the anonymization scalable, the anonymization module carries out query-based anonymization. Instead
of directly reading the data into memory and processing it from code, the bulk of the operations are formulated as
queries, thus ”outsourcing” them to the database. Although for the sample datasets currently used in the proof-
of-concept implementation the communication with the database considerably slows down the anonymization
procedure, the query-based approach shows its strength as the quantity of the data increases. Once the data
does not fit into the memory any more, the usability of the in-memory anonymization becomes questionable.
Furthermore, directly accessing the data inside the database, where it is originally located, also spares the extra
steps of the extraction and rereading of the datasets. This is convenient, especially if there are a great number
of datasets to anonymize.

Of course, the query-based approach does not come without its own challenges. During the implemen-
tation two major issues emerged: handling equivalence classes with overlapping attribute ranges and finding
a workaround to skip the otherwise non-scalable initial steps of bottom-up algorithms, in this case those of
Datafly. On the one hand, with all of the records read into memory, and thus having direct references to them,
in-memory anonymization can easily move records around among equivalence classes without the overlapping
ranges causing too much problem. However, when keeping track of the records through queries only, it is not
possible to trivially differentiate between records belonging to two or more overlapping ranges. The trade-off
to consider is whether to incur some additional computational costs or to accept the increased information loss
in the data that comes with avoiding overlapping equivalence classes.

On the other hand, the Datafly implementation in the proof of concept serves as a good example how it
might not be possible to realise some algorithms in practice using the query-based anonymization. Datafly
follows a bottom-up approach, i.e. it creates an initial equivalence class for each record in the dataset, which
the algorithm then goes on to merge until all of the merged equivalence classes exceed the k number of records.
The workaround used in the proof-of-concept implementation aims to generate higher-level, initial equivalence
classes based on the statistical properties of the dataset. The goal is to approximate a state that the algorithm
would reach by starting from single records, as proposed in the original pseudocode. Such a scenario might occur
with other algorithms too, which necessitates the development of workarounds to adapt some of the algorithm
steps to the query-based approach.

It is also worth remembering that, while the proof of concept implements the anonymization module in
one single Python project, the original proposal suggests using a web API for intercomponent, i.e. backend-
algorithm communication. This aims to avoid locking the module into one technology or framework, and thus
making it easily extensible and the components easily replaceable. While relying on web interfaces maintains
the flexibility of the module, it of course incurs some additional communication overhead. This constitutes
another trade-off to take into account.

The proof-of-concept implementation is only meant to demonstrate the feasibility and usability of the pro-
posed architecture, and highlight some initial pitfalls and trade-offs to keep in mind. It has fulfilled the goal
of pointing out a general direction for a future implementation, but the exact trade-offs and fine-tuning of
parameters are to be decided upon there and then based on the use case in question.
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6.2 Takeaways from the anonymous datasets

As presented in the dedicated sections for the MySQL and Elasticsearch backends in the previous chapter,
the final appearance of the anonymized data might be significantly different based on the database technology.
In MySQL, it is easy to reduce the storage size by creating separate tables for the equivalence classes and the
sensitive attributes. However, storing arrays is not supported by default which causes issues when the leaf values
belonging to an internal node of a generalisation hierarchy tree should be put into an attribute. In Elasticsearch,
storing multiple values in one field is trivial, while a compact storage with easy searchability is not. Therefore,
when rendering data anonymous, careful attention must be paid when defining the final database scheme.

It is important to keep in mind that the end goal is not simply anonymization itself. Anonymization only
serves as a layer for protecting the personal data of individuals. Ultimately, however, the produced dataset will
be subject to thorough data analysis. Whether processed by human analysts or algorithms, the anonymous
data set must be both of high utility and easy to work with. Without experience, however, defining precisely
what sort of output is easy to work with is not trivial either. A common practice of the industry, when lacking
the experience, is "outsourcing” the generation of some initial insights or best practices to the ”community”
through the organisation of hackathons. While these, of course, require financial and time investment, the
company might benefit from them in many ways. The participating teams can come up with creative ways to
extract information from such anonymous datasets. They can give feedback on what made their work difficult
which might point to some aspects to tweak when producing anonymous data.

6.3 Anonymization and GDPR

When it comes to anonymization, a tool in itself is not sufficient to produce GDPR-compliant anonymous
datasets. First of all, having experts around with relevant knowledge in the domain of the data along with
a clear understanding of statistics and privacy is inevitable for correctly mapping out the environment and
setting up the anonymization procedure. The direct, indirect and sensitive attributes must be categorised. The
algorithm parameters must be fine-tuned. The potential weaknesses must be taken into account. Besides, other
publicly available datasets must also be considered to evaluate whether linking them with the anonymous output
can compromise the privacy of any individuals. The anonymization module, while an important component,
constitutes only one part of the anonymization procedure, and it must be guided and assisted by the right domain
knowledge complemented with the sufficient level of scrutiny to function as a real anonymization solution.

The uncertainty around the practical implications of GDPR further complicates the clear definition of a
sound anonymization procedure. Despite the regulation being in force since 2018, the implementation of the
various technical and administrative measures is progressing rather slowly. To a large part this is due to the fact
that it is difficult to find clear best practices even for fundamental articles of the regulation. As a matter of fact,
the regulation is meant to address the legal uncertainty. Recital 9 states that ”the objectives and principles of
Directive 95/46/EC remain sound, but it has not prevented [...] legal uncertainty”[37]. Considering this, it is
paradoxical that there seems to be no attempts at clarifying the practical implications of the regulation, and
thus the uncertainty around it is not reduced in any way. For example, since 2014 the opinion of the Working
Party 216 on anonymization has not been extended or updated.

When looking at the situation from the perspective of the legislator, however, this uncertainty might be
intentional to a certain extent. At the current speed of technological development, it is almost impossible to
anticipate the new directions in the coming years. In addition, regulating technology from the legal domain is
also quite a challenge. This is why GDPR relies on terminology like ”all the means reasonably likely to be used”
and "reasonably feasible”. Maintaining this degree of ”legal uncertainty” eventually becomes an incentive for
data controllers to keep an eye out for the latest developments, and to update their security and privacy measures
regularly. It incentivises organisations to get involved and invest in the related research fields, for example in
anonymization. And these, in turn, generate discussions and raise awareness not only in the academic world, but
also among European citizens in general. Thus, GDPR indirectly becomes a driver of research, innovation and
public discourse in the domain of security and privacy through maintaining uncertainty. While this undoubtedly
causes some headache to data controllers, ultimately it is furthering the cause of the regulation and helps to
achieve its final goal.
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Chapter 7

Limitations

One limitation of the thesis project is its focus on one specific anonymity model. This comes with a certain degree
of inflexibility, which limits the number of use cases that can be addressed through the proposed anonymization
module. In comparison, the ARX data anonymization tool, for example, offers a wide range of models to choose
from, which can then also be combined according to the user’s preferences and needs.

Although already mentioned previously, it is important to emphasise again that the proof-of-concept imple-
mentation has been developed with several simplifications, with the sole purpose of showcasing the feasibility
and the functioning of the proposed architecture. Accordingly, the implementation of the algorithms and the
database queries are not optimised and might not be sound. The anonymization of the various data types
could also be revised and refined. Furthermore, the proof of concept does not offer a solution for supporting
non-overlapping equivalence classes with the query-first approach. Neither does it present the web API-based
intercomponent communication, as proposed in the original architecture.
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Chapter 8

Future work

The next step would be to, potentially taking the proof of concept as a starting point, implement a more robust
and performant anonymization module by optimising both the database- and the algorithm-specific components.
The web interface should be introduced to make the two components independent from each other. It would be
worth looking into more modern k-anonymity algorithms that are capable of producing a better approximation
of an optimal k-anonymization.

Afterwards, the various simplifications can be addressed. More sophisticated ways can be introduced for
the anonymization of the various attribute types. A solution needs to be proposed for supporting overlapping
equivalence classes. These steps can considerably increase the utility of the anonymized datasets.

To improve the privacy guarantees, the k-anonymity model can be updated. In the opinion of the Work-
ing Party 216 of the European Data Protection Board the known weaknesses of k-anonymous datasets are
presented, along with some updated models that address precisely these weaknesses. Looking into [-diversity
and t-closeness, and algorithms capable of producing datasets that fulfil the properties of these models, would
result in a more robust anonymization module in terms of privacy. Furthermore, the introduction of other
anonymity models, like differential privacy, into the anonymization module can be considered to further extend
the capabilities of the solution.

When it comes to addressing use cases, there are two directions for future work. On the one hand, further
connectors can be implemented for any of the database technologies that the company or its customers use
for storing personal data. On the other hand, other items from the anonymization taxonomy, as proposed
in Chapter 3, could be considered. By taking a closer look at these and initiating discussions with various
stakeholders around the company or with its customers, potentially new use cases can be identified. Such use
cases could, in turn, highlight new directions for the further development and extension of the anonymization
module.
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Chapter 9

Conclusion

The main goal of this thesis project has been to propose a way for Wiirth Phoenix to include anonymization in
their service portfolio. Since the GDPR became applicable in 2018, the company has been actively seeking ways
to facilitate the compliance of their customers with the regulation, partly relying on already existing functionality
of their product, NetEye, and partly through the development of additional tools. Recital 26 of the GDPR
states that the regulation does not apply to anonymized data. And this is precisely why anonymization is of
interest for the company, and why the inclusion of data anonymization in their GDPR-related services provides
value.

It is primarily log anonymization that the company deems as potentially relevant for their customers, and
thus the main interest of Wiirth Phoenix lies in anonymization inside Elasticsearch. However, considering the
recent rapid technological advancement, it seems irrational to focus entirely on one technology. Therefore, the
thesis project proposes a flexible architecture for an anonymization module that makes it possible to easily
replace the data source and algorithm used. The benefit of such an architecture is threefold. Firstly, even
though the logs of Wiirth Phoenix and its customers are stored in Elasticsearch, a demand might emerge for the
anonymization of personal data stored in other technologies. Keeping the anonymization easily adaptable helps
to quickly respond to such new requirements. Secondly, the company might decide to pivot to other log storage
technologies, like Splunk or any upcoming competitor of Elasticsearch. In this case, again, the flexibility will
be beneficial. Thirdly, as the research in anonymization advances, new algorithms will undoubtedly be popping
up in the coming years. Therefore, the replaceability of the algorithms is crucial for a robust solution.

For the anonymity model the industry-standard k-anonymity has been chosen. The decision was made after
proposing an anonymization taxonomy, considering various use cases and taking into account which of these
could be of interest for the company. The log anonymization that Wiirth Phoenix is interested in belongs
to the static, one-time, server-side anonymization. And such use cases can be addressed through producing
k-anonymous datasets.

Based on the proposed architecture, a proof of concept has been developed to demonstrate the feasibility
and functioning of the anonymization. The proof-of-concept implementation comes with an Elasticsearch and
a MySQL backend. Both of them support the anonymization of numerical and hierarchical attributes, while
the Elasticsearch backend is also capable of anonymizing timestamps and IP version 4 addresses. The proof
of concept can run two k-anonymization algorithms, Datafly and Mondrian. Furthermore, it comes with two
configuration files, one for the UCI adult dataset and another one for the Kibana web logs. These two present
the general layout for a correct configuration file of the anonymization module. They show the various prop-
erties that are expected to be present, along with how the types, the algorithm specific information and the
generalisation hierarchies per attribute are to be defined.

While the proof-of-concept implementation, per definition, comes with limitations and simplifications, it can
serve as a good starting point for the company to start their discussions about anonymization and to develop
their own implementation. During one of the weekly developer meetings at the company, the thesis project was
presented in the frame of a one-hour workshop, with the first 20 minutes dedicated to a theoretical introduction
of the basic concepts in the field of anonymization along with the proposed anonymization module. The rest
of the workshop focused on the demonstration of the anonymization of the two datasets with the help of the
proof-of-concept implementation. In addition, the module has been set up on one of the test machines of the
company, so that anyone interested in trying out or developing further the implementation has direct access to
it.

Referring back to Chapter 8, there are multiple directions for extending the anonymization module. The
current work has shown that the flexibility in terms of algorithms and data sources can be achieved relying on
the proposed architecture, and that the set of supported data types can be easily extended. With its feasibility
proven, the next step is to make the solution more performant and robust.
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