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Glycemic events and glycemic variability play a key role in the onset of complications in Diabetes Mel-

litus type 2 (DM2). Predicting these can be an important tool in self-management, and so preventing

complications relating to DM2. Using Machine Learning, predictive models can be made. Continuous

glucose monitoring (CGM) and activity data from the DIALECT (Diabetes and Lifestyle Cohort Twente)

dataset were used. Features based on time, CGM, activity data, and clinical information were extracted.

Various glycemic variability features were included, such as Mean Amplitude of Glycemic Excursion

(MAGE), J-index, Time in Range (TIR), and High and Low Blood Glucose Index (HBGI and LBGI).

Models for predicting the next glucose level were made using the following machine learning algorithms:

Linear Regression (LR), Decision Tree (DT), Random Forest (RF), and XGBoost (Extreme Gradient

Boosting). These models were compared with regard to prediction accuracy with the following metrics:

Clarke Error Grid Analysis, root mean square error (RMSE), and mean absolute error (MAE). First,

personal models were made based on data from three patients with different variability. Variability was

assessed by calculating the average daily risk range (ADRR). Second, population models were made

based on the full data. All models were compared with a baseline: assuming the previous glucose value

as the current value. Results show LR performed best with personal models and RF performed best

with population models. Feature importance showed that the most important feature categories in most

models were previous glucose measurements and basic glucose calculations. Glycemic variability features

were not very high ranked, except in the personal LR models, and SD features in the population models.

Glykemische gebeurtenissen en glykemische variabiliteit zijn een belangrijk onderdeel in het ontstaan van complicaties

bij patienten met Diabetes Mellitus type 2 (DM2). Deze zaken voorspellen kan helpen bij individueel diabetesman-

agement, en kan zo complicaties voorkomen. Met machine learning kunnen voorspellende modellen worden gemaakt.

Hiervoor zijn Continue glucose monitoring (CGM) en activiteit data van de DIALECT (Diabetes and Lifestyle Co-

hort Twente) dataset gebruikt. Verschillende features gebaseerd op tijd, CGM, activiteit data en klinische informatie

zijn geëxtraheerd. Een aantal glykemische variabiliteit indexen zijn gëıncludeerd, zoals Mean Amplitude of Glycemic

Excursion (MAGE), J-index, Time in Range (TIR), en High en Low Blood Glucose Index (HBGI and LBGI). Voor-

spellingsmodellen zijn gemaakt met de volgende machine learning algoritmes: Linear Regression (LR), Decision Tree

(DT), Random Forest (DT), en XGBoost (Extreme Gradient Boosting). Deze modellen werden vergeleken aan de hand

van de volgende maatstaven: Clarke Error Grid analyse, root mean square error (RMSE), en mean absolute error (MAE).

Er zijn persoonlijke modellen gemaakt op basis van data van drie patienten met verschillende variabiliteit. Deze vari-

abiliteit is bepaald aan de hand van de average daily risk range (ADRR). Ook zijn er populatiemodellen gemaakt op

basis van de volledige data. LR modellen bleken het beste bij de persoonlijke modellen, en RF was het beste bij de

populatiemodellen. Daarnaast werd bepaald hoe belangrijk de features waren bij het maken van de modellen. De be-

langrijkste feature categorieën waren vorige glucose metingen en simpele glucose berekeningen. Glykemische variabiliteit

indices bleken minder belangrijk, behalve bij de persoonlijke LR modellen, en SD bij populatiemodellen.
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1 INTRODUCTION

1 Introduction

Diabetes Mellitus (DM) is a chronic, metabolic condition

characterized by inadequate control of blood glucose lev-

els that can be caused by genetic factors and lifestyle,

or due to other endocrinopathies. [1] There are many

subtypes of diabetes, with types 1 and 2 being the most

common types. Type 1 (DM1) is a result of defective in-

sulin secretion and type 2 (DM2) is due to resistance

to insulin action. [2] It is a very common condition,

with a prevalence of 1 in 16 in the Netherlands. Out of

these patients, approximately 9 % have type 1. [3] Com-

plications are classified as microvascular or macrovascu-

lar. [2] Microvascular complications include neuropathy

(damage to the nervous system), nephropathy (damage

to the renal system), and retinopathy (damage to the

retina). Macrovascular complications include cardiovas-

cular disease, peripheral vascular disease, and stroke.

Peripheral vascular disease can lead to injuries that do

not heal which can lead to amputation, usually in the

lower extremities. Cardiovascular disease, renal disease,

and stroke are common causes of morbidity and mortal-

ity in DM patients. [1, 2] Treatment of DM2 includes

lifestyle interventions and glucose management using in-

sulin, metformin, and sulfonylureas. Regular screenings

are necessary to manage and prevent complications. [1]

Glycemic events, also defined as hypo- (blood glu-

cose < 3.9 mmol/L) and hyperglycemia (> 10 mmol/L)

are very important risk factors for DM2 complications.

[2, 4] Glycemic (or glucose) variability, which is defined

as the fluctuation of blood glucose levels over time, has

more recently been investigated and is recognized as a

component of glucose control. [5] Intensive glucose con-

trol has been shown to decrease the risk of microvascular

complications in DM2 patients, and high glucose vari-

ability has been associated with coronary artery disease.

[6] Blood glucose dynamics are affected by many factors,

such as carbohydrate intake, insulin, stress, physical ac-

tivity, illness, alcohol, and smoking. [7] HbA1c (glyco-

sylated hemoglobin) has always been the golden stan-

dard for the assessment of long-term glycemic control.

[8] This metric provides an average of glucose levels for a

period of 2-3 months. [9] However, HbA1c is not sensitive

to rapid variations in glucose levels [10] and is not able

to predict severe hypoglycemic events accurately. [8, 9]

Glycemic excursions (hypo- or hyperglycemic) and vari-

ability are a factor in short- and long-term complications

of diabetes that are not predicted by HbA1c. [11] For ex-

ample, glycemic variability has been suggested to have a

role in diabetic retinopathy, independent of HbA1c. This

is specifically the case for hyperglycemic risk assessment

and fluctuation indices of glycemic variability. [11] Other

indices of variability have been shown to be associated

with cardiovascular, neuropathic, or retinopathic compli-

cations and lower quality of life. [10]

Glycemic variability can be approached as the fluc-

tuation of glucose levels, the risk of glycemic events, or

as low glucose control. Many different glycemic variabil-

ity, risk assessment, and glucose control parameters have

been proposed.

For glycemic variability, common parameters used

are the SD (Standard Deviation of the mean), CV

(Coefficient of Variation), MAGE (Mean Amplitude of

Glucose Excursion), CONGA (Continuous Overall Net

Glycemic Action), MODD (Mean Of Daily Differences),

IQR (Inter-Quartile Range) and TIR (Time In Range).

The SD is a simple calculation and can give a rough

estimate of variability. However, SD and SD-related in-

dices do not give a different weight to minor or major

swings. For DM2, an adequate SD is the mean blood

glucose divided by 3. [12]

CV is the standard deviation divided by the mean of

glucose concentration. Blood glucose profiles are consid-

ered highly variable if CV > 36%. [13] CV has been used

in clinical practice for the evaluation of glycemic variabil-

ity. [14]

MAGE is the mean of glucose values exceeding one

SD from the 24-hour mean and is a commonly used

within-day variability indicator that can be calculated

with CGM or self-measured blood glucose data as long

as there are at least 7 measurements per day. [15]

CONGA is a measure of within-day variability and is

calculated by taking the SD of the differences between

the current observation and the observation n hours ago.

n is usually 1, 2, or 4 hours. No normal ranges are avail-

able. [12]

MODD is a between-day index of variability and is
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calculated by taking the mean of the difference between

glucose values taken on two consecutive days. [16]

IQR is the difference between the 75th and 25th per-

centiles and has been used in clinical practice to evaluate

glycemic variability. [14]

TIR indicates the time spent in the target range (be-

tween 3.9 and 10 mmol/L), and though it is not strictly

a variability index, it is correlated and has been shown to

be associated with diabetic complications. [10] Related

indices are TAR (Time Above Range) and TBR (Time

Below Range).

For risk assessment, commonly used parameters are

LBGI (Low Blood Glucose Index), HBGI (High Blood

Glucose Index), ADRR (Average Daily Risk Range)

LBGI and HBGI assess the risk of hypo- and hy-

perglycemic excursions respectively, relative to a period

of time. [8, 12] These values can be based on self-

measured blood glucose data or CGM data. An overall

Blood Glucose Risk Index (BGRI) or Index of Glycemic

Control (IGC) can be calculated from these values by

adding them together, which indicates the risk of extreme

glycemic values. [12] LGBI has repeatedly been shown

to be an excellent predictor of severe hypoglycemia and

HBGI is closely related to HbA1c and risk for hyper-

glycemia. [17]

ADRR is a measure of extreme glucose values and an

indicator for assessing the daily risk of hypo- and hyper-

glycemia. [10, 12, 18] It is calculated using two to four

weeks of self-measured blood glucose data, and requires

at least 3 measurements a day. [12, 18] However, this

measure is more sensitive to extreme variability than to

within-range variability.

For glucose control, commonly used parameters are

J-index and GMI (Glucose Management Indicator).

The J-index is an indicator of glucose control and is

calculated using the mean and SD. Ideal control is a value

between 10 and 20, good control is between 20 and 30,

poor control is between 30 and 40, and inadequate con-

trol is over 40. [12]

GMI is an estimate of HbA1c calculated with at least

10 days of CGM data. Due to the way it is measured,

there tend to be slight differences between the values. [19]

Measurements of blood glucose are usually done by

finger-prick test. For DM1 or unregulated DM2 contin-

uous glucose monitoring (CGM) can be used. The most

common technique relies on measuring glucose levels in

interstitial fluid in a subcutaneous system. [5] This way,

a daily glucose profile can be obtained and give a precise

overview of glycemic fluctuations.

Prediction of blood glucose levels based on CGM data

using machine learning or time-series approaches have

been developed over the last few years. Many model

types based on CGM or blood glucose data have been

researched for predictions of glucose levels in DM1 and

DM2 patients. [20–22] Common data-driven model types

are neural networks such as artificial (ANN) or deep neu-

ral networks (DNN) or long short-term memory (LSTM)

[13, 20, 23–26], decision trees (DT) and ensemble meth-

ods such as random forests (RF) and XGBoost (Extreme

Gradient Boosting) [20, 23–29], support vector machines

(SVM) or support vector regression (SVR) [13, 20, 23–

26, 29, 30], (linear) regression (LR) [20, 24, 28, 31],

and time-series-based approaches such as Auto Regres-

sive Integrated Moving Average (ARIMA). [20, 23, 25–

27, 29, 30]

Predictions of future glucose levels are useful for dia-

betes self-management since action can be taken based on

future values instead of current values, which decreases

the risk of hyper- and hypoglycemic events. [13, 32]

Population models of DM2 patients are limited due to

inter- and intra-patient variability. Each individual DM2

patient has distinct glucose dynamics, which are not cap-

tured by population-based models. [33] Personal models

are based on information from only one patient, which is

less data.

This study focuses on developing personal and pop-

ulation models with machine learning algorithms LR,

DT, RF, and XGBoost, comparing their performance and

evaluating the importance of glycemic variability indices

as features.

2 Methods

2.1 Database

CGM and activity data originate from “Diabetes and

Lifestyle Cohort Twente” (DIALECT), an observational
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cohort study performed in the Ziekenhuis Groep Twente

(ZGT) hospital (Almelo and Hengelo, the Netherlands).

The goal of DIALECT is to investigate the effects of

lifestyle and dietary habits on outcomes in DM2 patients

in specialist care. [34] Measurements were done under

free-living conditions for two weeks, and data was col-

lected using Abbott FreeStyle Libre (for CGM data, mea-

surements every 15 minutes), a Fitbit wristband (for ac-

tivity data, measurements every minute), and a food di-

ary. Participants were not able to view their CGM or

activity data. Written informed consent was obtained

from all patients before participation. The study was ap-

proved by the local institutional review boards (Medisch

Ethische Toetsingscommissie reg. nos. NL57219.044.16

and 1009.68020) and is registered in the Netherlands Trial

Register (NTR5855).

2.2 Study population

Patients were selected according to the inclusion criteria

below. Figure 1 shows a flowchart of the effects on the

number of subjects due to steps taken in the exclusion of

patients.

1. Must have CGM and activity data.

2. CGM and activity data must overlap.

3. The overlap interval is at least 7 days.

4. Gaps between CGM measurements must be no

larger than 4 hours.

Certain subjects (n = 36 ) required parts of data with

large gaps to be removed before they were eligible for in-

clusion.

Personal models are made for subjects of different

glycemic variabilities to evaluate machine learning algo-

rithm performance on these smaller datasets and to eval-

uate whether higher variability impacts prediction accu-

racy.

For personal models, three subjects were selected

based on their ADRR values calculated over their full

CGM data. ADRR is a measure of the risk of glycemic

events. An ADRR below 20 is considered a low risk for

glycemic events, between 20 and 40 is considered a mod-

erate risk, and above 40 is a high risk. [12]

Figure 1: Flowchart documenting inclusion of study pop-
ulation.

Subjects with different variabilities were selected by

taking the subject with the lowest, median, and highest

ADRR, as long as each subject had a comparable amount

of data.

2.3 Machine Learning Algorithms

Multiple ML algorithms were applied to the features se-

lected, namely Linear Regression (LR), Decision Tree

(DT) Random Forest (RF), and Extreme Gradient

Boosting (XGBoost).

2.3.1 Linear Regression

LR is an algorithm that aims to learn a linear model to

predict the target variable. It determines the best fit by

using least-squares optimization. [35]

2.3.2 Decision Tree

DT is a supervised machine learning method, that can

be used for classification or regression. A DT model is

built with a tree-like structure with nodes. Each node is

a test of an attribute, and each branch descending from

the node corresponds to a value for the attribute. Leaf

nodes represent a decision that is made based on the in-

put variables. [36]
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2.3.3 Random Forest

RF is an ensemble technique that can be used for classi-

fication or regression. RF uses bagging (bootstrap aggre-

gation), which means many samples are taken from the

original dataset and fitting models to aggregates of these

samples. This model fits multiple DT in parallel and uses

majority voting in classification or averages in regression

to determine the outcome. [35]

2.3.4 XGBoost

XGBoost is a tree-based ensemble technique that uses

gradient boosting. [37] Boosting is a technique that gives

weights to each training based on the error. This way,

the model can learn from errors from previous iterations

and become more accurate during training. [35] Gradient

boosting is an optimization, where the model is trained in

an additive manner, so new DTs are added to the model

based on the lowest error. [38] XGBoost incorporates

regularization to prevent overfitting, can handle missing

data, and uses hardware more efficiently. [37, 38]

2.4 Feature extraction

Since data-driven machine learning algorithms are used,

features were extracted so more data is provided to the

algorithms.

66 features were extracted from CGM and activity

data, and from clinical patient information. These are

shown in table 6 in section A. Features were based on

literature [23, 24, 30] and expert advice.

Table 1: Table of categories of features used, color-coded.

Color Feature category Amount

Time 5

Previous glucose measurements 8

Basic glucose calculations 16

Glycemic variability indices 12

Baseline subject characteristics 13

Medication 10

Activity 2

The extracted features were further categorized into

different groups, as can be seen in table 1.

For feature extraction for predictions of a target vari-

able, it is important to keep in mind that calculations

should be done on previous values, and not include the

current value or future values. For example, taking the

average of values for an hour needs to be considered as the

previous hour, otherwise current or future values could be

included in the calculations.

5 time-based features were extracted, consisting of the

day of the week, weekend, hour, part of the day, and me-

teorological season.

41 CGM-based features were extracted. Out of these,

8 were previous glucose levels, 15 were basic glucose cal-

culations, and 13 were glycemic variability indices.

Glucose values of 1-6 measurements ago and glucose

values of 1 hour and 24 hours ago are included as fea-

tures.

For basic glucose calculations, the mean, standard de-

viation, minimum, and maximum were calculated over a

previous time interval. A rolling window was used for

calculations for the past time interval, excluding the cur-

rent glucose value. The mean and SD were calculated

over different window sizes, including 1-6 hours and 24

hours. Shorter SD windows can give insight into more

recent glycemic variations since larger windows are less

sensitive to major swings in glucose values. These short

SD windows are included in basic glucose calculations

since most metrics are usually calculated over a longer

period of time. The minimum and maximum glucose val-

ues of the previous 24 hours and the slope between the

two previous measurements were also included as a fea-

ture. Though the slope is directly related to the previous

glucose values, it is considered a basic glucose calculation

in this study.

Glycemic variability indices (SD, IQR, LBGI, HBGI,

CV, J-index, TIR (and others, such as time above/below

range) and MAGE were calculated using a rolling win-

dow of 24 hours.

23 features from clinical information were extracted,

including 13 baseline characteristics and 10 features re-

garding medication use. Baseline characteristics include

age, sex, BMI, years since diagnosis, HbA1c, among oth-

ers. Medication features include the use and dosage

of metformin and sulfonylurea-derivatives, and of slow-
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acting, fast-acting, and mix insulin.

2 activity-based features were extracted: steps taken

in the past hour and steps taken in the past 24 hours,

which were calculated using a rolling window.

ML algorithms can only take numerical inputs, so af-

ter extracting features, dummy variables were made of

certain factorized features, such as part of day and sea-

son.

2.5 Feature Selection

To evaluate and select features for use in the ML algo-

rithms, the Boruta algorithm will be used. Since most

features are extracted based on similar information, a

pairwise correlation matrix is expected to show a high

correlation. For each feature category, a correlation ma-

trix is made, and the features with a correlation over 90%

were reported.

The Boruta algorithm is a wrapper around the RF

algorithm. [39] It creates shadow variables of each vari-

able, which is a shuffled version of the original variable. It

runs an RF classifier and computes the importance of all

variables. If a variable has significantly lower importance

than the maximum importance of a shadow variable, it

is deemed unimportant. This way, the Boruta algorithm

will automatically determine the importance of the fea-

tures used. [39]

2.6 Training and validation strategy

Random sampling with preset seeds is used to create

testing (80 %) and training sets (20 %). 10-fold cross-

validation is used on the training data. 10-fold cross-

validation has often been used in other studies using data-

driven machine-learning approaches to blood glucose dy-

namics. [21] The training data is split into 10 parts, and

9 out of those parts are used for training, while the last

part is used to validate the model. Each time a different

part is used for validation. Out of these 10 folds, the best

model is the final output.

Model performance is influenced by the hyperparam-

eter values. For each model, there are different hyper-

parameters involved that can be tuned. For each model

type, a baseline was done by taking the caret package’s

default values for the hyperparameters. Next, a random

search is done of hyperparameters, of a long tune length.

For each iteration, a model is made with random values

for each hyperparameter, and the tune length determines

the number of iterations. Depending on the performance

of the model (measured by the Root Mean Square Er-

ror (RMSE) on the training set), a grid is made and the

model is trained again using the grid specified for the hy-

perparameters. For the random search, the tune length

is made shorter after determining a grid. This is due to

the run time of the random search. Especially with RF

and XGBoost, this process can take a long time and a

lot of resources due to the many hyperparameter combi-

nations. For these algorithms, a long tune length is done

initially to find appropriate values to establish a possible

grid.

To achieve more reliable results, each model was

trained on 10 different data splits. This means that the

models were trained 10 times, each time with a differ-

ent randomized data split into training and testing sets.

For each iteration, the best model per condition (so per

model type and dataset) is taken and evaluated. Out of

all these models, the best model overall per condition is

chosen and further evaluated.

The exact tuning steps are documented in the ap-

pendix, see appendix B.

2.7 Evaluating model performance

RMSE, Median Average Error (MAE), and Clarke Error

Grid Analysis were used to evaluate model performance.

RMSE and MAE are common metrics to evaluate regres-

sion models, while Clarke Error Grid Analysis is often

used to evaluate predictions of glucose levels. [21]

Clarke Error Grid Analysis was developed to evaluate

the clinical accuracy of blood glucose monitoring systems,

and it compares the predicted glucose value to the actual

value and places it in a scatterplot as shown in figure 2.

[40] Clarke Error Grid Analysis is also used to evaluate

the clinical accuracies of glucose forecasting algorithms.

[13] The zones indicate different accuracies of predicted

glucose levels and represent the severity of clinical er-

rors due to action or inaction on these predicted values.

[13, 40]

A. Predicted values are within 20% of reference, or hy-
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poglycemic values (below 3.9 mmol/L). Clinically

accurate, so clinically correct treatment decisions

are made based on these values.

B. Predicted values are over 20% of reference. Taking

action based on these values would not be danger-

ous to the patient.

C. Action on predicted values would cause overcor-

rection: actual glucose levels will fall below 3.9

mmol/L or rise above 10 mmol/L, causing a

glycemic event.

D. Predicted values are in the target range (between

3.9 and 10 mmol/L) but actual values are outside

the target range, failure to treat would potentially

be dangerous.

E. Predicted values are opposite to reference value

(hyperglycemic predicted values are actually hypo-

glycemic), and acting on these values would cause

erroneous treatment, which is potentially danger-

ous.

Zones A and B are considered clinically acceptable, while

zones C, D, and E are considered clinically significant er-

rors. [40]

Figure 2: Empty Clarke Error Grid

Aside from these metrics, the performance is also com-

pared to a baseline: the previous glucose value. For the

baseline, the current glucose value is used as the refer-

ence, and the previous glucose value as the prediction.

This is to see whether assuming the previous value for the

prediction gives accurate results and to compare these re-

sults to the model outcomes. For the baseline, the RMSE,

MAE, and Clarke Error Grids are determined for each

run. A Student’s t-test was performed to compare each

metric of each model to the baseline metrics. To eval-

uate which model was best based on the average of all

runs, a t-test was done based on the metrics to evaluate

whether the best model was significantly better than the

other models.

2.8 Feature importance

With the best models per condition, the feature impor-

tance is determined. For LR, it is determined by the abso-

lute value of the t-statistic for each model parameter. [41]

DT determines importance by attributing a reduction in

the mean squared error to each variable for each split.

This is then summed per variable. [41] With RF, the im-

portance is determined in a similar way as Boruta, since

Boruta is a RF wrapper. [39] First, the mean squared

error is determined for the model, and then a variable is

permuted. This is done by shuffling the values, and the

differences are averaged and normalized by the error. [41]

XGBoost feature importance is based on the total gain of

each feature’s splits to the prediction of the model. [42]

2.9 Software

R Statistical Software (v4.3.0, R Core Team 2023) was

used. For data processing, feature extraction and tidy-

ing, R packages ‘tidyverse’ (v2.0.0), ‘dplyr’ (v1.1.2),

‘data.table’ (v1.14.8), ‘lubridate’ (v1.9.2), ‘iglu’ (v3.4.2),

and ‘runner’ (v0.4.3) were used. For feature selection,

‘ggplot2’ (v3.4.2), ‘ggcorrplot’ (0.1.4), ‘Boruta’ (v8.0.0),

and ‘randomForest’ (v4.7-1.1) were used. For ML al-

gorithm training ‘caret’ (v6.0-94) was used, using the

methods ‘lm’ for LR, ‘rpart’ for DT, ‘ranger’ for RF,

and ‘xgbTree’ for XGBoost. For evaluating models,

‘ggplot2’ (v3.4.2), ‘ega’ (v2.0.0), and ‘caret’ were used.

The scripts used can be found in this repository: https:

//github.com/Annemijnh/Bachelor Thesis
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3 Results

3.1 Baseline characteristics

The baseline conditions of all included patients are pre-

sented in table 2.

Three patients with different variabilities were se-

lected for personal model generation. For consideration

of variability, ADRR was calculated for the full CGM

data per subject. Subject 629 had an ADRR of 13.5,

subject 688 had an ADRR of 63.2, and subject 708 had

an ADRR of 29.9. There was a subject with a lower

ADRR, but there was considerably more data available

for this subject.

The baseline characteristics of these specific patients

can be seen in table 3.

3.2 Feature Selection

The Boruta Algorithm confirmed 78 attributes, meaning

all features included were deemed important enough for

inclusion. Based on this result, all features were used in

training. Figure 3 shows the relative importance of the

included features.

Table 2: Baseline characteristics of included patients

Baseline Characteristics Value

n 85
Male 57 (67%)
Current smoker 11 (13%)
Past smoker 50 (59%)

mean sd min max

Age 65 9 38 84
Years since diagnosis 15 9 0 39
Packyears 15 22 0 114
Alcohol units per month 14 19 0 81
Length (cm) 172 9 149 194
Weight (kg) 92 15 54 141
BMI (kg/m²) 31 5 21 44
Waist circumference (cm) 111 12 83 139
Hip circumference (cm) 110 11 91 147
HbA1c (mmol/mol) 60.4 10.3 38 93
Fast insulin units (n = 45) 35 26 3 140
Mix insulin units (n = 7) 73 28 50 128
Slow insulin units (n = 45) 37 24 6 100
Metformin dosage (mg) (n = 68) 1500 700 500 3000
SU-derivative dosage (mg) (n = 26) 71 190 3 1000
Total measurement time (days) 11.4 2.4 7.0 14.3

Table 3: Baseline characteristics for personal model subjects

Low-risk patient Moderate-risk patient High-risk patient

Age 45 71 65
Sex Male Male Male
Smoking Current, 15 pack years Past, 15 pack years Past, 34 pack years
Alcohol units per month 25 52 10
BMI (kg/m²) 29.3 23.6 30.9
Years since diagnosis 0 15 10
HbA1c (mmol/mol) 38 56 77
Fast insulin units 0 24 36
Metformin dosage (mg) 500 2000 2000
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Figure 3: Boruta Algorithm results, only the top 30 features are shown.

The following features were correlated over 90%: the

rolling mean of the 1-, 2-, 3-, 4-, 5-, and 24-hour win-

dows, the rolling SD of the 5- and 6-hour windows, the

previous glucose values of 1 to 6 measurements ago, the

J-index, LBGI, and HBGI of the previous day, and the

dosage of mix insulin. The correlation matrices per fea-

ture category are in appendix C, see figure 8. This shows

that previous glucose measurement features, some of the

basic glucose calculation features (especially the differ-

ent rolling averages and SD windows), and some of the

glycemic variability features are heavily inter-correlated.

3.3 Personal models

3.3.1 Evaluation of model performance

The results of the model evaluation can be seen in ta-

ble 4. Table 4 shows the RMSE, MAE, and percentages

of predicted values in the Clarke Error Grid zones per

model per patient, and figure 9 in appendix D shows the

Clarke Error Grids for the best model per model type per

patient.

For the low-risk patient, on average LR performed

best, since the RMSE is lowest (RMSE = 0.47 ± 0.03

mmol/L), and most predicted values fall in zone A or

B (CEG zone AB = 99.95 ± 0.15 %). RF is very close

to LR, and there are no statistical differences in RMSE

means (p = 0.61) or MAE means (p = 0.49). The best

final model, however, could be LR or RF. RF could be

considered the best since the RMSE is the same as LR

(RMSE = 0.44 mmol/L), but the MAE is lower (LR was

0.35 mmol/L, RF was 0.31 mmol/L). On the other hand,

the predicted values by LR all fall in zones A and B,

while 99.53 % of predicted values by RF fall in zones A

and B. However, this difference is very small, so both

models are considered to be the best for this patient. All

models outperformed the baseline (p < 0.05 with respect

to RMSE), so assuming the previous glucose value is less

accurate than using a model.

For the medium-risk patient, LR performed best on

average (RMSE = 0.49 ± 0.03 mmol/L) and as a final

model (RMSE = 0.42 mmol/L), due to the RMSE and

MAE being the lowest, and all predicted values are in

zone A or B.
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3 RESULTS

Compared to RF and XGBoost, LR improved weakly

significantly (p < 0.1). RF was very close with regard

to the final model since only the RMSE is slightly higher

(RMSE = 0.43 mmol/L). Only DT did not outperform

the baseline and performed significantly worse (p < 0.05),

the other models significantly outperformed the baseline

when evaluating the RMSE and MAE. Since for each

model, all predicted values are in zones A and B, there is

no difference in performance.

For the high-risk patient, LR also performed best on

average (RMSE = 0.53 ± 0.03) and as a final model

(RMSE = 0.47), due to the RMSE and MAE being the

lowest. This time, LR was clearly better as a final model,

and there was a strongly significant difference when com-

pared to the other models (p < 0.01). Again, DT did

not outperform the baseline and did significantly worse

regarding RMSE and MAE (p < 0.05).

The Clarke Error Grids are included in appendix D in

figure 9. These show where the predicted values fall, and

for most best models, the values are all in zone A or B.

This can also be seen in table 4. The figure shows that

DT has a larger spread of values, which is also reflected by

the RMSE. Also, the values for the low-risk patient seem

to be mostly in the euglycemic range (between 3.9 and

10 mmol/L), while the moderate-risk patient has more

values in hypo- and hyperglycemic ranges. The high-risk

patient also has more values in the higher range, even

higher than the moderate-risk patient. Out of the clini-

cally dangerous predicted values, all of them are in zone

D, which are values that are actually outside of the target

range but the model predicted them as inside the target

range.

3.3.2 Evaluation of feature importance

In figure 4 the top 15 most important features are shown,

categorized by the previously defined feature categories

and by the variability per patient.

The LR feature importance shows a good representa-

tion of the different categories of features. Basic glucose

calculations and previous glucose measurements are the

most important feature categories. Especially the previ-

ous glucose value and the slope of the previous two values,

since they are the most essential features. Of the other

previous glucose measurement features, only the glucose

value for the previous day and previous hour were im-

portant. As for the basic glucose calculations, other than

the previous slope, the average of two rolling windows

(4 and 5 hours) and the minimum of the past day were

relevant. Both activity features are in the top 15 and are

most relevant to the moderate- and high-risk patients.

For glycemic variability indices, CV, HBGI, and TIR are

in the top 15, and these features seem most relevant for

the moderate-risk patient. Interestingly, TIR is not im-

portant to the high-risk patient. Two time-based features

were in the top 15, namely Wednesday and Thursday, and

these seem to be most relevant for the low-risk patient.

For DT, only three categories are represented: ba-

sic glucose calculations, previous glucose measurements,

and activity. The previous glucose value and the previous

slope are the most important. The previous glucose mea-

surements seem to be most important to the high-risk pa-

tient and consist of the previous 3 glucose measurements

and the measurement from an hour ago. For the basic

glucose calculations, many SD and mean windows were

important. Both activity features were included, and are

most relevant to the low-risk patient. No glycemic vari-

ability indices are included, however, SD does indicate a

short-term variability.

With the feature importance of RF, one feature is

most important to all three patients: the previous glu-

cose measurement. 7 out of 8 features in the previous

glucose measurements category are represented in the top

15. From the basic glucose calculations category, three

rolling mean windows, the previous slope, and the SD

for the previous hour are relevant. Both activity-based

features are in the top 15, though from the 7th most im-

portant feature onward, there seem to be small differences

in importance between the features. One time-based fea-

ture is shown: Sunday.

For XGBoost, as with RF, the most important fea-

ture is the previous glucose measurement. After the 5th

or 6th top features, the differences in importance become

much smaller. Within this top 5, the previous slope and

average of two windows (1 and 2 hours) are included, as

is the glucose value of 2 measurements ago. For the other

features that are not in the top 5, more previous glucose

11



3 RESULTS

Figure 4: Feature importance of the personal models

Figure 5: Feature importance of the population models
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3 RESULTS

measurements are included, the rolling SD of 4 different

windows (1, 4, 5, and 24 hours), one activity-based fea-

ture, one time-based feature, and, next to SD of 24 hours,

CV as a glycemic variability index.

No baseline subject characteristics or medication fea-

tures are included, this is due to the personal models

deeming these features as constants, so they are not rel-

evant when making personal models.

3.4 Population models

3.4.1 Evaluation of model performance

The same machine learning algorithms were used to cre-

ate population models for the entire included patient pop-

ulation. The results of the model evaluation can be seen

in table 4 and figure 6.

All models outperformed the baseline (p < 0.05) when

considering RMSE and MAE. For the Clarke Error Grid

zones, only LR was significant (p < 0.05).

On average, RF performed best when considering

RMSE (0.279 ± 0.003 mmol/L) and MAE (0.119 ± 0.001

mmol/L). XGBoost and RF had the best final models

when considering RMSE (RMSE = 0.274 mmol/L), but

RF had a lower MAE (MAE = 0.119 mmol/L for RF,

MAE = 0.1274 mmol/L for XGBoost). On average, RF

outperformed XGBoost only when considering MAE (p

< 0.01).

The Clarke Error Grids in figure 6 show that for all

best models, predicted values mostly fall in zone A and

B, as was seen in table 4. Though some models had sig-

nificantly lower RMSE and MAE, all models are shown

to predict mostly clinically safe values. Again, the only

clinically unsafe zone that predicted values are in is zone

D.

3.4.2 Evaluation of feature importance

Figure 5 shows a bar graph of the top 15 most important

features per model type.

For LR, the previous glucose measurements and basic

glucose calculations are the most important categories,

and the previous glucose value and the previous slope are

the most important features. Within the basic glucose

calculations, only the rolling mean of 4 different windows

seem to be in the top 15. Three time-based features are

included: all part-of-the-day features. One baseline sub-

ject characteristic is included: HbA1c. As discussed in

the introduction, HbA1c is an indicator of the glycemic

control of the previous months.

With the DT model, only three categories are impor-

tant: previous glucose measurements (all features are in-

cluded in the top 15), basic glucose calculations, and one

baseline subject characteristic: length. From the basic

glucose calculations, the previous slope, rolling average

of the 1-hour window, SD of 1-, 2-, and 3-hour windows,

and the maximum of the past day are relevant. Although

these smaller SD windows are included in the basic glu-

cose calculations category, they are an indication of short-

term glycemic variability.

RF only had some features that are clear in the bar

graph. The previous glucose values seem to be the most

important, especially 1 and 2 measurements ago. In total,

all features in the category of previous glucose measure-

ments are included, and some basic glucose calculation

features, such as the previous slope, the mean of the 1-,

2-, 3-, and 4-hour windows, and the SD of the 1- and 2-

hour windows. Out of these, SD can indicate short-term

glycemic variability, but these features barely show up in

the bar graph, so are not as important as other features.

XGBoost only had 6 features that clearly show up in

the bar graph, 4 of these are previous glucose measure-

ments and the other two are the previous slope and the

mean of the previous hour. Out of the other features,

all other features from the previous glucose measurement

category are present, and the SD of 1- and 2-hour win-

dows, one activity-based feature (steps of the past day),

one time-based feature (hour), and one subject-based fea-

ture (HbA1c).

Compared to the personal models, it seems certain

features are less important. Activity features only showed

up in the top 15 of the feature importance in XGBoost,

and only steps of the past hour was relevant. Even then,

this feature was not very important compared to the top 6

of most important features in XGBoost. SD and glycemic

variability features seemed more important in personal

models. DT had 3 different windows of SD in the top 15,

though the personal models had more SD windows.
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(a) LR (b) DT

(c) RF (d) XGBoost

Figure 6: Clarke Error Grids of the population models

4 Discussion

4.1 Model performance

This study compared different ML algorithms for per-

sonal and population models and the importance of

glycemic variability features in modeling. Earlier studies

have compared different ML algorithms, including LR,

DT, RF, and XGBoost, and personal and population

models. This is the first study to research the impor-

tance of glycemic variability indices as features in ML

models for personal and population models.

For the personal and population models, almost all

models outperformed the baseline, which means using

machine learning is an improvement in accurate predic-

tions compared to assuming the previous glucose value.

Although the error of the models compared to the base-

line was lower, the performance of the baseline (taking

the previous glucose value as a prediction) was clinically

good, since the Clarke Error Grids show that the pre-

dicted values mostly fall in zone A and B, which means

these values are clinically accurate.

Out of the personal models in general, LR performed

best, while out of the population models, RF performed

best. It is surprising that XGBoost and RF did not per-

form as well as expected on the personal datasets. Since

these algorithms did perform better with a larger dataset,

namely the population set, a possible explanation is the

amount of data these algorithms need to perform well.

XGBoost and RF are able to handle small datasets well

since they are ensemble methods, although the number

of features included (55, not including the baseline char-

acteristics and medication) increases the dimensionality

of the dataset. This means either the number of obser-

vations should be increased or the number of features

should be decreased to achieve higher accuracy for these

algorithms on the smaller datasets. [43]

In general, the population models are more accurate

since the RMSE and MAE were lower than in the per-

sonal models. Due to glycemic variability indices being

included as features, it could be assumed that the indi-

vidual variability of each subject is taken into account.
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This means the population models would work well, re-

gardless of individual variability, possibly better due to

more data being used in training. Another possibility is

due to the amount of data. Since data-driven machine-

learning algorithms are used, more data will give more

precise models.

Van Doorn et al [26] used NN, SVR, and ARIMA to

predict glucose values with CGM and accelerometer data,

with prediction horizons of 15 and 60 minutes. At 15

minutes prediction horizon, the RMSE was 0.19 mmol/L

for all patients (n = 170), and 0.29 mmol/L for DM2

patients (n = 43). [26] In a literature review by Woldare-

gay et al [21], RMSE reported at a prediction horizon of

15 minutes was between 0.14 and 0.66 mmol/L in DM1

patients. This study included NN, SVR, ARIMA, RF,

and hybrid models. To compare, the RMSE in this study

for the best personal models was 0.47, 0.49, and 0.53

mmol/L for the low-, moderate- and high-risk patients re-

spectively, and for the best population model, the RMSE

was 0.279 mmol/L. In both studies, NN performed best.

Considering these outcomes, investigating NN for pre-

dicting glucose values is recommended. However, this

does require some reconsideration regarding the number

of features included. Another point from these studies is

that more data improves prediction accuracy, as is also

shown in this study.

4.2 Tuning

Tuning was done with default, random or grid values

for hyperparameters. The initial tuning (see appendix

B) showed that with LR, the strategy did not matter,

with DT either random or grid would perform best, with

RF grid performed best, and with XGBoost random per-

formed best. In the final results (see also E), the best

models for DT were tuned with a grid, though many

best models per run used a random strategy. RF was

more divided, and had each strategy represented in the

final models, though default was less common in general,

except with the population models. XGBoost had both

random and grid, though the population model only used

random. It is possible the random strategy underper-

formed in RF and XGBoost since the tune length of the

random search strategy was initially set longer, but due

to a lack of resources, it was set shorter. Especially for al-

gorithms (such as RF and XGBoost) that have many pos-

sible hyperparameter combinations, a longer tune length

is recommended. Due to the nature of random tuning,

there is a larger chance that more optimal tuning is found

at longer tune lengths.

In this study, the unseen separate testing set was

only used to evaluate models and result output. Es-

pecially in RF or XGBoost, higher mtry or colsam-

ple bytree causes overfitting, although RF has another

hyperparameter that should prevent overfitting, namely

min.node.size (see also appendix B). XGBoost prevents

overfitting with the eta andmin child weight parameters,

and gamma, though gamma was not used in tuning in

this study. With DT there was only one hyperparameter

to tune, cp, which determines the amount of pruning on

the tree. Having a deeper and more complex tree means

the model is also likely to overfit and the RMSE will be

higher than estimated using the training set. Prevention

of overfitting was done by using 10-fold cross-validation

[35] and 10 runs to select the best model, but since DT

generally had a higher error compared to other models

and the baseline, it is possible that these models were

overfitted. Especially on the smaller datasets and due to

the dimensionality, RF and XGBoost are likely to overfit.

It is recommended to lower the number of features or add

more observations. [43]

There are ways to automatically tune models, using

the ‘mlr3verse’ package in R. [44] This includes options

for manual and automatic tuning, which could result in

better hyperparameter optimization than was done in

this study. This could also be applied for all runs of

the training, since only the first run was used in tuning,

and the other runs used the same tuning parameters as

the first run.

With XGBoost only two hyperparameters were tuned,

and this resulted in an improvement of RMSE when com-

paring it to the default tuning. However, random tuning

outperformed the other strategies with one of the per-

sonal models and the population model. Since two out

of the seven hyperparameters were investigated, it is rec-

ommended to investigate the other hyperparameters.
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4.3 Feature importance

Regarding the feature importance, previous glucose mea-

surements are clearly very important in modeling. How-

ever, these features are very heavily inter-correlated, es-

pecially the previous glucose values of 1 to 6 measure-

ments ago and the rolling mean of short (1- to 5-hour)

windows. Many of these features showed to be impor-

tant in model creation. Although multicollinearity does

not impact model performance, it does impact feature

importance. [45] This makes it harder to interpret the

actual importance.

LR determines importance using the coefficients, and

if multicollinearity is present, the value of a coefficient

will be lower if it is heavily correlated with other vari-

ables. RF uses permutation importance calculations, and

with the presence of collinear variables, the importance

is spread over the correlated variables. [46, 47] This very

likely applies to DT and XGBoost as well, since these

models are all tree-based. Since the splitrule ‘extratrees’

(Extremely randomized trees) is used in RF (see hyper-

parameters for the best models in appendix E), this issue

should theoretically not be present for RF personal mod-

els. [46] The importance of features of this model could be

assumed to be accurate. However, the population model

used ‘variance’, so this implies that the importance of the

highly correlated variables is spread among them.

Since the previous glucose measurements are highly

correlated with each other (see appendix C), it is likely

the feature importance calculations have underestimated

their actual importance, so previous glucose measure-

ments are likely even more important than is shown in

this study. For basic glucose calculations, the rolling win-

dows of the mean and SD are highly correlated between

different window lengths, which means these features are

also likely underestimated. Glycemic variability features

also have high correlations, positive and negative, so it

is likely some of these were underestimated in impor-

tance. The baseline subject and medication features had

some correlated features, though only mix insulin was

over 90%.

Multicollinearity could be detected with pairwise cor-

relation, with a cut-off of 80 or 90 %. [48] Pairwise corre-

lation does not necessarily indicate multicollinearity, so

other detection methods are recommended, such as calcu-

lating VIF (Variance Inflation Factor, where 10 or higher

indicates multicollinearity) or PCA (Principal Compo-

nent Approach, where small eigenvalues indicate a high

chance of multicollinearity).

Multicollinearity can be mitigated by using different

feature selection techniques. [48] For example, stepwise

regression can be used with LR, which consists of for-

ward selection (starting with no features, adding one at

a time) or backward elimination (starting with all fea-

tures, removing one at a time). For forward selection,

the features are added that give the highest decrease in

the residual sum of squares. For backward elimination,

the removal of features depends on the lowest increase

in the residual sum of squares. [48] With this amount of

features, however, this type of selection would take a long

time due to the number of possible combinations. Other

options include Lasso, Elastic-net, or Ridge algorithms

for feature selection. [48]

If multicollinearity is present, and features are re-

moved, this could also impact model performance on the

smaller (personal) datasets. As mentioned before, the

higher dimensionality impacts the performance of RF and

XGBoost, so if the amount of features is reduced, this

will make RF and XGBoost more viable candidates for

the personal models. On the other hand, the Boruta

algorithm did not exclude any features, though Boruta

does not consider the collinearity of variables. Corre-

lation over 90% was mentioned in this study, but the

highly correlated variables were not removed. To assess

the importance of glycemic variability in models, it is rec-

ommended to investigate importance by making sure no

multicollinearity is present with the method mentioned

above, since this gives more robust models and an inter-

pretable feature importance. [45]

4.4 Data processing and feature extrac-

tion

For feature extraction, a rolling window was often used.

Although this gives very accurate calculations of the

mean of the previous time interval, this requires more

calculations to be done over many windows. Especially

with more complex calculations, using a rolling window
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could take a long running time. In larger datasets, a less

intensive method could be used.

The inclusion of patients required gaps between mea-

surements to be no larger than 4 hours. Glycemic vari-

ability calculations are less reliable when gaps between

all measurements are over 2-4 hours for SD and CONGA

and 1 hour for MAGE. [49] Since patients included with

gaps only had occasional gaps that are up to 4 hours,

most variability calculations could still be considered re-

liable. Another consideration is that lowering the maxi-

mum allowable gap size would cause fewer data to be in-

cluded, and more manual processing would be necessary.

On the other hand, with smaller gaps, CGM data could

be preprocessed using interpolation, Kalman smoothing,

or filtering. [7] Linear interpolation and Kalman smooth-

ing have been shown to lower RMSE for some machine-

learning models, including XGBoost. [50]

For all glycemic variability indices, the minimum in-

terval to determine glycemic variability and adequate glu-

cose control is 12 days, when considering SD and CV. [9]

The recommended interval is 14 days. Since there were

on average 11 days of data, the choice was made to only

consider within-day variability per day. This is not a

reliable indication of each patient’s actual glycemic vari-

ability, though it can show short-term swings in glucose

levels.

Not all glycemic variability indices were researched,

partially due to not having enough data available to cal-

culate all metrics. This was the case for ADRR and GMI.

Other metrics, like CONGA and MODD, were not in-

cluded due to high correlation with SD [51] and due to

the complexity of the calculations involved.

Activity data was only based on steps, while other

activities can also contribute to the blood glucose dy-

namics. Some wearables can automatically detect other

types of activity, which could then be included as fea-

tures. Another option is, like the dietary data, manual

tracking, though this is less reliable. This could be done

by weighing activity features on the level of physical ac-

tivity. For example, walking could be considered low-

level, while weightlifting could be considered a higher-

level activity.

Other features that could be added are episodes of

hypo- or hyperglycemia. An episode could be defined as

glucose levels above or below the target range for at least

2 measurements, or for 30 minutes.

Dietary data of some of the subjects were available,

but in this study, this data was not considered. For inclu-

sion of dietary features, one could consider carbohydrate

intake or calorie intake, or create a model to estimate

glucose absorption. [21]

Dynamic features that could be added are meal times

and medication times. Fast-acting insulin can signifi-

cantly lower glucose levels in a short amount of time,

which is currently not reflected in the features since this

study only looked into daily doses of medication. As with

the glucose absorption model, one could consider different

insulin uptake models, since different types of insulin will

act differently with regard to lowering blood glucose val-

ues. Glucose response in interstitial fluid measurements

have commonly a delay of five to ten minutes with re-

spect to blood glucose measurements. [52] In practice,

this is unlikely to have a substantial impact on diabetes

management. When features of meal and insulin times

are considered, one could consider taking this delay into

account.

Other factors that influence the glucose levels of DM2

patients have not been included in this study, such as

other diseases, sleep, and psychological state. [33] Cer-

tain conditions have been registered in DIALECT that

could be included in future research. Sleep and psycho-

logical state could be considered for data collection. Sleep

tracking is possible using a FitBit since this device is able

to track the individual’s sleep. The psychological state of

a patient could be registered in a similar way to dietary

data, by keeping a mood diary. This could be done with

a daily mood or stress rating, or by registering different

basic emotions (such as joy, sadness, fear, anger, and sur-

prise) at different times of day.

4.5 Future perspective

Predictions of glucose levels can help improve diabetes

self-management. This can be done by an alarm, that

notifies DM2 patients of an oncoming glycemic event or

shared decision-making based on future glucose values.

[21] Since in this study, a short prediction horizon was
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used (only the next value), this would not be as effective

for an alarm as a longer prediction horizon, though longer

prediction horizons will have a larger error. [7] The fea-

tures that were used in this study focus heavily on the

prediction of the next value. To investigate prediction

horizons, the rolling window functions for features would

need to incorporate more lag, and previous glucose mea-

surements as a feature would need to be reconsidered. In

other studies, prediction horizons from 15 minutes up to

2 hours have been investigated. [7]

5 Conclusion

In this study, four machine learning models were com-

pared with regard to their performance in predicting the

next glucose level in DM2 patients. On average, LR per-

formed best for the low-risk, moderate-risk, and high-risk

patients. RF and LR were the best final models for the

low-risk patient, and LR was the best final model for

the moderate- and high-risk patient. RF achieved the

best population model. The most important feature cat-

egories were the previous glucose measurement and basic

glucose calculations. Glycemic variability indices were

not ranked highest in feature importance, some indices

were in the top 15 for LR and XGBoost in the personal

model, and some SD windows for DT, RF, and XGBoost

in the population models.
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A Appendix: List of Features

Table 6: Included features, definition, source, and type of data

Abbreviation Definition Source Type Category Color

wday Day of the week, Monday to Sunday Time Factor Time

weekend
Whether the current date is a day in the

weekend
Time Factor Time

hour Hour of day Time Integer Time

part of day

Part of the day, divided into Morning (06:00 -

12:00), Afternoon (12:00 - 18:00), Evening

(18:00 - 00:00) and Night (00:00 - 06:00)

Time Factor Time

season

Meteorological season, divided into Spring,

Summer,

Autumn and Winter

Time Factor Time

gl
Glucose measurement in mmol/L. Target value

for predictions
CGM Numeric Target variable

gl minus 1 Glucose measurement 1 measurement ago CGM Numeric
Previous glucose

measurements

gl minus 2 Glucose measurement 2 measurements ago CGM Numeric
Previous glucose

measurements

gl minus 3 Glucose measurement 3 measurements ago CGM Numeric
Previous glucose

measurements

gl minus 4 Glucose measurement 4 measurements ago CGM Numeric
Previous glucose

measurements

gl minus 5 Glucose measurement 5 measurements ago CGM Numeric
Previous glucose

measurements

gl minus 6 Glucose measurement 6 measurements ago CGM Numeric
Previous glucose

measurements

gl previous hour Glucose measurement 1 hour ago CGM Numeric
Previous glucose

measurements

gl previous day Glucose measurement 24 hours ago CGM Numeric
Previous glucose

measurements

rolling av 1hour

Rolling window mean of glucose

measurements of the previous hour (not

including current measurement)

CGM Numeric
Basic glucose

calculations

rolling av 2hour
Rolling window mean of glucose measurements

of the previous 2 hours
CGM Numeric

Basic glucose

calculations

rolling av 3hour
Rolling window mean of glucose measurements

of the previous 3 hours
CGM Numeric

Basic glucose

calculations

rolling av 4hour
Rolling window mean of glucose measurements

of the previous 4 hours
CGM Numeric

Basic glucose

calculations
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rolling av 5hour
Rolling window mean of glucose measurements

of the previous 5 hours
CGM Numeric

Basic glucose

calculations

rolling av 6hour
Rolling window mean of glucose measurements

of the previous 6 hours
CGM Numeric

Basic glucose

calculations

rolling sd 1hour
Rolling window standard deviation of glucose

measurements of the previous hour
CGM Numeric

Basic glucose

calculations

rolling sd 2hour
Rolling window standard deviation of glucose

measurements of the previous 2 hours
CGM Numeric

Basic glucose

calculations

rolling sd 3hour
Rolling window standard deviation of glucose

measurements of the previous 3 hours
CGM Numeric

Basic glucose

calculations

rolling sd 4hour
Rolling window standard deviation of glucose

measurements of the previous 4 hours
CGM Numeric

Basic glucose

calculations

rolling sd 5hour
Rolling window standard deviation of glucose

measurements of the previous 5 hours
CGM Numeric

Basic glucose

calculations

rolling sd 6hour
Rolling window standard deviation of glucose

measurements of the previous 6 hours
CGM Numeric

Basic glucose

calculations

rolling av day
Rolling window mean of glucose measurements

of the previous 24 hours
CGM Numeric

Basic glucose

calculations

rolling min day
Minimum glucose value of the previous 24

hours
CGM Numeric

Basic glucose

calculations

rolling max day
Maximum glucose value of the previous 24

hours
CGM Numeric

Basic glucose

calculations

previous slope Slope of the two previous measurements CGM Numeric
Basic glucose

calculations

rolling sd day
Rolling window standard deviation of glucose

measurements of the previous 24 hours
CGM Numeric

Glycemic

variability indices

rolling iqr day
Rolling window interquartile range of glucose

measurements of the previous 24 hours
CGM Numeric

Glycemic

variability indices

rolling LBGI day
Low Blood Glucose Index of the previous 24

hours
CGM Numeric

Glycemic

variability indices

rolling HBGI day
High Blood Glucose Index of the previous 24

hours
CGM Numeric

Glycemic

variability indices

cv day
Coefficient of Variation (%) of the previous 24

hours
CGM Numeric

Glycemic

variability indices

J index day J-index of the previous 24 hours CGM Numeric
Glycemic

variability indices

rolling TIR day
Time In Range (%) (between 3.9 and 10

mmol/L) of the previous 24 hours
CGM Numeric

Glycemic

variability indices

rolling TAR day
Time Above Range (%) (above 10 mmol/L)

of the previous 24 hours
CGM Numeric

Glycemic

variability indices

rolling TAHR day
Time Above High Range (%) (above 13.9

mmol/L) of the previous 24 hours
CGM Numeric

Glycemic

variability indices
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rolling TBR day
Time Below Range (%) (below 3.9 mmol/L)

of the previous 24 hours
CGM Numeric

Glycemic

variability indices

rolling TBLR day
Time Below Low Range (%) (below 3

mmol/L) of the previous 24 hours
CGM Numeric

Glycemic

variability indices

rolling mage day
Mean Amplitude of Glucose Excursions

(mmol/L) of the previous 24 hours
CGM Numeric

Glycemic

variability indices

sex female Whether the sex of the subject is female Subject Factor
Baseline subject

characteristics

age Age of subject at time of measurement Subject Integer
Baseline subject

characteristics

DM2 years Years of Diabetes Type 2 diagnosis Subject Integer
Baseline subject

characteristics

smoking current Whether subject currently smokes Subject Factor
Baseline subject

characteristics

smoking ever Whether subject ever smoked Subject Factor
Baseline subject

characteristics

packyears Amount of pack years Subject Integer
Baseline subject

characteristics

alcohol units month Amount of alcohol units per month Subject Integer
Baseline subject

characteristics

length Length of subject in cm Subject Integer
Baseline subject

characteristics

weight Weight of subject in kg Subject Integer
Baseline subject

characteristics

BMI Body Mass Index in kg/m² Subject Numeric
Baseline subject

characteristics

waist circumference Waist Circumference in cm Subject Integer
Baseline subject

characteristics

hip circumference Hip Circumference in cm Subject Integer
Baseline subject

characteristics

HbA1c
Hemoglobin A1c (mmol/mol) (glycated

hemoglobin) from blood test
Subject Integer

Baseline subject

characteristics

fast insulin Whether the subject uses fast-acting insulin Subject Factor Medication

fast insulin dosage Dosage of fast-acting insulin per day Subject Integer Medication

mix insulin
Whether the subject uses a mix (combination

of slow- and fast-acting insulin) insulin
Subject Factor Medication

mix insulin dosage Dosage of mix insulin Subject Integer Medication

long insulin Whether the subject uses slow-acting insulin Subject Factor Medication

long insulin dosage Dosage of slow-acting insulin per day Subject Integer Medication

Metformin Whether the subject uses metformin Subject Factor Medication

Metformin dosage Dosage of metformin per day Subject Integer Medication

SU derivatives
Whether the subject uses sulfonylurea-

derivatives, which lower mean blood sugar
Subject Factor Medication
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SU derivatives dosage Dosage of SU-derivatives per day Subject Integer Medication

steps day Sum of steps of the past 24 hours Steps Numeric Activity

steps hour Sum of steps of the past hour Steps Numeric Activity
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B Appendix: Tuning process

The tuning process per model type is explained in the sections below. The RMSE results per tuning strategy, model

type, and dataset are also reported for the first data split training.

B.1 Tuning parameters

B.1.1 Linear Regression

Linear Regression only has one parameter within caret, when using the ‘lm’ method, the intercept can be set to TRUE

or FALSE. [53] In this case, doing a random search will not make a difference with the grid search. So in this case, the

model performance is evaluated for an intercept set at default (TRUE) at a grid (TRUE or FALSE).

B.1.2 Decision Tree

Decision Tree has one parameter when using ‘rpart’, which is cp. [53] cp is a complexity parameter, where if it is higher,

more pruning will be done on the tree and the complexity of the model decreases, meaning fewer nodes are involved.

The default values are based on a default grid determined by caret.

B.1.3 Random Forest

Random Forest has 3 parameters when using ‘ranger’: mtry, min.node.size, and splitrule. [53] mtry refers to the number

of features that need to be considered when making a split. [54, 55] These are randomly trawn. Lower values of mtry give

less correlated and more stable trees but also lead to lower accuracy. [55] min.node.size refers to the minimum number of

observations in a terminal leaf node. This implies that if a split in a node results in one split with a lower number than

this minimum node size, this node will become a terminal node. This is a way to manage tree depth. [55] splitrule can

be either ‘variance’, ‘extratrees’, or ‘maxstat’. Variance is the original splitting rule, and means that a selection is made

out of all splits of the mtry amount of variables based on the weighted variance. Extratrees is extremely randomized

trees and this splitrule randomizes the cut-off values for node splitting. This rule adds more randomness to the trees.

Maxstat refers to maximally selected rank statistics, this rule selects variables based on a p-value approximation. The

variable with the lowest p-value is chosen for splitting, and then an adjusted p-value is calculated for testing of the mtry

variables. If this adjusted p-value is smaller than a specified error, the split is made. This way the optimal split points

are determined. [55, 56]

B.1.4 XGBoost

XGBoost has 7 parameters when ‘xgbTree’ is used. [42, 53]

nrounds refers to the amount of boosting iterations. Default values are 50, 100, and 150.

max depth refers to the maximum tree depth, increasing this value gives a more complex model which is more likely

to overfit. Possible values are 0 to infinity. Default values are 1, 2, and 3.

eta refers to shrinkage and values are between 0 and 1. This means the boosting process is made more conservative

with higher values, due to the weights being shrunk at each boosting step. The default values are 0.3 and 0.4.

gamma refers to the minimum loss reduction requirement to make more nodes on the tree, which means a larger

gamma causes the algorithm to be more conservative. Possible values are 0 to infinity, and the default value is 0.

colsample bytree refers to the subsample ratio of columns when constructing each tree. This refers to the fraction of

randomly selected features, which will then be used to train each tree. Possible values are between 0 and 1, and default

values are 0.6 and 0.8.
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min child weight refers to the minimum sum of instance weight needed in a child. If a leaf node is made with a sum

of instance weight less than this minimum, the tree should stop making more nodes after this point. This implies that a

higher value will cause the algorithm to be more conservative. Possible values are 0 to infinity, and the default value is

1.

subsample refers to the subsample ratio of the training instances. This ratio of the training data is randomly sampled

prior to growing trees, and this should prevent overfitting. Possible values are between 0 and 1; the default values are

0.5, 0.75, and 1.

B.2 Tuning evaluation

The RMSE of each model and strategy is reported in table 7.

B.2.1 Linear Regression

For all LR models, there was no difference between setting intercept as TRUE or FALSE for the outcome of the model.

So, for LR it does not matter whether the default or grid tuning strategy is used.

B.2.2 Decision Tree

For the personal DT models, the default strategy resulted in a higher RMSE compared to the random search strategy.

A grid was made for each personal DT model. This was re-evaluated multiple times by adjusting the grid slightly. This

was done based on plots of the hyperparameter vs the RMSE, to evaluate what range would be appropriate. One grid

(for the Moderate-Risk patient) caused improvements in RMSE, and the other grids did not improve RMSE compared

to the random search tuning strategy.

For the population DT model, the default strategy also underperformed. The grid strategy performed slightly better

compared to the random strategy.

B.2.3 Random Forest

Figure 7: Example of Moderate-risk patient: grid with 2
splitrules, mtry vs RMSE.

The grids for the personal models were made by

changing and readjusting the grids many times, and

resulted in choosing one splitrule, namely ’extratrees’.

mtry and splitrule seem to be related, higher mtry in

’variance’ splitrule causes higher RMSE, while higher

mtry in ’extratrees’ gives much lower RMSE. See fig-

ure 7, which shows that choosing ’extratrees’ with a

higher mtry will provide a lower RMSE. In the per-

sonal models, all strategies seem to have a similar

performance, though the grid performed best overall

in this run. For the population model, ‘extratrees’

with a high mtry also performed best in this run of

testing and tuning, and the grid strategy had the lowest RMSE.

B.2.4 XGBoost

In XGBoost tuning, the random search did outperform the default strategy, but due to very many possible parameter

combinations with low RMSE, the grid required for a grid strategy would become very large. For example, since there
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Table 7: Result of different tuning strategies

Low Risk
Moderate
Risk

High Risk Population

Model Strategy RMSE RMSE RMSE RMSE

LR Default 0.4745 0.5514 0.5263 0.2900
Grid 0.4745 0.5514 0.5263 0.2900

DT Default 0.8476 2.2473 2.2555 1.4883
Random 0.5838 0.7247 0.6790 0.3201
Grid 0.5874 0.6954 0.6942 0.3167

RF Default 0.5040 0.5498 0.5531 0.2826
Random 0.5088 0.5600 0.5589 0.2831
Grid 0.5020 0.5484 0.5467 0.2825

XGBoost Default 0.5179 0.6164 0.5936 0.2914
Random 0.4855 0.5338 0.5159 0.2783
Grid 0.5259 0.5799 0.5907 0.2883

Baseline None 0.6293 0.6468 0.6656 0.3868

are 7 parameters to tune, using a grid with 3 values for each parameter would result in 37 = 2187 possible permutations,

which would take too long to run. Two parameters (colsample bytree and subsample) were used for a grid, the rest of the

parameters were kept at default values. The grid did outperform the default strategy, however, it did not outperform a

random search in this run.
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C Appendix: Correlation matrices

(a) Correlation matrix of time-based features
(b) Correlation matrix of previous glucose measurement fea-
tures

(c) Correlation matrix of basic glucose calculation features (d) Correlation matrix of glycemic variability features

(e) Correlation matrix of baseline subject features (f) Correlation matrix of medication features

Figure 8: Correlation matrices of each feature group, except activity-based features

32



D APPENDIX: PERSONAL MODEL CLARKE ERROR GRIDS

D Appendix: Personal model Clarke Error Grids

Figure 9: Personal model Clarke Error Grids of the best models. The columns indicate the different patients and the
rows indicate the different model types
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E Appendix: Hyperparameter values for the best models

Table 8: Hyperparameter values for LR

Dataset Strategy intercept

Low-Risk patient Default TRUE
Moderate-Risk patient Default TRUE
High-Risk patient Default TRUE
Population Grid FALSE

Table 9: Hyperparameter values for DT

Dataset Strategy cp

Low-Risk patient Grid 0.002
Moderate-Risk patient Grid 2.00E-04
High-Risk patient Grid 2.00E-05
Population Grid 4.00E-06

Table 10: Hyperparameter values for RF

Dataset Strategy mtry splitrule min.node.size

Low-Risk patient Default 40 extratrees 5
Moderate-Risk patient Grid 62 extratrees 3
High-Risk patient Random 69 extratrees 3
Population Default 40 variance 5
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