
1

Graph generation for synthetic stock data
Bachelor assignment paper

Matthijs Reus

Abstract— There will always be a finite amount of
time over which stocks have been recorded. Therefore,
synthetic stock data create fabricated timelines where
investment strategies can be tested and enhanced. I
investigate how graph generation can assist in gener-
ating synthetic stock data.

Graphs are used to understand how objects like
computers, people, molecules or companies are related.
In this work, I use graphs to connect companies with
similar stock data in a company correlation graph.
The graphs will be encoded as a sequence, to allow a
recurrent neural network to be trained and generate
new graphs. In turn, such graphs can be used to make
predictions about the future stock values.

My results show that this model can generate
company correlation graphs similar to the original
data set. This approach is the first to use graph
generation for synthetic stock data.

I. INTRODUCTION

ACCURATE financial models and informed de-
cision making are crucial for investors of all

sizes, big and small, alike. Recent advancements in
machine learning and machine learning accessibility,
paired with the representational power of graphs,
present new opportunities for developing innovative
approaches to modeling stock market behaviour.
In this paper, I explore the use of graphs, graph
generation, and recurrent neural networks (RNNs)
to generate hypothetical stock data that can assist in
creating and testing investment strategies.

The overall aim of the project is to investigate if
using (partial) graph representation of stock data and
graph generation can improve the generation quality
of the synthetic stock data. To this end, I pursue the
following research question:

How can we use stock data to generate inter-
company graphs?

To this end, I propose methods to retrieve the
graph dataset from the stock data, and to generate
similar yet different graphs, using RNNs, to assist in
generating hypothetical stock rates. The pioneering

aspect of this work lies in its use of AI-generated
company-correlation graphs to improve the genera-
tion of synthetic stock data.

The underlying idea for using company corre-
lation graphs is that stocks do not exist on their
own, but in a market. These graphs capture in a
comprehensive way the similarity and dependency
between companies. By transforming time series
data (which is how stock data is currently collected)
into correlation graphs, I can incorporate these ad-
ditional factors that influence stock fluctuation.

To then generate new correlation graphs, I employ
the GraphRNN model [1], [2], which utilizes RNNs
in an encoder-decoder architecture. The encoder
converts the correlation graph into a latent space
representation, which enables the decoder to gen-
erate similar yet distinct graphs. The training of
the GraphRNN model involves learning the node
and edge distributions from a dataset of correlation
graphs, which I created from time series stock data.

The remainder of this paper is organized as fol-
lows. I build a foundation by introducing relevant
background and related work in section II. Then,
I provide a high-level description of the proposed
system in section III, which contains subsections
describing each part in detail. I empirically evaluate
the proposed approach, and present the method and
results of the evaluation in Section IV. I conclude in
section VI, summarizing my finding and proposing
suggestions for future developments.

II. BACKGROUND AND RELATED WORK

A. Data

The data used to create graphs is collected from
Yahoo Finance [3]. This source provides, for a large
number of companies, time-series with the following
information: open value, highest value, lowest value,
close value, adjusted close value, and volume. The
time series have a daily interval, and are taken



2

over a year. For the purpose of this research, we
collected data from 24-5-2022 until 22-5-2023. This
time interval is suggested by the beneficiary of
this research, Peracton Ltd. which provided example
data for a single company [4]. Then to increase
the data I extend with the top 40 companies from
S&P500, ranked by weight, according to [5].

The data is collected as an archive of csv files,
with a companies ticker symbol as filename. Each
file corresponds to a single company, and the data
in the files is organized as seen in table I.

B. From time series to graphs

Since the general task of this project is to use
graph generation to generate better hypothetical
stock data, the raw data needs to be transformed
into graphs. No single model or procedure exists
for this transformation. For example, L. Lacasa et al.
models the time series as spikes, and two datapoints
are connected if their created edge does not intersect
another spike [6]. A survey of such methods is done
by V. Silva et al. [7], including correlation graphs.
As my requirements are a multivariable time series
input and undirected unweighted graphs output, the
survery indicates the correlation graph is a good fit.

C. Correlation graph

A correlation graph can imply relations between
multiple time series. It is obtained by calculating
the correlation matrix of a set of time series. X. Yin
et al. describe how the correlation matrix can be
converted to a graph by thresholding with a value τ
[8]. The thresholded correlation matrix can then be
interpreted as an adjacency matrix of a graph. This
graph is the correlation graph.

D. Graph generators

There are many types of graph generators. To
understand these options, I have conducted a prelim-
inary survey, where I included the main survey on

TABLE I
THE STOCK DATA FORMAT (AS PRESENT IN THE .CSV

TIME-SERIES FILES).

Filename: <company ticker symbol>.csv
Date Open High Low Close Adj Close Volume

... ... ... ... ... ... ...

the topic [9], [10]. Although algorithmic approaches,
like RMAT [11] or MUSKETEER [12] do exist,
recent research has left those approaches behind to
capture more complex relations. My survey indi-
cated that modern techniques rely almost exclusively
on machine learning in order to learn the node and
edge distributions. For this work I selected, based on
its for flexibility in graph sizes, an auto-regressive
approach for generating correlation graphs .

E. Recurrent Neural Networks (RNN)

The main advantage of RNNs is that information
from past computations can be used for future
computations, in order to more accurately predict the
next step. This way, more contextual and complex
decisions can be made to create more accurate
graphs. To be able to use past information, it is im-
portant that the network keeps the same weights and
biases. This prevents the model size from exploding.
The RNN model in fig. 1 shows how previous
results are taken from memory to influence current
prediction.

LSTM and GRU, two more advanced implemen-
tations of RNN, deal with the vanishing/exploding
gradient problem the original RNN has. During back
propagation, the gradient gets multiplied each time
with weight w2 (see fig.1). A factor bigger than one
lets the gradient explode; a factor smaller than one
vanishes the gradient. If the weight w2 is set equal to
one, it is no longer a weight but a wire. Expanding
the model with a remember and forget gate greatly
reduces the vanishing gradient problem, and creates
what is called a GRU model (see fig. 2).

F. GraphRNN

By writing the graph as a breadth first search
sequence of nodes, tools like RNN can be used
for graph generation. J. You et al. use two RNN
models to create new graphs [2]. The two models
operate in a encoder-decoder relation. The first en-
codes the BFS sequence into a smaller latent space.
This encoding ensures there will be similar, yet
different graphs made by the decoder. Moreover,
they introduces maximum mean discrepancy as a
method to evaluate graph likeness.



3

w1 w2

+ b1

tanh

Memory

Input

Fig. 1. RNN model architecture

w1 w2

+ b1

sigmoid

w3 w4

+ b2

sigmoid

w5 w6

+ b3

tanh

Input

Memory ×

×

1- ×

+

Fig. 2. GRU model architecture

G. NN models to FPGA

E. Nurvitadhi et al. have shown that FPGAs can
be efficient for running GRU models [13]. Thus, we
consider the additional research question of how the
created model can be run on an FPGA.

To do so, we consider High level synthesis
(HLS), a process that converts the high level code
– e.g. Python, C++, C – to a hardware descrip-
tion language e.g. VHDL, Vitis, or Verilog. For
machine learning applications, there are a couple
libraries/tools to assist in this matter: hls4ml, Intel
oneAPI AI Analytics Toolkit, and Xilinx Vitis AI
are the most popular ones. For this project, we
investigate whether hls4ml can provide HLS for the
provided RNN model. hls4ml is the smaller and least
complex open-source tool for using HLS in machine
learning, so we chose it for its lack of complexity.

III. DESIGN & IMPLEMENTATION

The main idea of this paper is to use stock
correlation graphs and generate new ones to assist
in creating more realistic ”alternative” time series.
In this section I present the proposed method - see
fig.3 - and discuss each component which is in
the scope of this paper. Specifically, I describe the
conversion from time series to correlation graph,
training the RNN model, and creating the graphs.
The conversion back to time series and a filter for
selecting realistic datasets (based on economic and
stock market parameters) is considered outside of
the scope of this work.

A. Correlation graphs

Using jupyter lab1, the .csv are loaded into a
panda dataframe. These dataframes are then ordered
in new dataframes, each containing the information
of one data type - e.g. open value or high value
- and one company per column. The correlation
between each of these columns is calculated; the
result is a matrix containing all the correlations
between companies for a certain stock indicator.
Since the correlation between companies A to B is
the same as companies B to A, the correlation matrix
is symmetrical across the main diagonal. Thus, the
resulting correlation graph is undirected.

The correlation matrix is thresholded with a value
τ to create a matrix with binary values, which can be
translated to graphs in the networkx environment.
X. Yin et al. found in heir results the best value
for τ = 0.9 [8]. However, for my dataset, initial
results indicated this value was too large. Thus, the
edge count is doubled, using fig. 6. I trained another
model with correlation graphs with τ = 0.8, which
will be further explained in section IV.

The graphs of all different types are collected
into a single list to form the training dataset. These
different data types can all be put into the same
list because they all relate and influence each other
significantly. This is also beneficial for the size of
the training set. Thus, the training dataset consists
of 6 types of stock data over 13 months creating a
total of 78 graphs.

1https://jupyter.org/try-jupyter/lab/



4

Data collection Convert to graph
Train RNN Create Graphs

(CPU/GPU)

Create Graphs
(FPGA) Convert to time series

Filter time series

Scope of this paper

Fig. 3. Overall architecture of my approach to improve the generation of financial data through inter-company graph generation.

B. Training the RNN

The hardware used to train the model is a node on
the DAS-5 supercomputer, which contains an Intel
Xeon CPU and an NVIDIA TitanX video card [14].
The model parameters are largely kept the same as
those used by J. You et al. for their GraphRNN
paper, with a few minor alterations. It is known that
the data set always has 40 graphs so the output of the
model is always a 39 by 39 matrix. Furthermore, the
amount of epochs is increased from 3000 to 9000, as
the loss was still decreasing at 3000. The training
and testing data is split to 80% into the training
set. The loss function for backward propagation is
kept to be binary cross-entropy, which is specialized
for classification with two classes. In my case, the
classes are 1 and 0, representing connected and
unconnected nodes. Before training on my data sets,
I validated the GraphRNN correctness by confirming
the results using the community4 data set [2].

C. Creating graphs

The output of the RNN model is a matrix of (n−
1)×m, where n is the maximum amount of nodes
and m is the maximum previous node the generated
node can connect to. The encoding stores whether
the n-th node connects with the m-th previous node.
The width of this matrix thereby also determines the
maximum amount of edges a single node can have.
This encoded adjacency matrix is then decoded into
a full adjacency matrix as seen in fig. 4.

Please note that the encoding can create a graph
which does not have to be connected. An example
of this case is presented in fig. 4; its corresponding
graph is presented in fig. 5. This process is described
in more detail in the appendix VII.


0 0 0
0 0 0
1 1 1
0 0 0
1 0 0

 →


0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


Fig. 4. Example of raw GraphRNN output and its converted
adjacency matrix.

Fig. 5. Graph corresponding to fig.4.

IV. EVALUATION AND RESULTS

A. Correlation graphs

Running the graph creation process for different
values of τ leads to the results presented in fig.6.
Note that the maximum amount of undirected edges
possible is

∑n
k=1 k = n(n+1)

2 , which in the case
of 40 companies is 820. One can observe that
increasing the value for τ decreases the amount of
edges, as expected. For the chosen τ of 0.9, the
average amount of edges per graph is 96 and for τ
of 0.8 is 199.

Note also that the graph with τ = 0.9 (fig. 8) has
a lot of islands, and especially single node islands.
The original model does not support single islands,
and had no islands at all in the original data set. This
was the main reason to create another dataset, with
τ = 0.8 (fig. 7). Note that these graphs have less



5

Fig. 6. Average edge count per graph versus τ

islands and (as seen also from fig.6), on average,
double the edge count. All the 78 graphs with τ =
0.9 formed the data set companies090 and all
the 78 graphs with τ = 0.8 created the data set
companies080.

Fig. 7. Correlation graph with τ = 0.8

B. RNN Training Results

The very first action to confirm the correct work-
ing of the virtual environment, and of the model
itself, is to train the model on the community4 data
set. In fig.9 it can be seen that the loss steadily
decreases with training. In fig.10 is a generated
graph of the community4 trained model, as the name
community4 suggests, there are four communities,
all interconnected to each other.

Fig. 8. Correlation graph with τ = 0.9

Fig. 9. Loss for data set community4

Fig. 10. Generated graph from data set community4

The next step is training on the companies080 and
companies090 data sets. The smoothed loss lines in
fig.11 and reffig:loss-090 show that the model con-
sistently improves itself by training. The decrease
from 0.14 to 0.11 shows an increase of 20% in
predictive capabilities. It can also be seen that the
model struggles capturing the graph properties of
companies090 consistently. In table II the NLL for



6

train and test are very similar. This proves that the
model is capable on graphs outside of the train set.

TABLE II
NEGATIVE LOG-LIKELIHOOD(NLL)

companies080 companies090
epoch Train NLL Test NLL Train NLL Test NLL
3000 123.45 123.13 80.81 80.78
6000 117.57 117.87 77.11 77.13
9000 113.79 114.01 74.80 74.64

Fig. 11. Loss for dataset companies080

Fig. 12. Loss for dataset companies090

C. Creating graphs

During the initial graph creation, I noticed that
the graphs would always be connected and be of
smaller size than requested. This happens because
islands are removed from the generated graphs in
the original GraphRNN application. However, my
dataset contains a lot of islands, which are likely
relevant for the financial case. Therefore, I updated
the generation code to allow islands.

Two examples of generated graphs are presented
in fig.13 and reffig:gen-090. The difference in
edge count due to the difference in threshold is
immediately visible. In table III the MMD on

TABLE III
MMD AT EPOCH 9000

MMD
Dataset Degree Cluster Orbit
companies080 0.036 0.355 0.073
companies090 0.067 0.334 0.081

Fig. 13. Generated graph with τ = 0.8

Fig. 14. Generated graph with τ = 0.9

these graph properties tells us that the graph is
comparable to what A. Khajenezhad et al. found
for GraphRNN[15]. However, the Cluster MMD
is higher than what J. You et al. found[2]. This
might be explained by the fact that the MMD scores
are highly dependent on the data set. The only
significant difference between data sets is the Degree



7

MMD. It is likely that since there are more edges
the model is able to learn more about where and
when to place them.

I executed one final test, to measure the speed
of the model. The model is able to create 1024
graphs in 479 milliseconds on the DAS-5, using
an NVIDIA TitanX video card. Speed is important,
because the more time series are accepted by the
filter, the larger the data set for investment strategy
training can be.

V. PORTING TO FPGA
A. Goal

All major deep learning frameworks support GPU
compute to enhance the speed of training and in-
ferencing AI models. However, computing is not
limited to CPUs and GPUs. In recent years, FPGAs
have been successful as accelerators, also for AI
workloads. FPGAs can provide efficient inference
by altering the logic circuit on their chip, thus cre-
ating performance by custom parallel computations
or data representation. For example, E. Nurvitadhi
et al. have shown that FPGAs can be very efficient
for running GRU models [13]. With gained effi-
ciency, more graphs can be generated and energy
consumption can be reduced. Therefore, My goal is
to provide an FPGA version of the model.

B. Attempts and tools
To convert the trained GRU model to an FPGA

configuration requires either low-level programming
using a hardware description language (HDL), or
high level synthesis (HLS), translating high level
code like python to an HDL specification. hls4ml
is a framework designed for HLS in a deep learning
context; the architecture of the framework is pre-
sented in fig. 15.

As seen in figure 15, the framework requires the
model in a specific format, which is then converted,
in a couple of stages, into an HDL representation.

The original pytorch model failed to import to
hls4ml. Another attempt was done with a model
converted to the portable ONNX format [17], which
is supported by hls4ml. However, I discovered the
pytorch and ONNX converters do not support GRU
layers2. However, the converter from keras does

2Determined by source code inspection at https://github.com/
fastmachinelearning/hls4ml/tree/main/hls4ml/converters.

Fig. 15. Using the HLS4ML architecture [16].

support GRU layers3. Therefore, I attempted to
convert the pytorch model to keras. Unfortunately,
the converter from pyTorch to keras did not support
the ConstantOfShape operation. which in turn
meant that the conversion to Keras failed.

C. Current status and future work

At this time it is not possible to convert the
pytorch GRU model to HDL. However, hls4ml is in
active development, and it is likely support for other
converters and/or for GRU layers will improve.

VI. CONCLUSION

My work has shown that recurrent neural net-
works are able to generate similar, yet different,
company correlation graphs. These artificial graphs
will help in the creation of better synthetic stock
data. First, I extract company correlation graphs
from raw stock data. I implemented a recurrent
neural network, trained to learn the node and edge
distributions. Finally, this trained model generates
new company correlation graphs.

I have encountered a couple of limitations during
my research; addressing these factors could enhance
the results of this paper. First, the dataset I used
was limited to one sample per day. A data set
with higher frequency, where data points are col-
lected at intervals in the range of minutes instead
of a day, will ensure better correlation metrics.
Furthermore, I have selected a specific conversion
method from time-series to correlation graphs; other
methods could also be explored. Finally, I have
selected a specific model architecture, dictated by
the GraphRNN implementation. More exploration of
the model could further improve graph generation.

3See footnote 2



8

There are also several aspects left for future
work in my research. First, the correlation graphs
could be further converted to time series. Connecting
this section of the project to a conversion back
to time series and the ”reality check” filter would
enable the model to be better optimized for its use
case. It would also confirm whether the addition of
generated graphs improves the quality of synthetic
stock data.

Furthermore, the correlation graphs are put in
a common pool of graphs. Instead of generating
graphs that are similar, one could attempt to predict
the state of the next correlation graph. An additional
RNN model using the hidden state should be able
to predict the next hidden state. This requires a lot
more data and the data to be structured as a sequence
of graphs instead of graphs on their own.

Ever since the release of ”Attention is all you
need” paper, transformer models have been replac-
ing RNNs in a lot of areas [18]. Graph genera-
tion also experienced its introduction to transformer
models with the Gransformer [15]. This model can
generate models with lower MMD on some data
sets and is known for capturing more complex
dependencies. This model might also improve upon
the companies080 and companies090 data sets.

The first company graph generator has been made.
Yet this is just the opening of a field for graph
generation for stock prediction applications.

ACKNOWLEDGEMENTS

I would like to express my gratitude to all the
individuals who have contributed to the completion
of this paper. First and foremost, I would like
to extend my appreciation to my supervisor, Ana-
Lucia Varbanescu, for her guidance and feedback.
Additionally, I would like to acknowledge the con-
tributions of Tristan Laan, who consulted on the
difficulties surrounding the hls4ml framework. I am
grateful for their aid.

REFERENCES

[1] M. Reus, “code.” [Online]. Available: https://github.com/
Mathi18R/code

[2] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec,
“GraphRNN: Generating Realistic Graphs with Deep Auto-
regressive Models,” 2018.

[3] Yahoo!, “Yahoo! finance,” accessed: May 30, 2023.
[Online]. Available: https://finance.yahoo.com/

[4] P. Ltd., “Peracton,” accessed: June 23, 2023. [Online].
Available: https://peracton.com/

[5] Slickcharts, “S&p 500 companies - s&p 500 index
components by market cap,” accessed: May 30, 2023.
[Online]. Available: https://www.slickcharts.com/sp500

[6] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C.
Nuño, “From time series to complex networks: The
visibility graph,” Proceedings of the National Academy
of Sciences, vol. 105, no. 13, pp. 4972–4975, 2008.
[Online]. Available: https://www.pnas.org/doi/abs/10.1073/
pnas.0709247105

[7] V. F. Silva, M. E. Silva, P. Ribeiro, and F. Silva,
“Time series analysis via network science: Concepts
and algorithms,” WIREs Data Mining and Knowledge
Discovery, vol. 11, no. 3, p. e1404, 2021. [Online].
Available: https://wires.onlinelibrary.wiley.com/doi/abs/10.
1002/widm.1404

[8] X. Yin, D. Yan, A. Almudaifer, S. Yan, and Y. Zhou,
“Forecasting stock prices using stock correlation graph: A
graph convolutional network approach,” in 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN), 2021.

[9] M. Reus, “Large scale graph generation with user defined
properties,” 2023.

[10] Y. Zhu, Y. Du, Y. Wang, Y. Xu, J. Zhang, Q. Liu, and
S. Wu, “A survey on deep graph generation: Methods and
applications,” 2022.

[11] D. Chakrabarti, Y. Zhany, and C. Faloutsosz, “R-mat: A
recursive model for graph mining,” 2004.

[12] A. Gutfraind, I. Safro, and L. A. Meyers, “Multiscale
network generation,” 2015.

[13] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan,
and D. Marr, “Accelerating recurrent neural networks in an-
alytics servers: Comparison of fpga, cpu, gpu, and asic,” in
2016 26th International Conference on Field Programmable
Logic and Applications (FPL), 2016, pp. 1–4.

[14] VU Amsterdam, “DAS-5,” accessed: June 26, 2023.
[Online]. Available: https://www.cs.vu.nl/das5/

[15] A. Khajenezhad, S. A. Osia, M. Karimian, and H. Beigy,
“Gransformer: Transformer-based graph generation,” 2022.

[16] “hls4ML,” accessed: June 26, 2023. [On-
line]. Available: https://cms-ml.github.io/documentation/
inference/hls4ml.html

[17] “ONNX documentation,” accessed: June 30, 2023. [Online].
Available: https://onnx.ai/onnx/intro/

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is
all you need,” CoRR, vol. abs/1706.03762, 2017. [Online].
Available: http://arxiv.org/abs/1706.03762



9

VII. APPENDIX


0 0 0
0 0 0
1 1 1
0 0 0
1 0 0

 →


0
0 0
1 1 1

0 0 0
0 0 1

 →


0
0 0
1 1 1
0 0 0 0
0 0 0 0 1

 →


0
0 0
0 0 0
1 1 1 0
0 0 0 0 0
0 0 0 0 1 0

 →


0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


Fig. 16. Example of raw GraphRNN output and its converted adjacency matrix

To go from RNN output to adjacency matrix each row of the encoding is flipped and inserted with an
offset. The diagonal is then filled with zeroes. This implies there is a maximum amount of edges per node
determined by the encoding. A main diagonal is added ensuring no encoding space is wasted to self loops.
Then to make the graph undirected it is mirrored across this new main diagonal.


