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Abstract

In this research CT images possibly containing intracranial hemorrhage are sys-
tematically ranked by exploiting the varying performance of 70 trained deep
neural networks. Using the exploited information, a computer-assisted learn-
ing (CAL) system is developed, aimed at improving intracranial hemorrhage
diagnostic skills in radiology trainees.

By exploiting the varying performance of the trained deep neural networks,
possible intracranial hemorrhage cases in a test dataset are assigned a rank using
item analysis. Using item analysis classification guidelines found in literature,
the cases are respectively put into a level system. An application containing
the CAL-system is developed in MATLAB, in which this level system is in-
corporated. To evaluate the effectiveness of the CAL-system between different
groups, participants who respectively have either a medical background or a
non-medical background have been recruited for this research to obtain user
performance data, who are given a test before and after the CAL-training.

The accuracy of the participants with a non-medical background increased
from 69.6% to 79.2% after CAL-training, showing a significant increase in diag-
nostic performance (p = 0.0125). However, the accuracy of the participants with
a medical background stayed the same at 81.0% after CAL-training, showing
no significant increase in diagnostic performance (p > 0.05).

Overall, the findings in this research suggest that the CAL-system devel-
oped in this research has potential for the training of freshmen radiology stu-
dents and/or people with no medical background, to bring their intracranial
hemorrhage diagnostic skills to a baseline level.

Abbreviations

ICH Intracranial hemorrhage

CT Computed tomography

DNN Deep neural network

CAL Computer-assisted learning
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Chapter 1

Introduction

Intracranial hemorrhage, also abbreviated as ICH, is a collective term com-
passing the extravascular accumulation of blood within different intracranial
spaces [1]. Depending on the location of the ICH, the cause may vary. [2] How-
ever, often it occurs afters trauma with a blunt head injury. ICH encompasses
four types of hemorrhages: epidural hemorrhage, subdural hemorrhage, sub-
arachnoid hemorrhage, and intraparenchymal hemorrhage.

Likewise, symptoms may vary depending on the type of ICH [2]. Common
symptoms, however, are headaches, nausea, vomiting, lethargy, seizures, neuro-
logical damage and/or decreased consciousness.

While other medical imaging techniques are used for the detection of ICH,
a computed tomography (CT) scan is commonly performed. Acute blood is
markedly hyperdense compared to brain parenchyma, thus a trained radiologist
is able to diagnose the location of the ICH [1]. However, misidentifications of
ICH do occur. The most common types of ICH that are missed are subdural
and subarachnoid hemorrhages [3]. In the case of misdiagnosis of subarachnoid
hemorrhages, the prognosis is severe, leading to poor clinical outcomes [4].

To aid the radiologist in the identification of ICH, researchers have explored
the use of deep learning. [5] Here, convolutional neural networks are trained
to identify ICH in CT images. While radiologists make the decision in the
final diagnosis, these trained deep neural networks (DNN) can serve as a valu-
able ”second opinion”-tool. Using this computer-assisted detection (CAD) tool,
diagnosis time can be reduced and overlooked ICHs can be identified by radiol-
ogists.

In the past two decades, researchers have shown interest in and studied the
use of computer-assisted learning (CAL) for medical students. A similar study
has shown [6] that a CAL-system has high potential for the training of medical
students and health professionals in interpreting chest radiographs.
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1.1 Problem assessment

Radiologists are trained to diagnose diseases from medical images. Before having
enough experience to do so, they follow a trajectory as a radiology trainee to
build up diagnostic skills. However, radiology trainees are mostly trained on
cases that are currently being assessed or treated, or on cases that the supervisor
has available. This results in a varying degree of experience among graduated
radiologists. Also in their future career, their diagnostic skills will be dependent
on the cases they will encounter. To level out their diagnostic skills, they would
benefit from a CAL-system to practice with a variety of cases. To address this
problem, a solution is formulated in this research by creating a CAL-system, in
which users can train their diagnostic skills in a systematic manner. To come
to a solution, however, the following research questions need to be addressed:

• How can a framework for the CAL-system be achieved which maximizes
the learning effectiveness?

• How can a ranking system be achieved in which cases are systematically
ordered?

First, by making use of information concerning neural networks, feedback-based
learning and computer-assisted learning, a framework is constructed aimed at
maximizing the learning effectiveness of the to-be-developed CAL-system. Fur-
thermore, using methods found in item analysis to analyze the quality of items,
cases in this CAL-system will be systematically shown to a user in an orderly
manner. Then, the performance of 70 trained DNNs for this research is analyzed
using a test dataset, where information derived from this analysis is exploited
to systematically give the cases in the test dataset a rank by making use of the
methods found in item analysis.

• How can the CAL-system be realized?

• How effective is the developed CAL-system in improving ICH diagnostic
skills?

By designing an application in MATLAB with a functioning front end and back
end, the CAL-system is tested on participants. After that, the performance data
from participants is analyzed to determine if the CAL-system has significantly
increased the diagnostic performance in the participants or not.

• How can the developed CAL-system be used for the radiology field?

Finally, various aspects of this research are addressed, some of which requiring
major attention and some of them requiring minor attention, if the CAL-system
is to be further developed. At the end of this report, a statement is made if the
developed CAL-system has potential in increasing ICH diagnostic performance
in radiology trainees.
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Chapter 2

Theory & Background

To understand how neural networks operate and what kind of information they
can provide obtaining information from literature is necessary. Furthermore,
information is required that can provide a framework to rank cases in a sys-
tematic way, for which information generated by the trained neural networks is
exploited to eventually assign a rank to cases in a test dataset. In this research
it is assumed that this ranking, using neural networks as the ’test-taking’ group,
is able to gauge the difficulty of a case for humans. Lastly, it is of importance to
understand which methods in the pedagogy are used to maximize the efficiency
of learning, but also to understand which conditions need to be fulfilled to make
a CAL-system highly effective.

2.1 Neural networks

[8] A neural network is obtained by a concatenation of several layers of neurons,
also called perceptrons. A perceptron is a mathematical model of a biological
neuron. Each perceptron has a certain weight and bias. The weights can be
positive, negative, or zero. A positive weight encourages the perceptron to fire,
while a negative weight inhibits it from doing so.

The first layer of a neural network corresponds to the input, while the last
layer corresponds to the output. The inner layers are called hidden layers. These
hidden layers contain transfer functions and logistic functions, which are deter-
ministic functions of the inputs. If it is a network where the information flows
forward from the input to the output, it is called a feedforward neural network,
alternatively called a multi-layer perceptron (MLP). On the other hand, when
images are used as inputs, the neural network is also considered a convolutional
neural network (CNN).

The purpose of the units in the hidden layer in a CNN is to learn non-linear
combinations of the original inputs; this is called feature extraction. Here, so
called filters scan the input image for patterns. A CNN is effectively a MLP
in which the hidden units have local receptive fields, and in which the weights
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are tied or shared across the image. Using these weights, the resulting network
is able to exhibit translation invariance, meaning it can classify patterns no
matter where they occur inside the input image. The DNNs which are trained
for this research accept a CT image as input and outputs the classification of
the image. This classification is then compared with the true label of the image
to determine the accuracy of the DNN.

Besides the classification output, other types of information can be obtained
from a DNN, such as occlusion sensitivity maps [9,10]. These are effectively heat
maps which show which parts of an image are considered the most important
by a DNN for its classification decision. Here, different portions of the input
image are systematically occluded with a grey square, during which the output
of the classifier is monitored. A deconvolutional neural network is used to map
the feature activities in the intermediate layers back to the input image, to
determine which patterns in the input image resulted in a specific activation in
the feature maps. To do so, a deconvolutional neural network is attached to
each of the layers of the convolutional neural network. By unpooling, rectifying
and filtering these activations, the activity in the layer beneath which resulted
in these specific activations is reconstructed.

Other methods exist that map feature activations back to the input im-
age, such as GRAD-CAM [11] or LIME [12]. Overall, LIME is considered the
simplest of the methods. On the other hand, a GRAD-CAM map usually has
a lower spatial resolution than an occlusion map and can therefore miss finer
details [11].

2.2 Item analysis

Item analysis is a method that is used to evaluate the effectiveness of an item
in a test. It is primarily used in the pedagogy to evaluate the quality of an
item in a test, for which items are kept, revised or discarded depending on their
quality relative to the test. Here, two aspects of an item are analyzed: (i) the
item difficulty and (ii) the item discrimination.

2.2.1 Item difficulty

The item difficulty, also called the P -value 1 or difficulty index, is a value that
indicates the difficulty of an item in a test. This is equal to the proportion or
percentage of test-takers who answered an item correctly [13]. Here, the larger
the P -value, the easier the item is considered to be. It is noted, however, that
the P -value is regarded as a behavioural measure, and it is not an intrinsic
characteristic of an item. In this regard, the difficulty is defined in terms of the
relative frequency of test-takers choosing the correct response.

In literature, various interpretations are found when it comes to classifying
the difficulty of an item using the difficulty index, such as those found in the

1To avoid confusion with the p-value found in statistics, the capital letter P will be used
in this paper to indicate the p-value associated with the item difficulty.
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study of A. Bichi [14] or in the study of S. Marie et al [15], but no standardized
classification scheme using the difficulty index is to be found. In literature,
however, it is still noted that one of the guidelines is that items with a difficulty
index lower than 0.20 or higher than 0.80 are to be discarded [16]. Nonetheless,
a simple classification scheme for the difficulty index used in the study of E.
Morales [17] and in the study of Hartati et al. [18] is the following:

Table 2.1: The classification scheme for the difficulty index used in the study
of E. Morales [17] and Hartati et al. [18]

Difficulty classification Index value (P)
Very Easy 0.81 - 1.00
Easy 0.61 - 0.80
Moderate 0.41 - 0.60
Difficult 0.21 - 0.40
Very Difficult 0.00 - 0.20

2.2.2 Item discrimination

On the other hand the item discrimination, also called the discrimination index,
indicates the extent to which success on an item corresponds to success on the
whole test [19]. In general, the discrimination index is computed by evaluating
the difference in performance on an item between the high and low performing
group on the test, where the degree of this difference is expressed in a value
ranging from -1 to +1. To compute the standard discrimination index, it can
be computed as a function of the number of correct answers on an item by the
high and low performing group, and the size of each of these groups.

Another indicator that can be used to express the discrimination index of an
item is the point-biserial correlation coefficient [13]. The point-biserial correla-
tion is the Pearson correlation between responses to a particular item and scores
on the total test, which shows how strongly these are interrelated, ranging from
a value from -1 to +1. Here, the point-biserial correlation is used to find out if
the right people are getting the items right. The advantage of using the point-
biserial correlation coefficient over the standard discrimination index, is that
every person taking the test is taken into consideration when computing the
point-biserial correlation coefficient, while only approximately half of the test-
takers is taken into consideration when computing the standard discrimination
index.

Since all items in a test are intended to cooperate to generate an overall test
score, any item with negative or zero discrimination undermines the test [13].
The higher the discrimination index, the better the item because such a value
indicates that the item discriminates in favour of the upper group, which should
get more items correct. On the other hand, items with poor discrimination
require either major revision or should be eliminated from the test.
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To calculate the point-biserial correlation coefficient in the case of item anal-
ysis, the following formula is used, which describes the relation between test-
takers scoring an item (in)correct and their test score, while taking the standard
deviation of the performance of the test-takers into account.

r =
Mcorrect −Mincorrect

σ
·
√
Pcorrect · Pincorrect (2.1)

Here, the point-biserial correlation coefficient r is a function of: (i) the mean
test score of the test-takers getting the item correct Mcorrect; (ii) the mean test
score of the test-takers getting the item incorrect Mincorrect; (iii) the number
of test-takers getting the item correct Pcorrect; (iv) the number of test-takers
getting the item incorrect Pincorrect; (v) the standard deviation of the test scores
across the test-takers σ. Using the found point-biserial correlation coefficient
values for the items, the items can then be classified based on their value. The
Ebel and Frisbie’s guidelines for classifying item discrimination [16] is found in
the table below:

Table 2.2: The classification scheme for the discrimination index by Ebel &
Frisbie [16]

Discrimination classification Index value (r)
Poor < 0.10
Low 0.10 - 0.19
Acceptable 0.20 - 0.29
Good 0.30 - 0.39
Excellent > 0.40

2.3 Feedback-based learning

Feedback is generally considered an effective tool for teaching and learning.
Baydal et al. [20] evaluated the effect of computer-based immediate feedback
on medical students’ learning in a pharmacology course. The study found that
immediate feedback had a positive impact on the students’ self-directed learning,
although it did not improve test scores.

In the study of Fazio et al. [21], data showed that only providing right/wrong
feedback is not considered effective, but being able to review material is on the
other hand an effective way of providing feedback. However, it was noted that
the usefulness of right/wrong feedback might depend upon the nature of the
to-be-learned material. Eventually, a suggestion was made that if feedback is to
be provided, the feedback should give information about the correct answer, as
opposed to simply marking a response as correct or incorrect without feedback.

An other study of Butler et al. [22] showed that, in case of trying to under-
stand the material, explanation feedback resulted in better learning performance
than correct/incorrect answer feedback. However, they noted that studies have
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shown no significant benefits when significantly increasing the complexity of the
feedback message.

The study of Chamberland et al. [23] on the other hand suggested that
providing the correct diagnosis and a simple content feedback improves the
subsequent ability to correctly diagnose similar cases. Here, the study made
a case that this could develop into an effective design of educational activities
that use self-explanation to support the development of students’ diagnostic
reasoning. The study concluded that adding simple corrective feedback in the
form of the correct diagnosis and making sure that students have the opportunity
to process it, seemed to be a very simple measure to specifically improve the
students’ diagnostic ability for similar cases.

For the diagnosis of ICH in particular, the study of Watanabe et al. [24]
has shown that after making use of computer-assisted detection (CAD), the
diagnostic performance to correctly diagnose possible ICH cases, improved in
all physicians who participated in the study.

2.4 Computer-assisted learning

Researchers have explored the use of using computer-assisted learning (CAL) in
medical education. The use of a CAL-system enhances medical education and
provides learning opportunities that cannot be taught by traditional methods
[25].

Advantages of CAL in medical education are considered to be: (i) the com-
puter provides the student with unlimited time, (ii) the computer is not judge-
mental, (iii) the CAL can be repeated frequently without the computer being
impatient.

On the other hand, disadvantages are considered to be: (i) the CAL-system
does not substitute academics, (ii) group working is left out of the CAL-system,
(iii) conventional education still plays an important role in training.

The use of computers for learning is considered more effective when [26]:
(i) the student is in control of learning instead of the teacher, (ii) feedback is
optimized, (iii) peer learning is optimized, (iv) there is a diversity of teaching
strategies, (v) there are multiple opportunities for learning,
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Chapter 3

Method

To understand how the accuracy of each DNN trained for this research compares
to each other, an analysis is performed. The information obtained from this
analysis is eventually exploited to systematically order the cases in the test
dataset. Using the found item analysis classification schemes (Table 2.1 and
2.2), the cases of the test dataset are systematically ranked. To realise the
CAL-system in a visual format, an application is designed that incorporates the
CAL-system. To evaluate the effectiveness of the CAL-system, participants are
recruited to obtain data.

3.1 Analysis

For this research, 70 DNNs have been trained in MATLAB for the classification
of CT images possibly containing ICH, to classify them into either a hemorrhage
case (present) or a non-hemorrhage case (absent). For the training of the DNNs,
a training dataset has been used containing 2465 CT images. In MATLAB the
command trainingOptions has been used to specify the training options for the
DNNs, which are shown below:

• MaxEpochs: 50

• ValidationPatience: Inf

• ValidationFrequency: 20

• Verbose: True

• Shuffle, every-epoch

• MiniBatchSize: 32

• InitialLearnRate: 0.001
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The accuracy performance of the DNNs has been evaluated on a test dataset
containing 1633 CT images in which ICH is either present or absent. Here, the
accuracy achieved by the DNNs over this test dataset varied, ranging from
approximately 65% to 80%, which is visualized in Figure 3.1.

FIGURE 3.1: The accuracy scores over the test dataset across the 70 DNNs.
The red line indicates the average accuracy.

The average accuracy of the 70 DNNs over the test dataset was found to be
72.61% ± 3.00%. By computing the correct-incorrect answer distribution of the
70 DNNs on a case, the difficulty index of a case is eventually found. Using this
information, the found standard deviation of the test accuracy scores across the
DNNs, and the test scores of the DNNs over the test dataset, the discrimination
index of a case is computed, expressed in the point-biserial correlation coefficient
(Equation 2.1). Using the found difficulty index and discrimination index of a
case, the cases in the test dataset are eventually assigned a rank.
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3.2 Ranking scheme

To classify the difficulty of a case in the test dataset, a classification scheme
based on the scheme shown in Table 2.1 is used (Figure 3.2). This is chosen
because no classification schemes are described in literature that were specifically
applicable for this type of research, thus a simple classification scheme is used
for the difficulty index. In this classification scheme, cases with a difficulty index
equal to zero, meaning that none of the DNNs classified these cases right (and
assuming the same response in humans), are discarded and assumed invalid.

While the item discrimination classification scheme found in literature, as
shown in Table 2.2, consists of five classifications, a modified classification
scheme is used, for which some classifications were merged together to obtain a
total of two classifications (Figure 3.3). In this classification scheme, cases with
a negative discrimination index are discarded. However, cases with a discrimi-
nation index equal to zero are kept, which are advised to be discarded according
to literature. The reason for this decision is that cases with a zero discrimination
index and a non-zero difficulty index are the easiest cases (in this case, every
DNN diagnosed the case correctly), therefore choosing to include these in the
CAL-system; this decision however is touched upon in the Discussion. All in
all, this means that there are five difficulty segments, for which in each of these
segments there are two discrimination segments, for a total of ten levels (Figure
3.4). Using this level system, the cases of the test dataset are systematically
given a rank.

One of the reasons to specifically have ten levels instead of a higher amount,
which could be done by using the original item discrimination classification
scheme as shown in Table 2.2, is because the limited amount of time one could
ask of a participant meant that the participant is significantly limited in mobility
when moving up the ranks. In result, this would make the level system redun-
dant when dealing with a high number of levels, since a participant would not
be able to reach these levels due to the time limit. Adding to this, introducing
a larger amount of levels would result in a level system in which certain levels
consist of a very small number of cases, resulting in often repeating cases when
solving cases in that particular level. In the worst case scenario, this would
result in the user relying on their memory instead of their diagnostic skills.
Lastly, in this research the item difficulty is considered to be more important
than the item discrimination, therefore choosing to merge the discrimination
index segments instead of the difficulty index segments.

The goal of this level system is that a user starts with low discriminating
cases in a difficulty segment, since the low performing users should be able to
get these cases right. If a user is performing well, the user moves up to the
higher discriminating cases, while staying in the same difficulty segment. Once
again, if the user performs well enough, the user moves to a higher difficulty
segment and will solve low discriminating cases again.
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FIGURE 3.2: The difficulty index (P) classifications used for assigning ranks
to cases in the test dataset, based on the classification scheme found in
literature (Table 2.1). The difficulty segments are further separated in
discrimination segments, as shown in Figure 3.3

FIGURE 3.3: The discrimination index (r) classifications used for assigning
ranks to cases in the test dataset, partially based on the classification found in
literature (Table 2.2)
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FIGURE 3.4: Global overview of the level system based on the item quality
classifications. Here the difficulty index is denoted with P , the discrimination
index (point-biserial correlation coefficient) is denoted with r.

3.3 Application

The application incorporating the CAL-system is developed in MATLAB using
the App Designer -toolbox and Stateflow -toolbox. In App Designer the front end
is primarily created. On the other hand, in Stateflow the back end is primarily
created.

3.3.1 Front end

As mentioned before, the front end of the application is developed using the App
Designer -toolbox in MATLAB. This allows a quick prototype of an application
to be created if one is already familiar with MATLAB, without having to invest
time in learning programming languages used for application framework design
such as Python or C#.

When the user starts the application on their computer, the user is eventually
greeted with the start screen (Figure 3.5). Here, the user has the option to obtain
information about the global trajectory of the application in the info page. On
the other hand, the user can start a tutorial to understand the controls and
workings of the application.

14



FIGURE 3.5: The start screen shown to the user in the application.

In the tutorial, the controls of the application are explained. Here, it is
explained to the user is that cases can be solved by either making use of the
mouse or by using keyboard inputs. With the left arrow-key, the user can answer
that hemorrhage is present in the CT image. Likewise, with the right arrow-key
the user can answer that hemorrhage is absent in the CT image. The main
screen that is presented to the user in the application is shown in Figure 3.6
and 3.7.

After the user solves a case during the CAL-training, feedback is visually
provided with color lamps (showing the user’s answer and the correct answer)
as well as a ”correct/incorrect answer” text-prompt (indicating if the user has
diagnosed the case correctly), which is shown in Figure 3.7. Furthermore, the
user is able to view an occlusion sensitivity heat map of the case with the H-key
(Figure 3.8), serving as additional explanatory feedback. Finally, the spacebar-
key is used to cycle through prompt messages and/or to load the following case
when done reviewing a case during the training.

When the user is finished with the introductory part of the application, which
comprises the info page and the tutorial, the user is able to start the CAL-system
by pressing the START-button as shown in the start screen (Figure 3.5).
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FIGURE 3.6: The main screen presented to the user during CAL-training.
The user has not solved the case yet.
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FIGURE 3.7: The main screen presented to the user during CAL-training.
The user has solved the case and is able to review it. Feedback elements are
shown to the user in the form of ”Your answer vs True answer” color lamps
and a ’correct/incorrect answer’ text-prompt. A red color lamp is defined as
’the image does not contain ICH’, while a green color lamp is defined as ’the
image does contain ICH’. Additionally, the user is able to view an occlusion
sensitivity heat map of the case using the toggle-box above or alternatively by
pressing the H-key (Figure 3.8).
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FIGURE 3.8: The main screen presented to the user during CAL-training.
The occlusion sensitivity heat map of the case is shown, which is done by
pressing either the checkbox above the image or the H-key on the keyboard.
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3.3.2 Back end

Using the Stateflow -toolbox in MATLAB, a state machine is created to system-
atically develop logic for the application, but also to allow systematic transitions
from one logic to the other to take place (Appendix A).

In the application, no neural networks are actively running, and all the
images shown in the application are therefore pre-processed. The reason for this
is because utilizing these neural networks as a part of the application requires
heavy computational power, which in result requires a lot of system resources,
making the application slow and unresponsive in the end.

From a global overview, the trajectory of the application consists of three
phases (Figure 3.9): (i) a pre-training test, (ii) the CAL-training itself, and (iii)
a post-training test. This scheme was chosen to be able to evaluate the effec-
tiveness of the CAL-training (and the CAL-system overall), by allowing a user
to go in blindly for the initial test, and being presumably more knowledgeable
and skilled for the final test, after the user has gone through the CAL-training.
In this scheme, depending on the user performance in the pre-training test, the
user is placed in a suitable level when starting the CAL-training. Therefore,
the pre-training test is also defined as a part of the CAL-system, besides the
CAL-training.

FIGURE 3.9: The trajectory of the application designed in MATLAB. The
user finishes the CAL-training after solving 70 cases or if the timer passes the
10 minute mark. The CAL-system is defined as the pre-training test plus the
CAL-training, and is explained and visualized in further detail in Figure 3.10

The pre- and post-training test consists of the same 40 cases. For this, two
cases of each level were randomly picked in which ICH is absent. Similarly, two
cases of each level were randomly picked in which ICH is present. These cases
are not present in and/or shown during the training, to avoid that these cases
are solved based on memory in the case these are included and shown during
the training. In short, the test contains 20 cases in which ICH is present and 20
cases in which ICH is absent, to eventually obtain a test of mediocre difficulty
(for which the DNNs had an average accuracy of 50%, see Figure 4.1) and with
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an equal-sized classification distribution.
The reason for creating a test for which the DNNs have an average accuracy

score of 50%, is because it is unknown if the perceived difficulty by DNNs
translates one-to-one into the perceived difficulty by humans. Therefore, to err
on the side of caution and to avoid making the test too easy or too difficult,
a test is constructed for which the average accuracy achieved by the DNNs on
this test is approximately 50%.

On the other hand, the reason for choosing 20 cases each is to be able to
evaluate the effectiveness of the CAL-system in improving the sensitivity and/or
specificity of a user (besides the accuracy) in an equal fashion, while having a
sufficient amount of cases to do so, but also by keeping in mind that the test
should not consist of a large amount of cases due to the time constraint.

During the tests no feedback is provided. Here, feedback elements such as
the ”Your answer vs. True answer” color lamps, the correct/incorrect answer
text-prompt and the occlusion sensitivity heat map toggle-box (Figure 3.7) are
not shown and are removed from the main screen. Furthermore, no timer is
set for the tests, as it is desired to have the same amount of cases to be solved
for the pre-training test as for the post-training test. Besides, while the same
40 cases are shown to the user in these tests, the order in which these cases
are shown is determined randomly, resulting in incomparable results when the
test is early terminated due to an imposed time limit. After having finished the
pre-training test, the user starts with the CAL-training and, depending on their
pre-training test accuracy score (Table 3.1), is placed in a level.

Table 3.1: The user’s accuracy in the pre-training test is used to place the
user in a suitable level for the CAL-training. If the user’s accuracy is perfect,
the user is finished with the application, as training is considered redundant
for these users.

Accuracy score Placed in level ...
0.00 - 0.59 1
0.60 - 0.69 2
0.70 - 0.79 3
0.80 - 0.89 4
0.90 - 0.99 5

1 Exit

During the CAL-training, the user is able to move up or move down in the
level system in a sink or swim fashion (Figure 3.10). After the user solves 10
randomly selected cases of a level, the accuracy of the user is checked. Depend-
ing on the value of this accuracy, the user is promoted or demoted to a higher
or lower level respectively. If the user’s accuracy, after solving these 10 cases, is
above or equal to 80%, the user is placed a level higher; if it is lower than 80%,
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the user is placed a level lower. Here, the threshold value was chosen to be 80%,
as it was observed in the study of Watanabe et al. [24] that physicians had an
overall accuracy of approximately 80% when solving ICH cases. Therefore, it is
desired to observe the same accuracy in a user when the user is finished with a
level. During the training, feedback is provided in the form of correct/incorrect
answer feedback and, as previously mentioned, in the form of occlusion sensi-
tivity heat maps. When the user completes the training, the user starts with
the post-training test (Figure 3.10).

Due to the concern for the limited time availability of a participant, and hav-
ing no feedback about the total time a participant would require to go through
the application (in specifically for the tests, since no timer is set here), the
maximum amount of time a user was allowed to train themselves was set to
10 minutes (Figure 3.9). Here, a timer would start when starting the training
and would stop when it passed the 10 minute mark, eventually stopping the
training. Alternatively, the user was able to complete the training after solving
70 cases (Figure 3.9).

The reason for limiting the amount of cases for the training, in this case 70
cases, was because: (i) this allowed a user to have approximately 8.5 seconds,
which is considered to be a lenient amount of time given, to solve and review a
case; (ii) this chosen amount of cases allowed the user to have enough upwards
mobility to reach a significantly higher level, while taking some leeway of level
demotion into consideration; (iii) this avoided a really well performing user to
only solve cases in level 10 for the rest of the duration of the training, since no
solution was developed for users who keep succeeding in level 10; (iv) it took
into account that the user would possibly experience some ”solving fatigue”
from their side, which would affect the training effectiveness and possibly the
results in the final test.

3.4 Participants

To understand if the CAL-system is effective or not for people of varying ex-
perience and backgrounds, it is desired to find participants which have either
a medical background or a non-medical background to ultimately obtain two
homogeneous groups: participants with (i) a medical background or (ii) a non-
medical background. By doing so, a statement can be made about the effective-
ness of the CAL-system on these subgroups. To evaluate if the post-training
performance scores of the participants are significantly higher than their pre-
training performance scores, a paired one-tailed t-test (upper tail) will be used.
Lastly, the level mobility of the participants will be analyzed to observe if the
participants are able to move up the ranks or not, and to observe if the partic-
ipants are able to reach a higher level than their begin level. The participants
will be recruited based on convenience sampling [27], for which word-of-mouth
is used as the recruitment method.
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FIGURE 3.10: An example of the trajectory of a user starting and exiting
the CAL-system: (1) The user achieved an accuracy score in the range of 0.60
- 0.69 in the pre-training test, and is placed in level 2 in the level system as
described in Table 3.1; (2) The order in which the user moves up (green arrow)
and/or moves down (red arrow) the levels is shown with the roman numerals
I-VII. In each level the user is required to solve 10 randomly selected cases of
that particular level, moving up or moving down a level depending on their
accuracy after finishing the level (80% accuracy threshold); (3) The user has
solved 70 cases, reaching an end level of 5, and completes the CAL-training.
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Chapter 4

Results

For the evaluation of the effectiveness of the CAL-system, eight participants
were found, some of them having a medical background and some of them
not, These participants are ordered in their respective subgroups as described
in Method: Participants. The medical participants consists of people pursu-
ing a degree related to medicine or the health sciences, while the non-medical
participants consists of people who are pursuing a study or have currently an
occupation in the engineering, social sciences or business field. The average
diagnostic performance of the participants and of their respective subgroups,
before and after CAL-training, is shown in Table 4.1.

Table 4.1: The (difference in) test performance among the participants,
before and after the CAL-training, expressed in percentages. A number of
participants were found (n = 8): with a medical background (n = 3), and with
a non-medical background (n = 5). The significance p of the results are
evaluated with a paired one-tailed t-test (upper tail).

b/ CAL (%) a/ CAL (%) Difference (%) Significance (p)
All participants (n = 8)

Accuracy 73.9 79.9 + 6.0 0.08
Sensitivity 73.8 82.5 + 8.7 0.09
Specificity 73.8 76.9 + 3.1 0.34

Medical (n = 3)
Accuracy 81.0 81.0 + 0.0 0.50
Sensitivity 86.7 83.3 - 3.4 0.65
Specificity 75.0 78.3 + 3.3 0.43

Non-medical (n = 5)
Accuracy 69.6 79.2 + 9.6 0.0125
Sensitivity 66.0 82.0 + 16.0 0.04
Specificity 73.0 76.0 + 3.0 0.37

a/, after; b/, before; CAL, computer-assisted learning
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When taking a quick glance at Table 4.1, the numbers suggest that the overall
diagnostic performance of the participants has increased; still, these results are
not significant (p > 0.05). However, when decomposing the results, there is a
significant difference to be observed between the two subgroups. The overall
diagnostic performance of the participants with a medical background did not
(significantly) improve. On the other hand, the participants with a non-medical
background significantly improved their diagnostic performance, in particular
their accuracy (p = 0.0125) and sensitivity (p = 0.04); however, no significant
increase is observed in the specificity (p > 0.05). The average reading time of
the participants before CAL-training, as well as for the medical and non-medical
subgroups, was observed to be 3.6 sec. After CAL-training, the average reading
time of the participants stayed in the same order of magnitude: 2.2 sec for all
participants, 2.1 sec for the medical subgroup and 2.3 sec for the non-medical
subgroup.

To gain a better understanding of how the test accuracy scores of the various
(sub)groups, including the DNNs, compare to each other, a visual comparison
of the average test accuracy scores of these (sub)groups is shown in Figure 4.1:

FIGURE 4.1: A visual comparison of the average accuracy score on the test
between various (sub)groups. The average accuracy score of the DNNs is
denoted in red. The asterisk sign * denotes that the (sub)group went through
CAL-training.
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Noteworthy is that a significant difference in the average test accuracy scores
can be observed between the DNNs and the participants, in all cases the lat-
ter achieving higher accuracy scores than the former. Nevertheless, it can be
observed that the accuracy score of the non-medical participants, after going
through the CAL-system, approximates the post-training accuracy score of their
medical counterpart (non-medical 79.2% vs. medical 81.0%).

Lastly, the level mobility (begin level, end level, peak level) of the partici-
pants is found in Table 4.2. Here it can be observed that the medical participants
reached both a higher end and peak level with respect to their begin level (P1 -
P3); for four out of five non-medical participants, similar results can be observed
(P4 - P7). However, one out of five non-medical participants did not reach a
higher end level with respect to their begin level, and their end level was even
observed to be lower than their begin level (P8). Nonetheless, it can still be
observed that this participant reached a higher peak level with respect to their
begin level.

Table 4.2: The levels reached by the participants during the training. The
begin level, end level and highest reached level (peak level) of the participants
are shown in the columns. The participants are labeled with a number P#.

Begin level End level Peak level
Medical (n = 3)

P1 3 6 6
P2 4 7 7
P3 4 5 7

Non-medical (n = 5)
P4 3 4 5
P5 2 7 7
P6 2 5 5
P7 3 4 5
P8 3 2 5
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Chapter 5

Discussion

In the discussion, aspects which were overlooked in this research, aspects which
posed limitations on this research, and other aspects concerning the CAL-
system, are discussed in detail. These aspects are categorized into two cate-
gories: (i) aspects that require major attention and (ii) aspects that require
minor attention.

5.1 Major aspects

5.1.1 User level mobility and performance

It may have been the case that allowing a participant to solve only 70 cases dur-
ing their training is on the low side and should therefore have been increased to
a higher amount, since it was observed that during the training the participants
solved the cases in a quick pace. Furthermore, the CAL-system should have
stopped when the user succeeded in level 10, or should have looped back to
the participant to level 1 after succeeding in level 10, to fully make use of the
maximum time set for the training, which was equal to 10 minutes. By doing so,
a more effective training may have been realized, which would have positively
affected the results.

A second point to be made is that, while the medical participants solved
cases in and ended with a higher level, a direct relation between reaching a
higher level and achieving a higher accuracy is unclear. Their non-medical
counterpart on the other reached a higher end and peak level with respect to
their begin level, while scoring significantly higher in their post-training test
than their pre-training test. Overall, this may suggest that either the used level
system on the whole is arbitrary, or that the level scheme (Figure 3.4) is only
effective for people with no existing experience. In future research, therefore,
various level systems must be tested on experienced and inexperienced users, to
determine if different level systems must be designed for these groups.
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Lastly, it is noteworthy that in Figure 4.1 there is a significant difference
observable between the DNNs performance and that of the participants. This
suggests that the perceived difficulty by the DNNs does not fully translate into
perceived difficulty by humans.

5.1.2 Distribution of cases across levels

The level system that was used for the CAL-system, as shown in Figure 3.4, re-
sulted in the following distribution in ICH-present and ICH-absent cases, shown
in Figure 5.1 and 5.2. Here it can be observed that each level has an uneven
distribution in ICH-present and ICH-absent cases. The inequality of the case
distribution possibly has a significant negative influence on the effectiveness of
the training, since it may be the case that a user figures out that they are more
likely to classify a case correctly when continually choosing only one of either
options. Therefore, in future research one should look at the distribution and
should make the distribution in ICH-present and ICH-absent cases more equal
to maximize the randomness of the cases, e.g. by leaving out a number of cases
with a certain classification in a level.

When looking at Figure 5.1, it can be observed that level 1 contains a sig-
nificant high amount of ICH-absent cases relative to ICH-present cases. This
is due to all the cases with a discrimination index equal to zero are only to be
found in level 1, which comprises cases where all 70 DNNs diagnosed the cases
correctly. While the decision had been made to still include these cases in the
CAL-system, it is advised in future research that cases with a discrimination
index equal to zero are left out of the CAL-system, to avoid redundancy of very
simple cases and to minimize the unequal distribution in a level.

5.1.3 Case retrieval in levels

When a user is solving cases in a level, a random case is chosen from a case-list
associated with that level. However, when the user revisits the level during
the training, it is possible that an already shown case may be presented to the
user, since the same list is reloaded for that level. This in turn may negatively
affect the outcome of the training, because there is a possibility that the user
may rely on his memory instead of their diagnostic skills to solve a case. A
possible solution is to implement a case ”blacklist” to avoid a repetition of
cases. However, this means that the CAL-system should have a sufficient high
number of cases to be able to implement this, since in the extreme case the list
would have to be reloaded again regardless, to avoid running out of cases to
show in a level.
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FIGURE 5.1: The distribution of the cases (present vs. absent) in each
level, expressed in absolute numbers.

FIGURE 5.2: The distribution of the cases (present vs. absent) in each
level, expressed in percentages.
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5.1.4 Implementation heat maps

In the CAL-system occlusion sensitivity heat maps were used, which were gen-
erated by the top-performing DNN of the 70 DNNs. However, a better imple-
mentation would be to generate the heat map of three top-performing DNNs
and merge these together, to eventually obtain a better approximation for the
heat map. However, due to this requiring a lot of system resources and due
to the long computation times, while also taking the time constraints of this
research into account, this was unfortunately not performed.

It must be noted, however, that a significant amount of heat maps shown
in the CAL-system may not be an accurate representation of the location of an
ICH in an image. In this research, the top performing DNN had an accuracy
of approximately 80%, meaning subsequently that one in five heat maps may
show no information about the location of an ICH or is faulty in general. In
the worst case scenario, this would give the user an incorrect point of reference
when diagnosing an ICH case. Therefore, precautions should be taken when
making use of heat maps, and preferably should only be used when the DNN
used for the generation of heat maps has a significant high accuracy to do so.

Nonetheless, since other types of generating heat maps exist as described in
Theory & Background: Neural Networks, in future research these other methods
should also be looked at and should be evaluated by professional radiologists,
to determine which of these methods generally provide the most accurate and
most insightful heat maps.

5.1.5 Sample size and sampling method

In literature, 25 to 30 samples is considered the minimum sample size as a rule of
thumb [30]. Unfortunately, this amount of participants was not achieved in this
study: only 8 participants partook in the CAL-system. Therefore, the statistical
power is significantly less than desired, consequently affecting the conclusions
made about the effectiveness of the CAL-system.

Furthermore, the participants were selected based on convenience sampling.
This method, however, results in samples that are generally not representatives
of the target population, since this method is nonprobabilistic in nature.

All in all, in future research it is desired to test the CAL-system on more
participants, to obtain results and respectively derive conclusions which are
based on a stronger statistical power basis.
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5.2 Minor aspects

5.2.1 Associated level of test cases

In the tests, the level associated with a case shown during the test had not
been logged and was overlooked. This, however, would have provided valuable
information about comparing the difficulty of cases associated with a certain
level between the human response and that of the DNNs response. In future
research, it is advised to log the associated level of a case in a test to gain
a better understanding in how the response between humans and DNNs may
differ.

5.2.2 Neglect of training on ICH types

One of the limits encountered early in this research is that in the CAL-system a
user is not able to train their diagnostic skills based on the various types of ICH
(these types are described in the Introduction), since the DNNs are not able to
classify the type of ICH in an image, but only can classify if ICH is present in an
image or not. In other words, the CAL-system can only be considered a general
purpose training system for improving diagnostic skills of any type of ICH, and
does not offer any training that specializes in the various ICH types. Therefore,
it is recommended for future research that, if a DNN is able to classify the ICH
type, this should be utilized to its fullest potential, since a CAL-system allowing
the user to train their diagnostic skills based on specific ICH types may provide
better opportunities to expand the user’s diagnostic skills even more.

5.2.3 CT image quality in real world

A noteworthy aspect encountered early in this research was that the images
themselves were of low quality, consisting of 128x128 pixel bitmap images.
However, in the medical field CT images of higher quality are used, which are
(uncompressed) 512x512 pixel bitmap images [28]. The low quality of the CT-
images shown in the application may have influenced their diagnostic ability to
correctly diagnose a case.

In other words, the experience of visually diagnosing an image in this CAL-
system may differ when comparing it to the real world scenario. This in turn
means that there may be a possibility that diagnostic skills obtained in this
CAL-system may not fully translate into diagnostic skills in the real world.
Therefore, in a future model of a CAL-system it is advised to make use of
higher quality CT images, to better reflect the real world scenario.

5.2.4 Repurposing tests for CAL-system

In this research, the pre-training and post-training test were initially only in-
cluded in the application to only evaluate the effectiveness of the CAL-training.
However, the tests themselves can be repurposed and be incorporated in the
CAL-system, functioning as auxiliary components.
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The pre-training test can be considered a useful tool for the CAL-system to
bring the user to a certain level based on their already existing experience when
starting the CAL-training, which was already realized as part of the CAL-system
in this research.

On the other hand, the post-training test can be repurposed in such a way
that after a user reaches a level threshold, a test will be presented to the user.
Here, the user will only be able to climb up the ranks again if they passed
this test. By introducing this gatekeeping element, an extensive intermediate
evaluation is performed which determines if the user’s diagnostic skills actually
improved or not.

5.2.5 Pedagogy and CAL-system

It is argued that it is the pedagogy that affects the outcome of the learning
process and not the technology [29]. Furthermore, a CAL-system is considered
more effective when only certain aspects of the CAL-system are addressed, such
as the optimization of the feedback system and enabling the student to be in
control of learning. In other words, the methods that are used for the CAL-
system ultimately determines the effectiveness of its implementation, and not
the medium that is used.

This would mean that poor performance of the CAL-system may eventually
be attributed to respectively an implementation of poor methods. In this case,
making a statement about the low or high potential of the developed CAL-
system in this research becomes more uncertain, since it may be the case that a
highly effective CAL-system can be realized if only if the correct pedagogy was
implemented.

5.2.6 No feedback / suggestions of participants

A feedback and/or suggestion box should have been implemented at the end
application, such that participants were able to give their feedback about their
experience with the CAL-system or the application overall, to find out which as-
pects of the CAL-system and/or application positively or negatively contributed
to their experience. It is of importance to ask this of the participants, since the
user experience also may play an influential role in being able to efficiently oper-
ate the CAL-system, which in turn may affect the efficiency of the user obtaining
diagnostic skills.

5.2.7 Conditions for effective CAL-system

In Theory & Background: Computer-assisted learning (CAL), five conditions
were mentioned that enables computer learning to be effective. One could argue
that in this CAL-system the user is in control of the learning and that feedback
is optimized as much as possible, since the user could solve and review cases
with at their own pace while making sure that enough feedback is given to the
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user in the form of correct/incorrect feedback and heat maps, therefore fulfilling
both conditions.

However, it could be argued that the other conditions were not fulfilled, since
there was no peer learning present as the user solved cases on their own, nor
was there diversity of teaching strategies or multiple opportunities for learning
present in the CAL-system (as described in Neglect of training on ICH types).
Therefore, in future research these unfulfilled conditions should be taken into
consideration when further developing the CAL-system, such that the effective-
ness of the CAL-system is optimized.
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Chapter 6

Conclusion

The findings of this research suggest that the developed CAL-system has poten-
tial for improving ICH diagnostic skills in people with no medical background,
as a significant increase in diagnostic performance was observed in this group,
especially when it comes to their accuracy (p = 0.0125) and their sensitivity
(p = 0.04), but not their specificity (p > 0.05). However, this positive trend
was not observable in participants with a medical background, as no significant
performance increase in the accuracy, sensitivity and/or specificity was observed
in this group (p > 0.05).

It is unclear if the level system in the CAL-system is effective, as the findings
of this research suggest no clear relation between a user reaching a higher (end)
level with respect to their begin level and a user improving their diagnostic
performance after CAL-training. Furthermore, it is unclear if item analysis,
using deep neural networks as the ”test-taking” group, is an effective method
to gauge the difficulty of an ICH case for humans.

All in all, the findings suggest that the CAL-system developed in this re-
search has potential for the training of freshmen radiology students, for which
the CAL-system can be utilized as a quick crash course to bring their ICH
diagnostic skills up to a certain baseline level.
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Appendix

Appendix A: MATLAB Stateflow state machine
of the developed application
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MATLAB	Function
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finalization()
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toggle_heatmap()
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%	Execute	state
prompt();

StartScreen
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%	Execute	state
tutorial_wait()

info_screen
MATLAB	Function

tutorial_screen
MATLAB	Function

timer1_init
MATLAB	Function

tutorial_score_user
MATLAB	Function

Initialization
%	Execute	state
initialization()

time_updater
MATLAB	Functiontutorial_heatmap

MATLAB	FunctionTutorialHeatmap
%	Execute	state
tutorial_heatmap()

keypress_toggle
MATLAB	Function

tutorial_reset
MATLAB	Function

finalization
MATLAB	Function

after(0.01,	sec)
[test_active	~=	0]

3

after(0.025,	sec)
[level_change	==	0]

1

after(0.01,	sec)
[level_change	==	1] 2

after(0.005,	sec)
[phase_change	==	1]{hide_main()}

5

CONTINUE

1

INFO{show_info}

3

RETURN{hide_info}

after	(0.01,	sec){timer2_init}

CONTINUE{show_main} TOGGLE_KEY
{keypress_toggle}4

after(0.025,	sec)
{timer1_init()}after(0.025,	sec)after(0.025,	sec)

after(0.025,	sec)
[correct_folder	==	1]
{show_start()}

1

ABSENT{UserInput	=	'0';}
1

TOGGLE
2

RETURN{hide_tutorial()}

3

after(0.025,	sec){hide_main()}

after(0.01,	sec)
[test_active	==	0	&&	total_time	>	600]

3

CONTINUE{tt_pg	=	tt_pg	+	1;}

2

TOGGLE

3

TOGGLE_KEY
{keypress_toggle}

1

START{hide_start()}
1

after(0.01,	sec)

after(0.025,	sec)
{timer2_init}

1

TUTORIAL{show_tutorial()}

2

after(0.025,	sec)
[correct_folder	==	0]

2

LOCATE

after(0.005,	sec)
[CAL_exit_enable	==	1]

4

PRESENT{UserInput	=	'1';	tutorial_score_user();	...
tt_pg	=	tt_pg	+	1;}

1

RETURN 2

PRESENT{UserInput	=	'1';}
2

after(0.01,	sec)

ABSENT{UserInput	=	'0';	tutorial_score_user();	...	
tt_pg	=	tt_pg	+	1;}

4

after(0.01,	sec)
[test_active	==	0	&&	total_time	>	600]

2
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