
Exploring Large Language Models and Retrieval Augmented Generation
for Automated Form Filling
MATEI BUCUR, University of Twente, Netherlands

Large language models (LLMs) such as the GPT family have shown re-
markable natural language processing capabilities across a variety of tasks
without requiring retraining or fine-tuning. However, leveraging their poten-
tial for use cases beyond the traditional chatbot paradigm remains an open
challenge. One potential application is automated form completion, which
enables users to fill out online forms using natural language and leverages
available data about the user and the form completion guidelines. This can
benefit a broad range of processes, such as applying for a loan or grant,
filing a tax statement, or requesting a service. However, automated form
filling faces challenges such as understanding form layout, guidelines, and
user intent, as well as reasoning over data, in order to generate accurate and
coherent text. In this paper, I propose a general method for adapting LLMs to
different form-filling domains and tasks. The method consists of three steps:
(1) creating a knowledge base that contains facts and rules related to the
form-filling task; (2) augmenting the LLM with the knowledge base using
retrieval-augmented generation; and (3) using prompt engineering tech-
niques to improve the outputs. I evaluated the effectiveness of the method
and the impact of the techniques on the task of completing request forms
for various incentives and services.

Additional Key Words and Phrases: Large language models, gpt3.5, retrieval
augmented generation, form filling

1 INTRODUCTION

1.1 Motivation
Forms are an essential way to extract information from people and
have been used for a long time in various domains and contexts.
They are a tool used to collect information in a structured and
standardised way by means of a printed document with spaces in
which answers to questions can be written. [3] Forms are needed
for interacting with different institutions. Several industries, like
healthcare, finance, government, law, and education, rely heavily on
their usage. Every person faces a high likelihood of having to deal
with form filling throughout their life, as it is a pervasive activity
needed in common endeavours such as reporting taxes, applying for
a credit card, or registering insurance. I have identified five types
of forms based on their purpose and format: request, registration,
consent, evaluation, application, report, and declaration. Form fill-
ing is typically not a creative task but a functional one in which
accuracy, compliance with guidelines, and attention to detail are
valued. However, it is common for people to make mistakes while
completing them. According to an expert in grant applications, com-
mon mistakes include not following the instructions, not providing
enough detail, and not explaining the significance of the project
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[9, 10]. Therefore, the task of form filling is considered to be time-
consuming, bureaucratic, and tedious[4, 31].This could cause users
to abandon the form or provide inaccurate or incomplete informa-
tion. A survey found that 81% of people discontinued filling out an
online form midway through the process, and out of those, 67% of
them chose to terminate the process completely if they encountered
any difficulties[2].
In addition to filling out forms for personal use, this process is

common and crucial in the business world, 59% of US workers hav-
ing to use forms in their jobs[35]. Forms are frequently employed as
a tool to organise and standardise the data that organisations must
gather, handle, and analyse from multiple sources and stakeholders.
Businesses deal with a variety of unstructured, dynamic data sources
that must be accessed and comprehended. Even though searching
is now commonplace, the problem has not yet been resolved. An
excellent illustration of this is enterprise search, which is, roughly
speaking, the use of information retrieval technology to find infor-
mation within organisations. Despite having great financial value,
the topic has received little academic attention. [18] In order to be
able to fill in forms accurately, users must obtain and grasp informa-
tion from numerous sources, such as documents, databases, or web
sites, about the form guidelines and requirements. This requires
strong enterprise search capabilities. Enterprise search faces unique
challenges and problems that make it notoriously difficult to achieve
user satisfaction and have significant economic importance[13]. One
of the challenges identified is that context-aware search is a chal-
lenging problem for enterprise search systems, where users often
have diverse and dynamic information goals that depend on various
aspects of their work context.
In the digital age, online forms are the most common method

of data collection since they allow for inexpensive and effective
storage, processing, and analysis. However, online forms also pose
some challenges and limitations for users. To help improve the
efficiency of form filling, web browsers introduced the autofill and
autocomplete functions[1]. The autofill functionality fills in the
fields of a web form based on previously entered data, while the
autocomplete functions suggest or complete the fields based on
what the user has typed. While those are successful in easing the
completion of simple fields, they do not consider the broader context
of the form and the user and are not able to assist in more complex
ones.
To overcome the limitations of existing solutions, we require a

flexible system that is able to understand the context, requirements
and generate text. In this context, Natural Language Generation
(NLG), a sub-field of natural language processing, is relevant, as it
aims to generate text using input data (prompts, tables, images, etc.).
[11]. The transformer is a neural network architecture that lever-
ages self-attention to encode and decode sequences without using
recurrent or convolutional layers. It was first presented in [33] and
has since been widely applied to NLP tasks. This innovative design
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laid the foundation for the large language models we have nowa-
days. By leveraging the transformer architecture and scaling up data
and computation, large language models (LLMs) have emerged as
powerful neural networks that can generate natural language for a
wide range of domains and tasks.[36]

The growing interest in LLMs such as ChatGPT and GPT-4 is
evident from the increasing number of papers on arXiv that explore
their potential applications and ethical implications across diverse
domains [23], making it a valuable technology that is still in the
early stages of adoption.
In this research, I propose the Forms Copilot: a Large Language

Model-based System for Form Autocomplete to provide context-
aware completions for form fields that the user can review and
modify, thereby enhancing efficiency and easing the challenge of
filling out forms for users. Therefore, I address the following re-
search question:

RQ: How can we design a large language model based system
that leverages and adapts the model’s pre-trained knowledge
with retrieval-augmented generation of form completions in

the context of enterprise search?

1.2 Related work
OpenAI’s GPT (generative pretrained transformer) models have
repeatedly outperformed other LLMs in a variety of natural lan-
guage tasks, indicating their unrivalled ability to generate coherent
and diversified output[39].By combining a massive amount of data,
a Transformer-based architecture, and a post-training alignment
process, GPT-4 achieves unprecedented natural language genera-
tion and understanding capabilities, surpassing previous language
models and most state-of-the-art systems on a variety of tasks and
exams. It exhibits human-level performance on various professional
and academic benchmarks, such as passing a simulated bar exam
with a score in the top 10% of test takers [26]. GPT-4 exhibits more
general intelligence than previous AI models, as it can perform tasks
that require complex and logical inference that involves knowledge
and reasoning in addition to linguistic processing [6].
Large language models offer unprecedented opportunities for

businesses to improve their goods and services. There have been in-
vestigations on their potential use to enhance process management,
as they can assist users in various tasks, such as process discovery,
analysis, redesign, implementation, and monitoring, by generating
natural language responses, explanations, and suggestions. Even
though there are challenges and limitations, the adoption of LLM in
commercial products is expected in the future[34].

Knowledge-intensive tasks pose significant challenges for natural
language processing as they require models to access, understand,
and utilise a large and diverse amount of background knowledge,
domain-specific expertise, or general real-world knowledge. Chat-
GPT and GPT-4 demonstrate remarkable capabilities in these tasks
[39]. However, they rely on their knowledge, which is limited by
the data they were trained on and may not cover the specific and
dynamic information that is relevant for a given task or domain.
Moreover, they may generate incorrect or inconsistent information,
known as hallucinations, due to the lack of external verification

or feedback[8, 25]. These issues can limit the applicability and re-
liability of LLMs for form filling, where the information needs are
heavy and the data that needs to be inputted in the form is most
probably outside the scope of the LLM’s training data. To address
these challenges of complex and creative tasks, AI copilots leverage
generative models that can interact with users via natural language
queries and dialogue, synthesising answers from multiple sources
and domains[38].
One way to enhance LLM’s knowledge and leverage various

sources is retrieval-augmented generation (RAG). RAG is a lan-
guage generation technique that combines pre-trained parametric
and non-parametric memory[14, 21]. It combines a LLM with a
retrieval mechanism that can access external documents to generate
responses for knowledge-intensive NLP tasks. RAG consists of two
main components: the retrieval mechanism and a generator. The
retrieval mechanism is the way of finding relevant information from
a collection of documents based on the user’s query.
Several studies have proposed techniques to automate or assist

the process of filling out forms, especially web forms.
One related task that is similar to formfilling is patent claims, legal

statements that define the scope of a patent. A method to generate
these by fine-tuning was proposed by [20], and has demonstrated
capabilities of coherent generation. However, the work is considered
a first step towards auto-completion functionality.
There have been machine learning approaches for automated

form filling, one of which involves filling out categorical fields in
data entry forms[4]. Their approach, called LAFF(Learning-based
Automated Form Filling) uses Bayesian Networks (BNs) to learn
field dependencies from historical input instances of forms. LAFF
also applies local modelling to cluster input instances and builds
additional local BNs that capture fine-grained field dependencies.
During the form filling phase, LAFF uses the BNs to predict possible
values for a target field based on the values in the already-filled
fields and their dependencies. LAFF also includes a heuristic-based
endorser that decides whether the predicted values are accurate
enough to be suggested to the user. The authors showed that it
can provide accurate and efficient suggestions. However, their ap-
proach is limited to categorical fields and does not handle textual
or numerical fields. Moreover, their approach relies on the avail-
ability and quality of historical input instances. Furthermore, their
approach does not consider the context or intent of the user or the
form guidelines when generating suggestions.

1.3 Contribution
In this research, I make several contributions to the field of natural
language generation and form filling.

• To the best of my knowledge, this is the first work that adapts
LLMs for the task of form completion, which has many prac-
tical applications and challenges

• I design and implement a system that leverages and adapts
the pre-trained knowledge of an LLM, namely GPT-3.5, for
retrieval-augmented generation of form completions

• I develop a web extension that can scrape and fill fields on
various websites, as well as a backend architecture that uses
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FAISS indexing to retrieve relevant information from a knowl-
edge base and generate structured text using GPT-3.5

• I demonstrate the capabilities of the LLM to reason over un-
structured data and generate coherent and accurate text for
different types of forms

• I apply prompt engineering techniques to improve the quality
and diversity of the outputs and evaluate the impact of each
prompt variation on the results

• I test the system on a dataset of complex request forms and
show that it can provide a useful draft that is close to the
ground truth, thus offering assistance and productivity im-
provement for users

• I propose a general method that can be adapted to any online
form filling task with minimal changes, making the system
flexible and scalable

2 METHOD

2.1 Retrieval augmented generation
The proposed system’s RAG is composed of GPT 3.5 as the generator
and a FAISS index as the retriever. Although GPT-4 would be the
ideal model for the research, its availability is limited, and I could
only obtain a small sample of its outputs that is suitable only for
qualitative analysis. Therefore, I will mainly rely on its precursor,
GPT-3.5, for text generation[5]. The retrieval mechanism will be
based on embeddings[32], a technique used in NLP to represent
words or phrases as vectors of numbers. FAISS (Facebook AI Simi-
larity Search) is an open-source library for efficient similarity search
and clustering of dense vectors [16, 17]. FAISS generates an index
structure that organises the vectors in such a way that searching for
related vectors is quick and efficient. Given a query vector, FAISS
searches the index structure for the most similar vectors. The first
step is to split all the documents into chunks (paragraphs), gener-
ate their corresponding embeddings, and store them together in a
database. The form fields are encoded into a vector representation.
Then, the retrieval mechanism is used to find the documents that
are most similar to the query vector, based on Euclidean distance.
The retrieved chunks are then fed into the generator, along with
the rest of the prompt, to generate a response that incorporates the
relevant information from the documents.

2.2 Prompt engineering
Prompts are the main means of communication with LLMs and are
provided to guide the model’s output generation[7]. Prompt engi-
neering has emerged as one significant way to improve the output
of the models, and is a reliable alternative to finetuning[5]. One of
the most simple and effective techniques that has been shown to
significantly improve the ability of large language models to elicit
complex reasoning is chain of thought prompting(CoT)[37]. It in-
volves breaking down a complex task into sub-tasks, a behaviour
achieved by instructing the language model to think step by step.
Also, few-shot prompting is a technique used to guide the mod-
els into generating more desirable responses by providing a small
number of examples as part of the prompt[5, 29].

3 IMPLEMENTATION
I propose a cloud-based full-stack architecture inspired by [30]
that leverages large language models and an information retrieval
system to provide context-sensitive and smart autocompletion of
web-based forms in a user-friendly interface facilitated by the means
of a browser extension. One of the features of my architecture is its
flexibility and adaptability to different use cases and scenarios. The
system’s usage frequency and document sizes influence the decision
to index all documents or only the ones about guidelines and rules.
All documents can be indexed for one-time, highly personalised use.
For regular use by different users, only guideline documents can be
indexed, and user-specific documents can be directly passed and
added to the prompt.

3.1 Frontend
The frontend of the Forms Copilot is implemented as a chromium
web extension, allowing users to interact with the system seamlessly
and access and alter the contents of most of the websites that host
forms. The extension triggers the execution of two major functions:
the creation of the vector database of guidelines for form filling and
the form completions based on the user’s input and form fields. First,
the user is able to upload all the documents that may be relevant to
that specific task of form filling, such as FAQs, policies, guidelines,
and rules. These documents are sent to the backend to create of
the search index. Also, it encourages the user to provide a brief
description of the intent and purpose of the form and add extra
short-form documents to the system. For example, the research
proposal can be relevant in the case of applying for a grant. The
extension scans all the input fields and labels of the form and sends
that, along with the user data, to the backend for form completion.
The extension attempts to fill in the input fields, and in the case
of forms that do not allow autofill, it displays the results in the
extension window so the user can copy the answers.

3.2 Backend
The first component of the backend is an Azure function[12] which
has a public endpoint that can receive POST requests with the doc-
uments needed for the creation of the search index. It first stores
the files in their original form in an Azure blob storage container.
The container can be reused later if additional files need to be
added or modified. Each file is converted to plain text and split
into chunks of maximum 1000 characters using the text spliter func-
tion of Langchain [19], a widely used framework that simplifies the
development of LLM applications. For each chunk, a vector embed-
ding is generated using OpenAI’s text-embedding-ada-002 model
[27] and stored in another Azure blob storage container. Finally, the
address of the search index storage is shared with the frontend so it
can be communicated with the second component of the backend.
The second component is an Azure prompt flow, a feature in

Azure Machine Learning Studio that streamlines the experience
of building LLM applications and facilitates the process of prompt
engineering[30]. The deployed flow receives the user information
in the form of documents, one form field label, and the path of the
search index. It then generates the embedding for the label of the
form and performs a lookup function in the FAISS search index in
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Fig. 1. Architecture of the system: given the user data X (form guidelines), the extension sends it to the backend for the creation of the FAISS index storage;
the search index is later used in the generation of the form completion, together with user data Y(documents relevant for the form) and the scraped labels of
the web form

order to find the top 3 most relevant chunks to the label. The name
of the document for each chunk is appended, and all the formatted
chunks are added as context to the prompt. In addition, the text from
the user documents is extracted and added to the prompt. Finally,
the prompt adds the description of the general form-filling task and
the generation instruction that asks the gpt3.5 model to produce
the result in the form of a JSON object with three fields: reasoning,
sources, and value. After the response is generated, the object is
parsed, and the value of the field is returned.

4 EXPERIMENTAL SETUP
The proprietary dataset consists of 50 web page files of request forms
for various IT projects, submitted in the last 2 years by different em-
ployees. Each form is accompanied by a short document describing
the implementation and impact, as well as a collection of documents
with general guidelines and rules related to the process. Each form
has approximately 30 fields of various complexity, spanning from
filling out the name of the requester to justifications and inquiries
about the project plan. The fields are mainly text and number inputs
but also multiple choice, with slight variations in the field labels de-
pending on the version of the form. Each form and document were
processed as a list of JSON objects, with each object representing
one form field. The objects contain key-value pairs that represent
the id of the form, the field label, the ground-truth value, and the

text of the document. Due to the high costs of generating and eval-
uating the outputs of the generative model, I follow previous works
approaches [15] to subsample the dataset, in this case to 287 fields
for the evaluation. To execute the evaluation, I ran the experiments
on a cloud environment using a Standard-DS11-v2 Virtual Machine
(2 cores, 14 GB RAM, 28 GB disc) with a memory-optimized CPU.

5 EVALUATION
Evaluation is a great challenge in this research, and it is in general
for LLMs because they can generate diverse and fluent responses
that may not be easily comparable or verifiable by existing methods.
It is acknowledged that there is a need for metrics that reflect the
system’s human-like cognition rather than its constrained AI coun-
terparts to assess their performance and intellect [6]. Traditional
metrics, such as ROUGE and BLEU[22, 28], focus on lexical overlap
with reference texts, which may miss the semantics and complexity
of created texts. An alternative is G-EVAL, a methodology for as-
sessing the similarity of NLG outputs that combines large language
models (LLMs) with chain-of-thought (CoT)[? ]. G-EVAL requests
the LLM create comprehensive evaluation stages based on the task
and criteria and then score the results in a form-filling paradigm.
On two NLG tasks, text summarization and dialogue production,
G-EVAL has been shown to outperform the state-of-the-art eval-
uators and achieve higher human correspondence [24]. However,
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Table 1. Evaluation results for different variants of prompts

Variant f1 score BERTscore P BERTscore R BERTscore F1 G-Eval
0 (vanilla) 0.30 0.43 0.44 0.43 2.37

1 (CoT + cite sources + optimized prompt) 0.31 0.71 0.72 0.71 2.41
2 (CoT only) 0.34 0.53 0.54 0.54 2.38

Table 2. Evaluation results for different variants of contexts

Variant Evaluation f1 BERTscore ROUGE-1 ROUGE-2 ROUGE-L
0 Form guidelines 0.09 0.65 0.11 0.01 0.1
1 Project description 0.23 0.74 0.29 0.07 0.28
2 No supporting docs 0.13 0.72 0.14 0 0.14

that is still in the early stages of development and has shown a
bias towards LLM-generated texts. One alternative is BERTScore,
an embedding-based metric that compares the contextual embed-
dings of the generated text and the ground truth[40]. I evaluated the
Forms Copilot on the proprietary dataset with the metrics described
above.

6 DISCUSSION
In 1, it can be seen the impact of various prompt engineering tech-
niques. The results of the experiment show that the version of the
Forms Copilot that leverages all data sources and responses, uses
chain of thought prompting, asks the model to cite the sources,
and provides a description of the form has achieved an average of
2.41 / 5 G-EVAL score and 0.71 F1 BERTscore, indicating that the
suggestions are similar to the ground truth. This indicates that an
LLM based approach may be able to generate suitable responses
for the form-filling task that can later be reviewed and edited, thus
indicating a high probability of being more time-efficient. Further-
more, this shows that the model can benefit from a more detailed
description of the task and from breaking it down into sub-tasks.
Finally, the model can generate more accurate and relevant infor-
mation by citing the sources, which also greatly benefits the users
by increasing the transparency and explainability of the AI system.
The results in2 show that the documents directly related to the

form-filling task have the greatest impact on the quality of the
generated result. Also, the form guidelines and rules decrease the
performance of the model if they are not accompanied by specific
data that needs to be in the form. A qualitative analysis of the results
shows that in that case, the model tends to generate more guidelines
instead of values, which is not desirable and explains the low score.
This shows the importance of providing the right data for the model.

6.1 Limitations
This research presents an architecture and conducts a preliminary
experiment with LLMs for the task of form filling. However, I ac-
knowledge that the evaluation is not comprehensive and only covers
one domain-specific use case, which may affect the applicability of
this approach to other scenarios. Further experiments are needed to
ensure the generalizability of the method in other contexts. Also, the
generation of accurate results relies on the presence of relevant ex-
ternal documents, which may not be available in the broader context

of form filling. The frontend’s functionality of extraction of labels
and autofilling is contingent on the webpage’s implementation and
faces many obstacles, such as complex and inconsistent HTML code.
Therefore, a more robust frontend component would be desirable for
a production-level application. Finally, the system does not address
the ethical and social implications of using an AI system for form
filling. Further research is needed in order to provide guidelines
regarding appropriate use cases as well as potential ethical risks.

6.2 Future work
In the future, I would envision form-filling software that would be
adaptable to any form-filling scenario with no code changes. Further
research would need to be conducted on a user testing study in order
to test if this approach improves productivity, form filling accuracy,
and efficiency. Finally, more thorough experimentation is needed
to test the impact of different configurations of the retrieval and
generation parts of the system. Despite the encouraging results of
this research, there is a lot of room for development. Therefore, it
is important that academia continue to be involved in the field of
generative AI and ensure that LLM applications are developed in a
conscious and responsible manner.

RQ: How can we design a large language model based system that
leverages and adapts the model’s pre-trained knowledge with

retrieval-augmented generation of form completions in the context
of enterprise search?

Answer: We can design a large language model based system
that leverages and adapts the model’s pre-trained knowledge with
retrieval-augmented generation of form completions in the context
of enterprise search by following these steps:

(1) Augment the LMM by providing documents, elaborate de-
scriptions, instructions and user input related to the specific
form-filling task directly in the prompt

(2) Use prompt engineering techniques to improve the outputs,
such as chain-of-thought prompting

(3) Create a knowledge base that contains facts and rules related
to the form-filling task, such as guidelines, policies, FAQs,
and user-specific documents.

(4) Augment the LLM with the knowledge base using retrieval-
augmented generation
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7 CONCLUSION
In this paper, I have proposed an architecture and a preliminary
experiment for a form filling application that uses LLMs to generate
suggestions for online forms. The software is composed of two parts:
a frontend component that reads form labels and autofills forms, and
a backend component that creates the form completions using an
LLM and external data sources. The preliminary experiment reveals
that the LLM-based approach may create appropriate responses for
one form filling activity, which can then be reviewed and edited,
showing a high probability of increasing the user’s productivity.
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