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ABSTRACT 

 
Crop yield estimation is essential for decision-making and ensuring food security. This MSc thesis explores 
the explainability of a regression-based Convolutional Neural Network (CNN) model based on Earth 
Observation data. This is a relatively underdeveloped area because most Earth observation research is 
focused on classification tasks. Understanding the model’s behaviour and analysing its performance and 
result using saliency maps is also essential to figure out if there is a bias in the results. This research 
focuses on developing an explainable regression-based CNN model for crop yield estimation. The 
soybean yield is taken as the target to be estimated by the model. The input data is Sentinel-2 imagery, 
downloaded from Google Earth Engine from 2017 to 2021. A CNN model is trained and focuses on the 
explainability of the model and how the model behaves or interprets the data to estimate crop yield. The 
top soybean-producing states from 2017 to 2021 in the United States are taken as the study region. The 
target yield values at the county level are taken from the United States Department of Agriculture. The 
areas that are covered by soybean are identified by the Cropland Data Layer. This is added to the input as 
a mask layer. The dataset is prepared for training and linear regression and CNN models are trained. The 
results are compared by training one CNN model with the mask layer and the other CNN without the 
mask layer. The model with the mask layer has better accuracy of 98%, while the model without the mask 
layer has 72%. Different saliency maps, such as gradCAM, gradient, smoothGrad, Guided Back 
Propagation, Layerwise Relevance Propagation, Deep Taylor, Integrated Gradients, etc., are generated 
from the test dataset. These saliency maps are then evaluated by performing a perturbation analysis. The 
input image is gridded, and these grids are perturbed by providing Gaussian noise based on the order of 
importance for each grid. The difference in the results of the perturbated input and the true value is 
compared for all the explainable methods. The area under the curve of each perturbation plot is used to 
quantify the perturbation analysis for all the patches. The results are also critically analysed spatially with 
vegetation indices and land use maps to explain why the model focuses on specific regions. This 
demonstrates that the model focuses on regions with higher vegetation indices without the mask layer as 
the input. Our findings also show that the mask layer is significant when estimating the yield without bias. 

 



 
A REGRESSION-BASED EXPLAINABLE CONVOLUTIONAL NEURAL NETWORK FOR YIELD ESTIMATION OF SOYBEAN 

ii 

ACKNOWLEDGEMENTS 

I am immensely grateful to my first supervisor, Dr. Mahdi Farnaghi, whose unwavering support, expertise, 
and guidance have been the cornerstone of my journey in completing this master's thesis. His profound 
knowledge, insightful feedback, and constructive criticism have been instrumental in shaping the direction, 
depth, and quality of this research. I am truly indebted to his mentorship, dedication, and patience 
throughout the entire process. His input was valuable, and he was patient with me when we ran into 
technical difficulties. When I ran into trouble training the model in the middle of the thesis, he offered 
substantial assistance. I will always be thankful for the time we spent working together to resolve the 
challenges. 
 
I would also like to extend my heartfelt appreciation to Prof. Dr. Raul Zurita Milla. His expertise, critical 
insights, and attention to detail have been immensely valuable in refining the research methodology, 
analysing the data, and interpreting the results. His guidance, encouragement, and intellectual 
contributions have significantly enriched the overall research process. Always inspiring me to think outside 
the box, his insightful ideas about crop yield estimation and how to form a correlation with the 
results gave me a fresh perspective to consider when working on my thesis. 
 
I would also like to convey my sincere thanks to the members of the thesis assessment board, prof. Dr. 
M.J. Kraak and Dr. rer. nat. F. Mocnik. Their advice and feedback on the visualisations and ethical 
assessments were vital to the success of this study. I would also like to extend my heartfelt appreciation to 
the esteemed faculty members of ITC, University of Twente, whose wisdom, expertise, and intellectual 
contributions have greatly enriched my understanding of the subject matter. Their thought-provoking 
discussions, valuable insights, and scholarly guidance have played a pivotal role in shaping the ideas and 
concepts presented in this thesis. I thank my internship supervisor Dr. Scarlet Stadtler, whose creative 
suggestions at the beginning of my thesis paved the direction for the rest of the research period. I thank 
the CRIB department for its geospatial computing unit. It helped in training my model and evaluating the 
results. I would also like to express my appreciation to the developers of the Innvestigate module in 
Python, which enabled me to analyse the explainability of the results efficiently. 
 
Lastly, I would like to express my deepest gratitude to my family and friends at ITC for their unwavering 
support, encouragement, and belief in my abilities. Their motivation gave me the strength and resilience to 
overcome challenges and persevere through the demanding phases of this academic endeavour. 
 



A REGRESSION-BASED EXPLAINABLE CONVOLUTIONAL NEURAL NETWORK FOR YIELD ESTIMATION OF SOYBEAN 

iii 

TABLE OF CONTENT 

 
 
1. Introduction ........................................................................................................................................................... 1 

1.1. Importance of Research .............................................................................................................................................1 
1.2. Literature Review .........................................................................................................................................................2 
1.3. Research Gap ...............................................................................................................................................................4 
1.4. Objectives and Research Questions .........................................................................................................................6 

2. Study Area and Datasets ...................................................................................................................................... 7 
3. Methodology ....................................................................................................................................................... 11 

3.1. Dataset Preparation .................................................................................................................................................. 12 
3.2. Model Architecture .................................................................................................................................................. 17 
3.3. Model Training and Evaluation ............................................................................................................................. 19 
3.4. Explainable methods................................................................................................................................................ 20 
3.5. Perturbation Analysis ............................................................................................................................................... 21 
3.6. Analysis of Explainable Methods .......................................................................................................................... 22 
3.7. System Configuration and Specifications ............................................................................................................. 24 

4. Results .................................................................................................................................................................. 25 
4.1. Loss Curves ............................................................................................................................................................... 25 
4.2. Model Evaluation ..................................................................................................................................................... 25 
4.3. Difference Map ......................................................................................................................................................... 26 
4.4. Outliers in the scatter plot ...................................................................................................................................... 27 
4.5. Feature importance of Linear Regression ............................................................................................................ 28 
4.6. Saliency maps ............................................................................................................................................................ 29 
4.7. Perturbation Analysis ............................................................................................................................................... 31 
4.8. Analysis of saliency maps ........................................................................................................................................ 34 

5. Discussion ........................................................................................................................................................... 39 
5.1. Limitations ................................................................................................................................................................. 40 

6. Conclusions and Recommendations .............................................................................................................. 41 
6.1. Answers to the research questions ........................................................................................................................ 41 
6.2. Recommendations .................................................................................................................................................... 42 

7. References ........................................................................................................................................................... 43 
 
 



 
A REGRESSION-BASED EXPLAINABLE CONVOLUTIONAL NEURAL NETWORK FOR YIELD ESTIMATION OF SOYBEAN 

iv 

LIST OF FIGURES 

Figure 1: Map of Study Region ................................................................................................................................... 7 
Figure 2: Map of the Counties .................................................................................................................................... 8 
Figure 3: Cropland calender for Soybean .................................................................................................................. 9 
Figure 4: Cropland Data Layer for Soybean (2021) ............................................................................................... 10 
Figure 5: Methodology workflow ............................................................................................................................. 11 
Figure 6: Flowchart depicting the dataset preparation process ........................................................................... 13 
Figure 7: Soybean Yield (Bu/acre) at the county level for 2021 .......................................................................... 14 
Figure 8: The sentinel bands and croplands of soybean (Band 13) of a patch .................................................. 15 
Figure 9: Example showing how the target yield is prepared for a patch .......................................................... 16 
Figure 10: Target yield for patches ........................................................................................................................... 17 
Figure 11: CNN model architecture ......................................................................................................................... 18 
Figure 12: Perturbation Analysis workflow ............................................................................................................. 22 
Figure 13: Training and Validation Loss curves for CNN ................................................................................... 25 
Figure 14: Scatter plot of True vs predicted ........................................................................................................... 26 
Figure 15: Difference map of True vs Predicted for test dataset (Indiana) ....................................................... 27 
Figure 16: Mask layers of the outliers in True vs Predicted ................................................................................. 28 
Figure 17: Feature importance of Linear Regression Model ................................................................................ 28 
Figure 18: Sentinel bands mean correlation heatmap ............................................................................................ 29 
Figure 19: Mask Layer (Left), gradCAM of CNN model with mask (middle) and gradCAM of CNN model 
without mask (Right) of a patch from Indiana ....................................................................................................... 30 
Figure 20: Map of saliency values for Indiana from 2017 to 2021. The top row is the saliency map of the 
model without the mask. The middle Row is the saliency map of the model with the mask layer. The 
bottom Row is the soybean yield values. ................................................................................................................. 30 
Figure 21: Scatter plot of the saliency values vs Yield values ............................................................................... 31 
Figure 22: Perturbation Analysis based on the ranking of saliency ..................................................................... 32 
Figure 23: Perturbation plot – the difference in accuracy from the True value for each iteration ................ 33 
Figure 24: Area under the curve (AUC) plot for perturbation analysis .............................................................. 33 
Figure 25: GradCAM and indices of a patch from CNN model without mask ............................................... 35 
Figure 26: Area coverage by crop type for the patch ............................................................................................ 35 
Figure 27: Crop Land cover for the patch .............................................................................................................. 36 
Figure 28: Line plot comparing the two models’ saliency and indices. The top row shows the saliency map 
of the patch for the CNN model without a mask, and the bottom row is the same patch for the CNN 
model with a cover. ..................................................................................................................................................... 37 
Figure 29: Boxplot of saliency values w.r.t crop type for CNN model without mask ..................................... 38 
Figure 30: Boxplot of saliency values w.r.t crop type for CNN model with mask ........................................... 38 
 



A REGRESSION-BASED EXPLAINABLE CONVOLUTIONAL NEURAL NETWORK FOR YIELD ESTIMATION OF SOYBEAN 

v 

LIST OF TABLES 

Table 1: Literature Review ........................................................................................................................................... 5 
Table 2: Datasets Used ................................................................................................................................................. 8 
Table 3: Sentinel-2 Bands (Source: Google Earth Engine) ..................................................................................... 9 
Table 4: Number of counties having yield values per year .................................................................................. 10 
Table 5: CNN Model architecture ........................................................................................................................... 18 
Table 6: Hyperparameters of the CNN model ...................................................................................................... 19 
Table 7: System Specifications .................................................................................................................................. 24 
Table 8: RMSE and R2 of the models ..................................................................................................................... 26 
Table 9: Area under the curve values for 20 patches ............................................................................................ 34 
 
 
 



 
A REGRESSION-BASED EXPLAINABLE CONVOLUTIONAL NEURAL NETWORK FOR YIELD ESTIMATION OF SOYBEAN 

vi 

LIST OF EQUATIONS 

 
Equation 1: Target Yield calculation ........................................................................................................................ 15 
Equation 2: NDVI Formula ...................................................................................................................................... 22 
Equation 3: EVI Formula .......................................................................................................................................... 23 
Equation 4: NDMI Formula ..................................................................................................................................... 23 
Equation 5: WDRVI Formula ................................................................................................................................... 23 
Equation 6: SAVI Formula ........................................................................................................................................ 23 
 



A REGRESSION-BASED EXPLAINABLE CONVOLUTIONAL NEURAL NETWORK FOR YIELD ESTIMATION OF SOYBEAN 

1 

1. INTRODUCTION 

1.1. Importance of Research 

 
Crop yield estimation is crucial for food security owing to the rising demand caused by the increasing 
population (Wolanin et al., 2020a). Due to uncertainty in the weather and the use of conventional 
agricultural techniques, farmers in emerging economies face challenges in increasing their harvests 
(Johnson et al., 2021). The annual crop yield estimate grossly depends on several weather characteristics 
and climate change-induced phenomena (Johnson et al., 2021). To maintain food security and enable 
effective decision-making, it is necessary to have an accurate estimation for the subsequent years 
(Srivastava et al., 2022). Several methods have been researched and implemented over the past years for 
estimating crop yield, varying from simulation models to statistical methods based on data availability 
(Srivastava et al., 2022). 
 
Predicting crop yield via statistical methods considers the spatio-temporal heterogeneity within a local area 
(Yang et al., 2022). For instance, meteorological parameters, which vary dynamically over time and space 
due to different topographies, influence the yield (Yang et al., 2022). To address this spatio-temporal 
heterogeneity in the local region, Geographically Weighted Regression (GWR) models were utilised to 
identify the spatial correlation between features (Imran et al., 2015). However, these models cannot fit 
attributes that have complex non-linear relationships (Brunsdon et al., 2010). An essential assumption is 
that the irregularities in the GWR model are uncorrelated and share variance (Leung et al., 2000). Non-
linear models like Deep Neural Networks resolve this issue. 
 
Over the past decade, there has been an increase in research conducted by utilising machine learning 
models for crop yield prediction (Klompenburg et al., 2020). The most frequently used deep learning 
algorithm is Convolutional Neural Networks (CNN), followed by Long-Short Term Memory (LSTM) 
(Klompenburg et al., 2020). However, one major problem in using Neural Networks is their limitation in 
interpreting the model. They are composed of several hidden layers (Rudin, 2019a). These models are 
called black-box models as they do not provide an interpretation as to how they arrived at their prediction. 
Recently, there has been some research to interpret the black box models (Casas-Roma & Conesa, 2021). 
The study led to the development of Explainable Artificial Intelligence, also called XAI (Explainable AI).  
 
Explainability is necessary to offer the user transparency and trust, particularly in intricate deep-learning 
algorithms (Molnar, 2022). XAI models provide qualitative and quantitative accuracy regarding the 
model's performance and architecture. There are two different concepts in XAI, "Interpretation" and 
"Explanation". The term "Interpretation" refers to the ability to connect an abstract concept to a field that 
humans can comprehend (Montavon et al., 2017). An “Explanation” refers to the set of distinct features 
that have played a role in generating a decision, such as classification or regression (Montavon et al., 2017). 
 
Interpretable or Explainable models allow a human to understand a model's decision for arriving at the 
result (Molnar, 2022). Interpretable Deep learning models are required to address the incompleteness in 
the modelling process (Doshi-Velez & Kim, 2017). In contrast, explainability provides analytical insight 
into the decision that was taken by the model, helping to identify incorrect or biased outcomes, etc. 
(Miller, 2019). 
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In the case of crop yield, it is crucial to determine if the model is effectively estimating the yield by utilising 
the input features accurately (Wolanin et al., 2020a). CNN models generate feature maps as intermediate 
layers, extracting relevant attributes from the input image to get the output layer. A critical aspect of 
explainable CNN models is providing insight into how these attributes are extracted and correcting any 
bias in the feature extraction process. This also ensures that the model performs correctly for the provided 
input dataset and can be trusted to perform effectively for future datasets. This research mainly focuses on 
critically analysing the explainability of a CNN model to enhance the performance and quality of the 
spatial estimation of soybean yield. 

1.2. Literature Review 
 
A comprehensive literature review by Klompenburg et al. (2020) found that most of the research 
conducted in crop yield estimation has utilised CNN and LSTM models. Linear Regression models are 
used as a benchmark to compare the performance of the deep learning models. Root Mean Square Error 
(RMSE) and R2 score are the commonly used validation parameters in several studies (Klompenburg et al., 
2020). To identify the research gap and explore a new direction in the domain of crop yield estimation, we 
initially identified previous research that utilised deep learning algorithms for crop yield estimation. 
Subsequently, we look at scholarly articles where CNN models were implemented for crop yield 
estimation. This will further be narrowed down to focus on research that specifically uses remote sensing 
images as input data where explainable and interpretable methods are implemented for deep learning 
models predicting crop yield. We also focus on research that implements explainable methods for Earth 
observation data. Nevertheless, there is a scarcity of research utilising the explainability of the CNN 
models in crop yield estimation. 
 
A few studies that use deep learning algorithms for crop yield estimation are described.  
 

 In a work by Schwalbert et al. (2020), an LSTM model was implemented to forecast soybean yield 
in southern Brazil (Schwalbert et al., 2020). Data used include vegetation indices like NDVI 
(Normalised Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from 
MODIS (Moderate-resolution Imaging Spectroradiometer), and weather parameters (temperature, 
precipitation). The LSTM model was compared with Random Forest and Linear Regression. The 
study concludes that the results from LSTM had a higher accuracy than the other models.  

 

 Another study using a deep learning transfer model was implemented by Wang et al. (2018) to 
predict soybean yield in Brazil and Argentina. MODIS surface reflectance product was taken as 
the input data from 2012 to 2016. The Ridge Regression model was taken as the benchmark 
model. An LSTM model was used for Argentina, and transfer learning was utilised for this model 
to train for Brazil (Wang et al., 2018). The research concludes that the results from transfer 
learning had a higher accuracy.  

 
A drawback of the above mentioned studies is that there is little exploration into the spatial importance of 
the model. More emphasis is provided on temporal analysis and forecasting.  
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A study by Khaki & Wang (2019) used a deep neural network model to estimate crop production of corn 
hybrids from 2008 to 2016 throughout the United States and Canada. The input data that they utilised was 
tabular and had no spatial information. Other Machine Learning models, including Least Absolute 
Shrinkage and Selection Operator (LASSO), Shallow Neural Network (SNN), and Regression Tree, were 
compared to the findings. It was discovered that the prediction and performance of the Deep Neural 
Network model had higher accuracy. One of the limitations noted by the authors is the model's black box 
mechanism, which does not offer the user any transparency (Khaki & Wang, 2019). 
 
Some relevant papers that specifically implement CNN models for crop yield estimation using remote 
sensing images are mentioned below.  
 

 A study by Nevavuori et al.  (2019)  implemented a CNN model to predict wheat and barley yield 
using RGB and NDVI images collected from UAVs (Unmanned Aerial Vehicles). K- Fold cross-
validation is performed to optimise the training dataset, and the Adadelta algorithm was chosen as 
the best-performing optimisation algorithm. The results indicated that the model provided higher 
accuracy from the RGB layers than the NDVI layers (Nevavuori et al., 2019).   

 

 In a research conducted by Yang et al. (2019) for estimating rice grain yield, RGB and multi-
spectral images were acquired from a UAV for the study region Binyang County, Guangxi 
Province, China (Yang et al., 2019). The spatial resolution for the images was 0.04 m for RGB and 
0.2 m for the multi-spectral layers. Images were captured on six different days from August 2017 
to November 2017, depending on the phenological stages of the crop. The CNN architecture 
implemented used RGB images and multi-spectral images separately. The Stochastic Gradient 
Descent (SGD) with momentum was used as the optimisation algorithm. The model results 
showed a higher weightage for the RGB images than the multi-spectral images.  

 

 Terliksiz & Altylar’s (2019) work used a 3D-CNN model to predict soybean yield in Lauderdale 
County, Alabama, USA (Terliksiz & Altylar, 2019). Satellite imagery from MODIS products, like 
surface reflectance, LST (Land Surface temperature) and Land-Cover maps, were provided as 
input from 2003 to 2016. The training samples were collected from the USDA (United States 
Department of Agriculture). The results from the model provided an accuracy of 0.81 RMSE for 
a 20% cropland coverage (Terliksiz & Altylar, 2019). One of the limitations revealed in this 
research is that the cropland coverage changes every year, which means that the data frame for 
each year cannot be set to a fixed dimension.   

 
Even though these studies utilised remote sensing imagery and provided emphasis to spatial dataset, there 
was not much focus on interpreting the deep learning models.  
 
A few studies that focused on the explainability of CNN models for yield prediction using Earth 
Observation data are stated.  
 

 In a study by Wolanin et al. (2020), an explainable 1D CNN model was implemented to estimate 
the crop yield along the Indian wheat belt (Wolanin et al., 2020b). The input features were 
arranged temporally for the training dataset. Regression Activation Mapping (RAM), a post-hoc 
method, interpreted the model's feature characteristics and importance. Other interpretation 



 
A REGRESSION-BASED EXPLAINABLE CONVOLUTIONAL NEURAL NETWORK FOR YIELD ESTIMATION OF SOYBEAN 

4 

techniques were not explored. Since the approach utilised a 1D CNN model along the temporal 
dimension, the spatial heterogeneity of the region was also not considered.  

 

 Another study by Srivastava et al. (2022) predicted the yield of wheat for winter utilising a CNN 
model with a fully connected neural network, considering the temporal aspects of the data layers 
(Srivastava et al., 2022). The input features considered included weather and soil parameters, 
along with the phenological data like sowing, flowering and harvest seasons of wheat. The 
resulting performance of the CNN model was better than the other models like Random Forest, 
K-Nearest Neighbour, Lasso and Ridge Regression, Support Vector Regression, XGBoost, and 
Deep Neural Networks (DNN). The SHAP (Shapley Additive exPlanations) module was used as 
a post-hoc interpretation of the feature characteristics. However, this study does not explore 
other means of explainability utilising saliency maps or intrinsic methods. 

 

 In another study by Stomberg et al. (2021), an intrinsic approach was implemented to classify 
wilderness from remote sensing data using CNNs. Since nature has no proper classification 
samples, the research focused on clustering the  activation maps from the annotated dataset as 
potential training samples (Stomberg et al., 2021). The results indicated that the model classified 
non-wilderness regions better than wilderness regions.  

 
The recent research conducted by Wolanin et al. (2020b), Srivastava et al. (2022) and Stomberg et al. 
(2022)  focused on the interpretation and explainability of the deep learning model. However,  Wolanin et 
al. (2020b) focused on the temporal aspect, where the data was prepared for a 1D CNN model. On the 
other hand, Srivastava et al. (2022) placed greater emphasis on the feature importance and conducted an 
analysis to assess the impact of input features on the model. There has been a lack of spatial explainability 
when analysing the model’s results. However, Stomberg et al. (2022) utilised Class Activation Maps (CAM) 
and performed sensitivity analysis to explore how the model behaves when some input features were 
masked. Nevertheless, the analysis was performed for the discrete classification of wilderness, while our 
research will attempt to estimate the crop yield, which is a continuous value. Table 1 provides an overview 
of the relevant background research conducted related to crop yield estimation. 
 

1.3. Research Gap 

 
The field of crop yield estimation and earth observation is currently characterised by an absence of 
Explainable Convolutional Neural Network (CNN) models. Several studies have been conducted to 
explore the implementation of post-hoc interpretation techniques in the context of crop yield estimation 
(Srivastava et al., 2022; Wolanin et al., 2020b). The utilisation of post-hoc techniques offers valuable 
analytical insights into both the significance of features and the functioning of the model. However, the 
majority of the post-hoc methodologies employ temporal analysis in prior studies. The current state of 
research indicates a lack of spatial analysis techniques that incorporate the use of saliency maps. To our 
knowledge, this is the first time research has been performed utilising explainable methods to analyse yield 
estimation spatially. As stated in section 1.2, previous research employed models specifically designed for 
temporal forecasting in order to make predictions about crop yield. Explanation is also conducted within a 
temporal framework. It is vital to comprehend the spatial characteristics that impact the estimation of 
yield. The importance of identifying the specific spatial regions that directly influence the decision-making 
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process of a model should be emphasised, even if the model exhibits strong performance and high 
accuracy. This is crucial in order to address any potential biases that may arise in the outcomes. 
 
  
Author Methodology Research Gap 
(Schwalbert et al., 2020) LSTM to forecast soybean yield  

CNN models are not used. Also, 
Interpretation techniques are not 
explored. 

(Khaki & Wang, 2019) Deep Neural Network to 
estimate corn hybrids 

(Wang et al., 2018) LSTM transfer learning model to 
predict soybean yield 

(Nevavuori et al., 2019) CNN model from UAV images 
to estimate wheat and barley 
yield 

 
 
Interpretation or explainable 
techniques are not implemented. (Yang et al., 2019) CNN model from UAV images 

(RGB and multi-spectral) to 
estimate rice yield 

(Terliksiz & Altylar, 2019) 3D CNN model using MODIS 
imagery to estimate soybean yield 

(Wolanin et al., 2020a) 
 
 

Explainable 1D-CNN to 
estimate wheat yield 

Only Regression Activation 
Maps were used. The spatial 
aspect is not considered, as only 
the temporal dimension is used. 

(Srivastava et al., 2022) CNN+FC to predict winter yield No explainable technique was 
implemented. Only the SHAP 
module was used for interpreting 
the feature characteristics. 

(Stomberg et al., 2021) Intrinsic Explainable CNN 
To detect wilderness 

Used only for discrete 
classification, not for a regression 
model 

Table 1: Literature Review 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
A REGRESSION-BASED EXPLAINABLE CONVOLUTIONAL NEURAL NETWORK FOR YIELD ESTIMATION OF SOYBEAN 

6 

1.4. Objectives and Research Questions 

 
The main objective of this research is to develop an explainable Convolutional Neural Network Model to 
estimate crop yield.  
To achieve the main objective, we need to work towards the following sub-objectives: 

1. To evaluate the accuracy of a linear CNN model for crop yield estimation with a baseline linear 
regression model.  

2. To quantify the explainable methods and identify which are suitable for crop yield estimation. 
3. To critically analyse the use of explainable methods and detect bias or irregularities in the yield 

estimation.   

To achieve the main objectives and sub-objectives, we must answer the following research questions. 
 
Research Questions for Sub Objective 1: 

 What is the level of accuracy for the CNN model compared to the linear regression model? 
 Which characteristics are essential for estimating crop yield?   

 

Research Questions for Sub Objective 2: 

 What differences can be observed between the explainable methods regarding their performance 
and accuracy? 

 Which explainable methods are ideal for crop yield estimation? 

 
Research Questions for Sub Objective 3: 

 How is explainability valuable in the case of crop yield estimation? 
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2. STUDY AREA AND DATASETS 

Soybean production of the five leading states in the United States is considered for the study region. The 
United States is one of the primary producers of the world's soybean (USDA & National Agricultural 
Statistics Service, 2022). In 2021, the total production of soybeans in the United States reached 4.44 billion 
bushels, where 1 bushel equals 60 lbs (27.216 Kg). Compared to 2021, production and harvest area 
increased by 5% in 2022(USDA & National Agricultural Statistics Service, 2022). There was also an 
increase, up to 0.4%, in the average yield (USDA & National Agricultural Statistics Service, 2022). 
 
Since Illinois, Iowa, Minnesota, Nebraska, and Indiana are the five states accounting for more than 50% 
of the soybean output for the United States (USDA & National Agricultural Statistics Service, 2022), these 
states were chosen for the study region, highlighted in red in Figure 1. Hence, an accurate prediction of 
the yield in the following years is essential to decide how to implement further action. An analysis of the 
temporal change over the years also determines that the soybean yield has steadily increased over the past 
six years (USDA & National Agricultural Statistics Service, 2022). However, the yield rate needs to be 
proportionate to the demands of the increasing population (Antony, 2021).  
 
It Is also important to note that the spatial and temporal distribution of the datasets is adequate for this 
study area. This is necessary to provide a reasonable explanation of the results.  

 

 

Figure 1: Map of Study Region 
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Figure 2: Map of the Counties 

 
Dataset Source 

Cropland Data Layer (CDL) GEE (Google Earth Engine), USDA 

Sentinel-2 Multi-Spectral Images (2017 – 2021) GEE (Google Earth Engine) 

2017-2021 
(Level-2A orthorectified atmospherically corrected surface 
reflectance)  

Crop Yield (2017 to 2021) for counties USDA, NASS (https://www.nass.usda.gov/ ) 

Table 2: Datasets Used 

 
Table 2 displays the datasets that will be used in this study. The input images provided are from Sentinel 2 
MSI (Multi-Spectral Instrument). The images for 2017 to 2021 are acquired from Level 2A orthorectified 
atmospherically corrected surface reflectance. The sentinel-2 data consists of 12 bands, as shown in  
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Table 3. The cloud cover percentage is set to 10% when downloading the sentinel images. The aggregate 
of the sentinel images for each year is taken in July. The month of July is selected as the time interval due 
to the fact that soybean typically reaches its mid-growth stage during this period, as indicated by the crop 
calendar depicted in Figure 3. Initially, the cropland layers are downloaded and clipped to the geographical 
boundaries of the study region. Afterwards, the sentinel images are downloaded, also clipped to the study 
region. Due to the substantial volume of data that is being downloaded, Google Earth Engine splits the 
images into tiles. Later, these are merged accordingly to encompass the study area. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Table 3: Sentinel-2 Bands (Source: Google Earth Engine) 

 

 

 
Figure 3: Cropland calender for Soybean 

(Source: USDA & National Agricultural Statistics Service, 2022) 
 
 
A temporal extent from 2017 to 2021 is taken for the soybean yield value, spatially distributed over the 
counties of the five states, having 1956 observations. Figure 2 displays the counties for the selected extent. 
In total, there are 473 counties. The period is chosen based on the availability of the sentinel 2 dataset. 
Table 4 displays the resulting observations acquired for each year.  
 

Band Description Pixel Size 
B1 Aerosols 60 meters 
B2 Blue 10 meters 
B3 Green 10 meters 
B4 Red 10 meters 
B5 Red Edge 1 20 meters 
B6 Red Edge 2 20 meters 
B7 Red Edge 3 20 meters 
B8 NIR 10 meters 
B8A Red Edge 4 20 meters 
B9 Water vapour 60 meters 
B10 Cirrus 60 meters 
B11 SWIR 1 20 meters 
B12 SWIR 1 20 meters 
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Year Observations 

(Number of 
counties) 

2021 345 
2020 421 
2019 370 

2018 401 
2017 419 

Table 4: Number of counties having yield values per year 

The CDL (Cropland Data Layers) are compiled maps of the classification of croplands in the United 
States by USDA (United States Department of Agriculture) from 2017 to 2021. They have a spatial 
resolution of 30 meters. These maps can be downloaded from Google Earth Engine to identify the 
regions where soybean is cultivated. Figure 4 displays the cropland covered by soybean in 2021. Since all 
the bands in sentinel-2 do not have the same resolution (Refer to Table 3), they are all resampled to 60 
meters. The CDL maps are also resampled from 30 to 60 meters to be overlaid with the sentinel bands. 
Bilinear interpolation technique is used for resampling since it provides a close approximation to the 
original values. 

 
Figure 4: Cropland Data Layer for Soybean (2021) 
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3. METHODOLOGY 

The workflow of this thesis is shown in Figure 5. It starts with downloading the sentinel images and 
cropland data layer for the five states from 2017 to 2021. Afterwards, the dataset is prepared by generating 
patches with a smaller area and a target yield for each patch by downscaling the yield values at the county 
level. This is done so that there could be sufficient amount of patches to train the model. Next, two CNN 
models are trained, one with the cropland data layer as a mask and the other without the cropland data 
layer. The training of two models is done to compare how effectively the model could extract relevant 
information with respect to the mask layer. A linear regression model is also fitted and used as a baseline 
comparison to the CNN models. The dataset is split into training, validation and testing. Subsequently, the 
test dataset is used for evaluating the models. Regarding the explainaibility of the models, different 
saliency maps are generated for the CNN models. The saliency maps provide an understanding of which 
regions from the input patches are considered important by the CNN models when estimating the crop 
yield. A perturbation analysis is performed to test their sensitivity and identify which explainable method 
has the best performance. Later, to check if the models have any bias while estimating the yield, the 
saliency maps are analysed by comparing with various vegetation indices and the landuse map to find any 
correlation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Methodology workflow 
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3.1. Dataset Preparation 
 
Figure 6 provides an overview of the dataset preparation for the CNN model. The first dataset selected is 
the Crop Land Data Layer of soybean for 2017 to 2021. These layers are then clipped to the study region 
comprising the five states. Additionally, the sentinel 2 dataset from 2017 to 2021 is selected and also 
clipped to the study region. The clipped layers of the sentinel bands and the cropland data layer are 
merged, resulting in a merged dataset having 13 channels. Next, the pixel values of the sentinel-2 bands 
are normalised from 0 to 1 and patches having dimension of 256 x 256 x 13 are created from the 
nomralised and merged dataset. These will serve as the input features for the CNN model. A patch size of 
256 x 256 pixels was chosen as it provided a sufficient number for training the CNN model. In total, 
18816 patches are created. Now, for each patch, we require a target yield value. In order to prepare the 
target, the yield values are first selected for all the counties within the five states. These yield values are 
converted to metric units and scaled down by dividing with 10e7. This scaling down is performed instead 
of standard scaler to retain the target values in Kg. Since each county has a larger spatial extent than a 
patch of 256 x 256 pixels, the yield for each patch is calculated by downscaling the county level yield based 
on the area of soybean field covered in that patch. This will provide a dataset having a target soybean yield 
for each patch, where each patch consists of the 12 bands from Sentinel-2 and a mask layer of the soybean 
fields (Refer to Figure 8).  
 
Originally, the yield is measured in bushel/acre, where 1 Bushel is  27.2 Kg and 1 acre is 4046.86 sq. m, 
which is 63 x 63 meters approximately. The values are converted to metric units of Kg/ sq. meters. 
 
In total, there are 1956 crop yield observations per county from 2017 to 2021 (Refer to Table 4). A map 
for each year is first generated by grouping the yield values of all the counties per year. 

 
To ensure that no bias occurs in the model training due to the varying range of the bands, all the bands 
and predictor values are normalised using the StandardScaler method from sci-kit Learn (Pedregosa et al., 
2011).   
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Figure 6: Flowchart depicting the dataset preparation process 

 
 Figure 7 shows the yield per county for 2021 in Bushels/acre. From Figure 7, we can see that the yield is 
missing for specific counties. This is due to a lack of insufficient information such that USDA does not 
estimate the yield for that year.  
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Figure 7: Soybean Yield (Bu/acre) at the county level for 2021 

 
Patches are created for the sentinel 2 dataset by creating 256 x 256 pixel grids. The target yield for each 
patch is computed by distributing the yield per county with respect to the area of cropland utilised for 
soybean within that patch. Figure 8 shows how one patch of 256 x 256 pixels look. Each pixel is 60 x60 
m. Thus the extent of one patch is 15.36 Km 
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Figure 8: The sentinel bands and croplands of soybean (Band 13) of a patch 

 
The target yield for each patch is calculated as follows. 

𝑌 =  𝑦 ∗ 𝐴

ୀ

ୀଵ
 

Equation 1: Target Yield calculation 

 
Y -> total yield for that patch (Kg) 
n -> Total number of counties that covers the patch 

𝑦 -> Average yield of county j (Kg/sq. m) 

𝐴 -> Area covered by the cropland for county j in sq. m 

 
For example, let there be a patch that covers 5 counties. This implies that there will be five different yield 
values (Y1 to Y5), one per county, for that patch, as shown in Figure 9. The yield for this patch will then 
be calculated as follows: 
 
Y = Y1*A1 + Y2*A2 + Y3*A3 + Y4*A4 + Y5*A5 
 
Where A1 to A5 are the area of cropland covered by that portion of the patch for the corresponding 
county. 
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Figure 9: Example showing how the target yield is prepared for a patch 

 
There are 18816 patches in total. Figure 10 displays the target yield for the patches from 2017 to 2021 for 
the study region. Something that can be inferred from these plots is that the yield value is higher in Illinois 
and Indiana. Also, the north-eastern part of Minnesota and large portions of Nebraska have lower yields 
in general for all the years from 2017 to 2021. This implies that compared to Illinois and Indiana, soybean 
is not predominantly grown in Minnesota and Nebraska. Performing a temporal analysis on this dataset 
will also not be possible for all the patches, since the yield values are missing for a few patches at the same 
location per year.  
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Target Yield for patches from 2017 to 2021 

 

 

 
 
 

3.2. Model Architecture 

 
The model architecture is illustrated in Figure 11 and shown in Table 5. A simple CNN model architecture 
is initially designed and tested. The model has three convolutional layers with a kernel size of 3 x3 and 
three max-pooling layers with a kernel size of 2 x 2. Max pooling is used in CNN models to downsample 
feature maps, reducing their spatial dimensions while retaining the most salient features by selecting the 
maximum value within each pooling region, aiding in translation invariance and efficient feature extraction 
(Lecun et al., 1998). After the third max-pooling layer, the model flattens the next layer and is connected 
to a densely connected network having two layers of node size 64 and 32. All the layers have ReLU 
(Rectified Linear Unit) activation functions except the output layer. ReLU introduces non-linearity to the 

Figure 10: Target yield for patches 
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network, which is essential for learning complex patterns and making the CNN capable of approximating 
any arbitrary function. ReLU is a simple function that only activates if the input is positive, effectively 
introducing non-linearity by breaking the linearity of the input range (Glorot et al., 2011). The final output 
layer has one node with a linear activation layer since the output is a continuous variable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Type Kernel Size Output Shape 

InputLayer None 256,256,13 

Conv2D 3x3 254, 254, 32 

MaxPooling2D 2x2 127, 127, 32 

Conv2D 3x3 125, 125, 64 

MaxPooling2D 2x2 62, 62, 64 

Conv2D 3x3 60, 60, 64 

MaxPooling2D 2x2 30, 30, 64 

Flatten None 57600 

Dense None 64 

Dense None 32 

Dense None 1 

Table 5: CNN Model architecture 

The defined model architecture is very simple. Initially, the idea is to find out how well the model 
performs in estimating the yield. A comparison is made to find out how the mask layer affects the yield 
estimation. Since we compare the CNN model’s accuracy based on the influence of the cropland mask, 
further layers are not added. Subsequently, a linear regression model is also implemented using Sci-kit 
Learn (Pedregosa et al., 2011) to assess the accuracy of the CNN models. 
 
 
 

Figure 11: CNN model architecture 
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3.3. Model Training and Evaluation 

 
Table 6 shows the hyperparameters that were used to train the CNN models. Two CNN models were 
trained, one including the mask layer and the other without the mask layer. This can be noted in the row 
showing patch dimension, where the shape (256,256,13) includes the mask layer and the 12 sentinel bands.   
 

Hyperparameters Value 

Batch Size 64 

Epochs 50 

Learning Rate 0.0001 

Optimiser Adam 

Loss Function  MSE (Mean Squared Error) 

Metrics MAE (Mean Absolute Error) 

Number of patches 16225 

Patch dimension 256,256,13 256,256,12 

Years 2017-2021 
Table 6: Hyperparameters of the CNN model 

 
The batch size is set to 64. This means that for each epoch, 64 samples are trained before the model’s 
parameters are updated. Increasing the batch size will result in a better loss curve, which may lead to a 
model having better accuracy. However, it takes more computational power, which would result in higher 
memory consumption.  
 
An epoch refers to a single pass through the entire training dataset, during which each training sample is 
used to update the model’s parameters. The number of iterations within an epoch is equal to the number 
of patches for training divided by the batch size. With a batch size of 64, one epoch will have 190 
iterations.  
 
The Adam optimiser is a popular optimisation algorithm used in CNN models (Kingma & Ba, 2014). It is 
chosen since it combines the benefits of both Adaptive Gradient Algorithm (AdaGrad) and Root Mean 
Square Propagation (RMSProp) by adapting the learning rate for each parameter based on its past 
gradients, resulting in efficient and effective parameter updates during training (Kingma & Ba, 2014).  
 
16225 patches from four states (Iowa, Illinois, Minnesota and Nebraska) are taken for training the CNN 
model. While training the CNN model, 25% of the patches from the four states will be randomly chosen 
to improve the validation loss curve.  The remaining 2591 patches from Indiana are kept aside for testing 
and evaluating the model. By selecting Indiana as the test dataset, we ensure that there is no potential for 
overfitting during model evaluation. This is due to variations in the spectral values and spatial texture 
between the patches obtained from Indiana and those acquired from other states. 
 
After training the model, the run with the best epoch is chosen to evaluate the test data. The best epoch is 
when the validation loss curve is close to the training loss. R2 score and RMSE (Root Mean Square Error) 
are used as evaluation metrics to compare the accuracy of the estimated values with the true values.  
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3.4. Explainable methods 

 
Several explainable methods are utilised for CNN models. The results are heatmaps/saliency maps to 
explain how the CNN model estimates the yield. Heatmaps/saliency maps for a CNN is a visual 
representation that highlights the most important regions or features in an input image that contribute to 
the network’s prediction (Molnar, 2022). It identifies the areas of the image that has the most significant 
influence on the output of the network, providing insights into which parts of the image the CNN model 
focuses on to make its decision. Different types of explainable methods can be generated based on various 
algorithms. Below is a brief explanation of the algorithms used to explain the CNN model.  
 
Gradient: A feature map is generated by computing the gradient of the output layer to the input layer 
(Alber et al., 2019). 
 
Smooth Grad:  SmoothGrad is used to perturb the input data by adding random noise and then averaging 
the gradients obtained from multiple noisy samples (Smilkov et al., 2017). This process helps to reduce the 
influence of random noise on the gradient estimates and provides a smoother and more stable 
interpretation. 
 
Deep Taylor: The Deep Taylor method is based on the Taylor decomposition formula, which is used to 
simplify a complex formula by expanding the function as a series (Montavon, Lapuschkin, et al., 2017). 
When implemented for CNN, this method considers the relationship between the input features and the 
estimated yield. This is done by decomposing the predictions made by the CNN model based on the 
contributions from each input feature. The process in which Deep Taylor works is explained below:  

 First, the output yield of a patch is obtained from the input bands.  
 Then, the gradient of the output to the input is calculated by back-propagating the error of the 

output to the input 
 An importance score is set to the input features based on the gradient 
 The importance score is distributed to all the layers of the model network. Each layer has an 

importance level propagated via the activation layers to obtain an accumulated score that signifies 
the importance level of the input features.  

 
LRP (Layer-wise Relevance Propagation): The weights of each neuron in a layer are propagated from 
the last layer to the input to identify which pixel contributed the most to the output (Bach et al., 2015).   
The process of LRP is similar to Deep Taylor in terms of propagating the relevance amongst the layers. 
The difference lies in the method in which the propagation occurs. While Deep Taylor directly assigns 
relevance to neurons, LRP emphasises the flow of relevance through the network layers, making it more 
suitable for understanding the overall importance and information flow (Montavon et al., 2019).  
 
There are different variants of LRP, including LRP-A and LRP-B, which differ in their propagation rules 
and methods of relevance assignment. 
 
LRP-A, also known as “Simple LRP,” is a conservative variant of LRP that aims to preserve relevance 
conservation. It distributes relevance based on the positive contributions of the neurons in the forward 
pass. LRP-A divides the relevance among the input features in proportion to their positive contributions 
in the forward pass (Bach et al., 2015). 
 
LRP-B, also known as “Epsilon LRP,” is a more generalised variant of LRP that allows relevance to flow 
both through positive and negative contributions (Bach et al., 2015). LRP-B assigns relevance based on 
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the combination of positive and negative contributions, taking into account both excitatory and inhibitory 
influences of the neurons (Bach et al., 2015). 
 
 
Guided Back Propagation: Guided Back Propagation is a technique used in deep learning to understand 
which input features contribute positively or negatively to the final prediction (Springenberg et al., 2014). 
It modifies the traditional backpropagation algorithm by only allowing gradients to flow through 
activation units with positive values, highlighting essential features while suppressing irrelevant or negative 
influences (Springenberg et al., 2014). 
 
Input*gradient: A variation of the gradient method where the input features are multiplied by the 
gradient (Alber et al., 2019) 
 
Integrated Gradient: Integrated Gradient is used to attribute importance to input features by quantifying 
their contributions towards a model’s prediction. It computes the accumulated gradients along a straight 
line path from a baseline input (typically an input with few or no features) to the actual input, considering 
varying levels of feature presence (Sundararajan et al., 2017). Integrated Gradients assign relevance scores 
to each feature, signifying their impact on the model’s output by integrating these gradients. This method 
provides a deeper comprehension of feature importance than simple gradient-based methods 
(Sundararajan et al., 2017). 
 
 
gradCAM: This is a variation of Class Activation Maps (CAM). In CAM, a weighted activation map is 
calculated from every layer. CAM focuses on the final convolutional layer of a CNN and calculates the 
class activation map by taking a weighted average of the feature maps. It assigns importance to each spatial 
location in the feature maps based on the learned weights, highlighting the regions that contribute most to 
the predicted class (Selvaraju et al., 2016). However, CAM requires the network to have global average 
pooling layers to obtain the final class scores. 
 
On the other hand, Grad-CAM extends the idea of CAM by incorporating gradient information from the 
target class (Selvaraju et al., 2016). Instead of relying solely on the final convolutional layer, Grad-CAM 
calculates gradients of the target class score with respect to the feature maps of the last convolutional layer 
(Selvaraju et al., 2016). These gradients represent the importance of each feature map for the target class. 
Grad-CAM then combines these gradients with the feature maps to generate a heatmap highlighting the 
image’s important regions. 
 
Apart from gradCAM, all the other explainable methods are implemented using the Innvestigate module 
(Alber et al., 2019). The saliency maps are generated for all the patches and then merged together to 
visualise the region of importance that the CNN model focuses on to estimate the target yield.  

3.5. Perturbation Analysis 
 
Since several explainable methods are implemented to assess the behaviour of the CNN model, a 
quantitative analysis is required to identify which method is the most suitable. One way of quantifying the 
explainable methods is through perturbation analysis of the input based on the ranking of the importance, 
as shown in Figure 12. The degree to which the explainability differs quantitatively provides an idea of the 
method that can be selected for further analysis and modelling (Yeh et al., 2019). Several saliency maps 
were generated for different explainable methods like LRP (Layerwise Relevance Propagation), Smooth 
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Gradient, Deep Taylor and gradCAM, shown in Figure 22. The patch is split into 64 grids (8 x 8), each 
grid having a shape of 32 x 32 pixels. These grids are ranked based on the aggregation of the 
corresponding explainable method. Based on the ranking order, the grids are perturbated with Gaussian 
noise, and the patch yield is estimated by passing it to the CNN model. The difference between predicted 
and actual yield values is saved to a list. This process is continued iteratively by perturbating the grids 
based on the ranking order. To generalise the perturbation analysis for the entire study region, the area 
under the curve for each explainable method is utilised. 
 

 
Figure 12: Perturbation Analysis workflow 

 

3.6. Analysis of Explainable Methods 

 
To understand whether there is any relation between vegetation indices, landuse and the crop yield, we try 
to find a connection with the saliency maps. Vegetation indices that are specifically focused on 
crop/agriculture applications are used to compare with the saliency maps. Crop yield estimation strongly 
correlates with the vegetation indices and depends on the crop growth cycle (Sakamoto, 2020). A short 
description of these vegetation indices is provided below. 

 
Normalised Difference Vegetation Index (NDVI): This index calculates the vegetation index and is a 
ratio between NIR (Near Infra Red) and Red wavelength. For sentinel-2, band 8 is NIR and band 4 is Red 
(Refer to  Table 3) 
 
 

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹 − 𝑹𝒆𝒅

𝑵𝑰𝑹 + 𝑹𝒆𝒅
 

                 Equation 2: NDVI Formula 

 

 
EVI (Enhanced Vegetation Index): Enhanced Vegetation Index (EVI) estimates vegetation density. It 
is designed to improve the limitations of the Normalized Difference Vegetation Index (NDVI), especially 
in areas with high levels of aerosols, canopy cover, and soil brightness. 
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The EVI combines information from the Red (Band 4), Blue (Band 2), and NIR (Band 8) wavelengths of 
the Electromagnetic spectrum to calculate the index.  

𝑬𝑽𝑰 =  𝟐. 𝟓 ∗
𝑵𝑰𝑹 − 𝑹𝒆𝒅

(𝑵𝑰𝑹 + 𝟔. 𝟎 ∗ 𝑹𝒆𝒅 − 𝟕. 𝟓 ∗ 𝑩𝒍𝒖𝒆)
 

Equation 3: EVI Formula 

 
NDMI (Normalised Difference Moisture Index):  NDMI assesses the vegetation's moisture content 
or water stress. It is calculated using the NIR (Band 8) and SWIR (Band 11) wavelengths.  

𝑵𝑫𝑴𝑰 =  
𝑵𝑰𝑹 − 𝑺𝑾𝑰𝑹

𝑵𝑰𝑹 + 𝑺𝑾𝑰𝑹
 

Equation 4: NDMI Formula 

 

WDRVI (Wide Dynamic Range Vegetation Index): WDRVI is a vegetation index designed to 
enhance the sensitivity to vegetation changes in areas with a wide range of vegetation cover and varying 
atmospheric conditions. It is an improvement over the Normalized Difference Vegetation Index (NDVI) 
in situations with significant differences in vegetation density or when the canopy cover is not uniform. 

𝑾𝑫𝑹𝑽𝑰 =  
𝟎. 𝟏 ∗ 𝑵𝑰𝑹 − 𝑹𝒆𝒅

𝟎. 𝟏 ∗ 𝑵𝑰𝑹 + 𝑹𝒆𝒅
 

Equation 5: WDRVI Formula 

 

SAVI (Soil Adjusted Vegetation Index): The Soil-Adjusted Vegetation Index (SAVI) is a vegetation 
index that aims to minimise the influence of soil background on vegetation analysis, especially in areas 
with sparse vegetation or high soil brightness. It is an enhancement of the Normalized Difference 
Vegetation Index (NDVI) that attempts to correct soil reflectance effects. 
 

𝑺𝑨𝑽𝑰 =  ൬
𝑵𝑰𝑹 − 𝑹𝒆𝒅

𝑵𝑰𝑹 + 𝑹𝒆𝒅 + 𝑳
൰ ∗ (𝟏. 𝟎 + 𝑳) 

Equation 6: SAVI Formula 

 
L -> soil brightness correction factor that could range from (0 -1) 

Here, L is set to 0.5 to minimise the soil brightness factor 
 
To understand how including and excluding the mask layer affects the yield estimation, the vegetation 
indices and the saliency values are aggregated according to the cropland type, and plotted to check for any 
correlations. This aggregation is done for each patch and also analysed for all the patches in the test region 
to understand whether the findings could be generalised. 
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3.7. System Configuration and Specifications 

 
The model training and computation analysis is performed on the geospatial computing platform provided 
by the Faculty of Geoinformation Science and Earth Observation, University of Twente. The system 
specifications are as follows:  
 

Unit Architecture CPU Max. 
Speed 
(GHz) 

Cores Threads Memory 
(GB) 

GPU # of 
Units 

PowerEdge 
R730 

Intel x86-64 E5-
2695 
v4 

3.3 2 x 18 72 768 NVIDIA 
Titan XP 
(CC 6.1) 

1 

Table 7: System Specifications 

More information can be found at this link: https://support.crib.utwente.nl/kb/faq.php?id=19 
 
By default, TensorFlow attempts to train the CNN model using the system’s GPU. However, since the 
dataset is huge, the server’s GPU could not allocate sufficient memory to train the model. Hence, 
TensorFlow is set to use the server’s CPU memory, which has a capacity of 768 GB. 
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4. RESULTS 

Three models are trained on the study region for four states (Iowa, Illinois, Minnesota, and Nebraska), and 
their accuracy and performances are evaluated on the test data (Indiana). One is a Linear Regression 
model, and the other two models are CNNs with and without the mask layer. The feature importance of 
the bands is taken from the linear regression model, and the saliency maps are derived from the CNN 
models. The saliency maps are then utilised to implement a perturbation analysis to determine the 
robustness and sensitivity of a model spatially. 

4.1. Loss Curves 

 
 
 
 

 
Figure 13 displays the training and validation loss curves of the two CNN models, one trained with just 
the sentinel bands (purple) and the other trained with including the cropland layer of Soybean as a mask 
layer (orange). The curve for the model with a mask layer is much steeper, indicating a better accuracy and 
fit with the dataset.  
 

4.2. Model Evaluation 

 
The models are then implemented on the test data. Figure 14 displays the true vs predicted scatter plot for 
the three models (Linear Regression, CNN model without mask and CNN model with mask). The CNN 
model with the mask layers has the closest fit with the data, followed by the model without a mask and the 

Figure 13: Training and Validation Loss curves for CNN 
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linear regression model. Table 8 shows the RMSE and R2 scores of the models. Linear Regression has the 
lowest R2  score and highest RMSE, while the CNN models have higher R2 scores and lower RMSE.  
 
 

 

 
 

Metric Linear Regression CNN Model (without 
Mask) 

CNN Model (with 
mask) 

RMSE (Root Mean 
Squared Error) 

1.093 0.641 0.055 

R2 score 0.617 0.729 0.982 
 

Table 8: RMSE and R2 of the models 

 
The evaluation metrics from Table 8 indicate that the CNN models without masks and with masks have 
higher accuracy and perform 11% and 37% better than the linear regression model on the test dataset.  
 

4.3. Difference Map 

 
The difference map is plotted between the true and predicted yield values for the state of Indiana, as 
shown in Figure 15. The maps are from the years 2017 to 2021. The first row shows the difference map 
for the linear regression model, the second row for the CNN model without mask and the third row for 
the CNN model with mask layer.  

Figure 14: Scatter plot of True vs predicted 
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The linear regression model has the highest degree of error, followed by the CNN model without the 
mask layer. The margin of error is the lowest for the CNN model with a mask layer. There also seems to 
be a higher range of errors for the years 2017 and 2019. But the error seems to be random. There is no 
discernible pattern that could be identified.  
 
 

4.4. Outliers in the scatter plot 

 
Some patches differ considerably from the predicted yield to the true yield. This can be seen as outliers in 
the scatter plot. Upon looking at these patches, they scarcely have any soybean fields, as depicted in Figure 
16. These regions have relatively very few pixels that are identified as Soybeans. Since some pixels are 

Figure 15: Difference map of True vs Predicted for test dataset (Indiana) 
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considered Soybeans, they are also not disregarded from the training and test dataset since they contribute 
at least a small yield value for the patch.   
 

 

4.5. Feature importance of Linear Regression 

 
Figure 17 displays the linear regression model's coefficient weights assigned to the sentinel bands. This 
signifies which features are most significant for predicting the yield. Band 7 (Red Edge 3) has the highest 
weightage. Interestingly, the model gives Band 8 (Near Infra Red - NIR) low importance, even though the 
vegetation’s spectral reflectance is higher at NIR. After Band 7, bands 5 (Red Edge 1) and 9 (Red Edge 4) 
have negative significance, and Band 4 (Red) has positive significance. Bands 3 (Green), 6 (Red Edge 2) 
and 10 (Water Vapour) are given the lowest importance. The lowest weightage is given to bands 3, 6 and 
10. Since the linear regression model does not give the best accuracy, these weights are not considered to 
be optimal for soybean yield estimation. However, the weights are distributed randomly across the bands 
and are not biased towards specific bands.  
 

 
 

 

Figure 16: Mask layers of the outliers in True vs Predicted 

Figure 17: Feature importance of Linear Regression Model 
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To further analyse the relationship between the sentinel bands, a correlation heatmap is plotted for the 
mean value of the sentinel bands for all the patches. This heatmap is shown in Figure 18. The correlation 
between the bands forms an interesting pattern here. Initially, bands 1 to 5 have a high correlation, then 
bands 6 to 9 have a high correlation, and bands 10 and 11 correlate.  
 
 

 
 
 
 
 
From Figure 17 and Figure 18, we can conclude that the dataset chosen has a good relation, and the 
band’s feature importance is well distributed so that it could be provided as input to the CNN model.    

4.6. Saliency maps 

 
Several saliency maps using various methods were generated. Figure 19 shows the heatmap generated by 
gradCAM for one patch taken from Indiana. The red regions (close to 1) are more critical for predicting 
the yield. Values close to 0 (blue regions) are less important. The gradCAM generated by the CNN model 
with mask layer mainly focuses on the areas cultivated by soybean.  
 
Figure 20 shows Indiana's soybean yield and gradCAM saliency map of both models (with and without 
mask layer) from 2017 to 2021. The gradCAM was aggregated by mean for each patch. The scatter plot of 
the saliency values and the soyben yield is shown in Figure 21. The R2 score is 0.8307 for the model with a 
mask layer and 0.1925 for the model without a mask layer. This indicates that the model properly utilises 
the mask layer, and the pixels of the saliency map correlates highly with the target yield. On the other 
hand, the gradCAM for the CNN without the mask layer is not focused on the soybean fields due to the 
lack of the mask layer as an input. Without the mask layer, the model focuses on regions having a higher 
vegetation index. Further explanation can be found in Section 4.8.  
 
 

Figure 18: Sentinel bands mean correlation heatmap 
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Figure 19: Mask Layer (Left), gradCAM of CNN model with mask (middle) and gradCAM of CNN model without 
mask (Right) of a patch from Indiana  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

Figure 20: Map of saliency values for Indiana from 2017 to 2021. The top row is the saliency map of the model 
without the mask. The middle Row is the saliency map of the model with the mask layer. The bottom Row is the 

soybean yield values. 
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4.7. Perturbation Analysis 

 
Perturbation analysis is performed to figure out which explainable method is better quantitatively. Figure 
22 shows the saliency maps of one patch from Indiana for both the CNN models (with and without mask) 
and the ranking on which the perturbation takes place. We can see that the order in which the grids are 
masked differs for each explainable method. 
 
Figure 23 shows the perturbation plot where the x-axis represents the number of grids (64, in this case), 
and the y-axis depicts the difference in accuracy between the perturbated patch and the actual value for 
each iteration. With each iteration, a grid is perturbated based on the ranking order, and the difference in 
accuracy is plotted. Some explainable methods are ignored for the perturbation process based on the 
heatmaps generated to fasten the process. Currently, there is no quantitative method that is used to ignore 
these methods. Visually, we can see that GBP (Guided Back Propagation), gradient, input*gradient, and 
integrated gradients do not indicate any importance in the patches, as shown in Figure 22. Hence, these 
methods are not selected for the perturbation analysis. LRP (A and B), Deep Taylor, SmoothGrad and 
gradCAM are chosen. The lower and steeper the curve for each iteration, the better the explainable 
method since it indicates that the important regions are being perturbated correctly. Figure 23 indicates 
that smoothGrad is not a suitable explainable method for this model and dataset because of its higher 
curve shape. This means that the grids that are being perturbated are not significant enough for the 
resulting yield to drop from its true value. This implies that smoothGrad is not a good method to explain 
the model’s decision-making when it comes to estimating the soybean yield. LRPa and LRPb have the 
steepest decline in accuracy, signifying that their saliency maps are better at explaining the spatial features. 
gradCAM and deep Taylor methods also have a steep decline in their curves. Further explanation of why 
LRP gives better result is provided in section 5.   

Figure 21: Scatter plot of the saliency values vs Yield values 
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Figure 22: Perturbation Analysis based on the ranking of saliency 
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Perturbation Plot 

 

Figure 23: Perturbation plot – the difference in accuracy from the True value for each iteration 

 
Figure 24 displays the plot of AUC (Area Under the Curve) for twenty patches. The perturbation analysis 
was only implemented for 20 patches due to the high computational time it took to complete. The higher 
the area under the curve, the lower the explainable method's quality. From the AUC plot, smoothGrad 
generally has a higher area than the other explainable methods. The other explainable methods have 
similar AUC values, implying that they provide similar levels of accurate information, with LRP being the 
best explainable method for these 20 patches. 
 
 

 

Figure 24: Area under the curve (AUC) plot for perturbation analysis 
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Table 9 displays the area under the curve values for each patch, highlighted as a heatmap. Red values have 
a lower area, and blue values have a high area. To be more specific, smoothgrad has the highest AUC for 
each patch, and its average is also the highest when compared to the other methods, having 6.16 AUC. 
LRPa and LRPb have the lowest value of -20.33 and -20.56, respectively. Both of them are relatively close, 
thus making them both a suitable method for these patches. We must note that the AUC value could 
change when the perturbation analysis is implemented for all the patches in the test dataset.  

 

 
         Table 9: Area under the curve values for 20 patches 

4.8. Analysis of saliency maps 

 
Various vegetation indices are taken for analysing the results of the saliency maps. The vegetation indices 
taken includes NDVI (Normalised Difference Vegetation Index), NDMI (Normalised Difference 
Moisture Index), WDRVI (Wide Dynamic Range Vegetation Index), EVI (Enhanced Vegetation Index), 
SAVI (Soil Adjusted Vegetation Index) 

Patch Number lrp_a lrp_b smoothgrad deep_taylor gradCAM 
1 -30.395949 -31.395496 -6.863898 -26.240199 -27.341866 
2 -11.189354 -14.761003 17.549556 -6.551421 -4.662912 
3 -31.873941 -32.173338 -7.806655 -27.310313 -29.816895 
4 -18.892769 -16.484184 17.467263 -3.695225 -3.845658 
5 -45.058501 -42.523065 -16.647276 -43.069404 -35.732861 
6 -12.137823 -12.164325 7.48268 -5.766113 -1.466209 
7 -0.663962 0.340636 19.631708 5.090627 3.716439 
8 -21.423821 -20.245256 3.056862 -17.358993 -16.596916 
9 -2.829099 -2.785724 35.458661 2.520518 2.891678 

10 -40.878388 -39.796446 -14.853174 -31.68489 -29.292054 
11 -44.048587 -46.186179 -17.041757 -38.516637 -37.542692 
12 -24.740844 -23.132259 8.830847 -7.712482 -8.444395 
13 -0.176562 -1.649899 21.147656 1.113495 5.309906 
14 -41.120783 -41.411846 -2.882156 -25.206237 -26.361757 
15 -0.628532 -2.4589 15.266421 0.535599 3.585054 
16 -13.08346 -8.621461 13.327037 -7.490797 -3.025272 
17 -12.515818 -14.075568 4.939622 -3.947319 -5.825843 
18 -13.177762 -14.565322 11.721566 -7.810019 -6.246242 
19 -17.290297 -21.734098 8.537443 -13.75546 -11.875997 
20 -24.534363 -25.286535 4.866935 -15.21665 -19.612065 

            

Mean -20.33303075 -20.5555134 6.15946705 -13.603596 -12.60932785 
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Figure 25: GradCAM and indices of a patch from CNN model without mask 

 
Figure 25 displays the indices and the gradCAM saliency of a patch. This gradCAM is the saliency map of 
the CNN model with just the sentinel bands. Visually, a pattern is seen spatially where the saliency is high 
for regions having higher indices. NDVI and SAVI have a low correlation, while WDRVI and EVI have a 
higher correlation. To further analyse the results, the land use of the patch is taken, and the saliency map 
and the various indices are grouped according to the land use type.  
 
Figure 26 and Figure 27 displays the area covered by the cropland and the cropland cover. Corn has 
higher coverage, followed by Soybean, Grassland and woody wetlands for this particular patch.  
 

GradCAM NDVI EVI 

NDMI WDRVI SAVI 

Figure 26: Area coverage by crop type for the patch 
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Figure 28 shows a correlation between area coverage, crop type and, indices & saliency level. For example, 
corn has the highest area covered and higher indices level for this patch. When the CNN model is trained 
without the mask layer, the model focuses on regions where Corn is cultivated instead of soybeans. This 
highlights the importance of the mask layer and provides insight into how the CNN model performs with 
just the sentinel bands. Even though the model might estimate the correct yield value, it cannot be 
implemented since it focuses on the incorrect regions. On the other hand, for the CNN model with the 
mask layer, the accuracy of the plot indicates that the saliency is highest for soybean, while less so for the 
other crop types. This is also reflected by the saliency map, where the focus is highest for soybean regions.  
 
This analysis is performed only for one patch. It should be noted that the cropland type could differ for 
other patches. Hence the research is also conducted on all the patches of the study region to ensure which 
crop type the model focuses on. 
 

 

Figure 27: Crop Land cover for the patch 
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Figure 28: Line plot comparing the two models’ saliency and indices. The top row shows the saliency map of the 
patch for the CNN model without a mask, and the bottom row is the same patch for the CNN model with a cover. 

 
 
Figure 29 and Figure 30 show the boxplot of saliency values for each crop type across the test dataset for 
the models without and with the mask layer, respectively. From Figure 29, it is interesting that the 
boxplots indicate that Soybean has a higher range of values. However, the mean is higher for sweet corn, 
sunflower and developed/ Open Space, showing that the model gives these regions more significance. 
Figure 30 tells a different story, where Soybean has the highest mean, showing that the mask layer 
influences the model’s decision. However, next to Soybeans, Sugarbeets and Developed/Open spaces 
have a significant level of importance. This occurs because the saliency maps are not a binary 
representation of the cropland, where only soybean is grown. They also consider other regions important, 
depending on the indices level and if these lands are close to soybean fields.  
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Figure 29: Boxplot of saliency values w.r.t crop type for CNN model without mask 

Figure 30: Boxplot of saliency values w.r.t crop type for CNN model with mask 
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5. DISCUSSION 

From analysing the results, we could safely infer a bias in the model when the mask layer is not added to 
the input dataset. Hence, in a scenario where the input data is without the mask layer, the CNN model 
might perform better and have good accuracy but incorrectly point to a wrong region. This is similar to 
other research that has explored the bias in CNN models using saliency maps. Ribeiro et al. (2016) provide 
an example in which a logistic regression classifier detects the image of a dog (husky) incorrectly as a wolf. 
This was purposefully done by training the classifier with images of wolves with snow in the background 
and dogs without snow. While testing the model, an image of a dog with snow in the background was 
provided, and the model classified it as a wolf (Ribeiro et al., 2016). Looking at the explanation for that 
image, it seems the model focused on the snow for classification rather than the dog’s features. Another 
example in the medical industry was discovered by (Zech et al., 2018), where CNN models were used to 
detect pneumonia through X-ray images. However, more cases of pneumonia were detected from images 
scanned using portable X-ray scanners (Rudin, 2019b; Zech et al., 2018). Upon interpreting these images, 
it was found that the model was focusing on the text ‘portable’ rather than the X-ray scan of the chest. 
Such cases of bias occurring in deep learning models would be difficult to point out without explainable 
methods. We can see a relation to our research where the mask layer is vital in correctly estimating the 
yield. Previous studies conducted in crop yield estimation have rarely focussed on explainability. Sun et al. 
(2020) uses MODIS satellite imagery along with soil characteristics to estimate the corn yield by 
implementing a multi-level deep learning model but do not assess the interpretability of the model. They 
utilise the cropland layer to mask the pixels that do not belong to corn fields. However, the spatial 
information is not considered as the data is transformed into histogram-based tensors (Sun et al., 2020). 
Though they achieve an R2 score of 0.75, we cannot draw more parallels to our results apart from the fact 
that utilising the mask layer is essential. Srivastava et al. (2022) and Wolanin et al. (2020a) both utilise a 1D 
CNN model to forecast wheat yield. Srivastava et al. (2022) acquire point samples, while Wolanin et al. 
(2020a) reshape MODIS imagery along the temporal axis. Nevertheless, we can gather that both studies 
include data about the regions where the crops are cultivated. Also, using the sentinel-2 dataset to estimate 
soybean yield has not been previously explored. This could be due to the lack of yield data smaller than 
county-level. Further explanation is provided in Section 5.1. It should also be pointed out that running a 
perturbation analysis helps identify which explainable method is most reliable. We can identify whether 
the method is meaningful qualitatively through just visualisation. However, in some instances, if we want 
to perform further experimentations using saliency maps, it is helpful to have a quantitative value. Zhang 
et al. (2020) perform a perturbation analysis on explainable methods for CNN to identify the best method 
for estimating fetal head circumference. Their findings showed that LRP and Input*gradient were highly 
sensitive to perturbation and had a higher error rate (Zhang et al., 2020). Similarly, Kakogeorgiou & 
Karantzalos (2021) assessed several explainable methods for multi-label classification in Earth 
Observation. They also compared the saliency map methods by doing a sensitivity analysis and AUC-
MoRF  (Area Under the Curve Most Relevant First), which is also a form of perturbation analysis 
(Kakogeorgiou & Karantzalos, 2021). They discovered that Occlusion, LIME (Local Interpretable Model-
agnostic Explanations) and gradCAM were the most suitable explainable methods (Kakogeorgiou & 
Karantzalos, 2021).  
 
In our case, gradCAM performs reasonably well, while LRP gives the best results. However, 
Kakogeorgiou & Karantzalos (2021) were running the model for classification while our task is to train it 
as a regression model. The reason why LRP has better results might be due to the process in which each 
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layer in the model has relevance. This is different from the other explainable methods like Deep Taylor 
and gradCAM. Though Deep Taylor provides an accumulated score of a pixel by propagating through the 
layers, LRP retains the importance level provided by each layer, and this plays a role in getting the final 
score for the pixel. On the other hand, gradCAM takes the gradient of the weighted average of the feature 
maps, which makes it more suitable for visual interpretation. This is also different from LRP, where each 
individual pixel is retained and does not lose its value by calculating the weighted average. SmoothGrad 
perturbates the input image multiple times and takes the average of the gradients from the perturbated 
images. This is also completely different from LRP, where random noise is not added to test the model’s 
decision making process. 
 
 
There are not many cases in which 2D-CNN models have been used for regression-based estimation or 
prediction (Letzgus et al., 2022). In a real-world application, Letzgus et al. (2022) demonstrate how a CNN 
model is used as a regression model to detect a person's age from a facial photograph. Saliency maps are 
generated using LRP (Layerwise Relevance Propagation), and breakpoints are set for the age to test the 
relation in which saliency changes when the age deviates from the true value. The results are intriguingly 
similar to what we got regarding yield estimation. For instance, if the image was of a child around age 10 
but the model was forced to provide a saliency map for age 80, the heatmap highlighted indiscernible 
features. This is equivalent to how we get the saliency maps when running the model without a mask layer. 
Interestingly, when the age gap gets closer, where the image had a person of age 40, and the model was set 
to age 50, the saliency maps gave distinguishable features, highlighting the eyes, nose, mouth, etc. (Letzgus 
et al., 2022). Since our research offers a regression model, we also need to consider if there is a correlation 
between the saliency level and the target value. Though we did not test it by setting breakpoints, an 
overview of the correlation was checked. Figure 20 and Figure 21 show us that when the mask layer is 
included, the saliency values are closely correlated with the target yield. Otherwise, it is not possible to 
form a valid correlation.  
 
 

5.1. Limitations 

 
The target variable for each patch is feature engineered from existing yield at the county level. The area of 
the cropland covered by soybean in each patch is used to distribute the yield value spatially. The main 
limitation in preparing the dataset this way is that there are no means to confirm the productivity of the 
croplands in that patch. Hence it could vary for each patch, even though the weighted mean of the yield 
would be the same at the county level. To overcome this limitation, we might have to resort to using a low 
resolution satellite imagery, where each patch must cover multiple counties. MODIS (Moderate 
Resolution Imaging Spectroradiomete), having a resolution of 500 meters could be an option. A new 
dataset can be prepared, where the target yield need not be downscaled. However, the dataset for the 
selected study region will be lower if only five states are selected. An approach to compensate for this 
would be to choose a larger extent for the study area to prepare a dataset sufficient for training the model.  
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6. CONCLUSIONS AND RECOMMENDATIONS 

 
Initially, a linear regression model was fitted to the data. The bands of each patch were aggregated and 
fitted for a linear regression model. It had an accuracy of 60% when tested with Indiana. However, more 
information was required other than the linear model. From the weights of the bands, bands 7,9, 5 and 4 
are given higher importance, whereas bands 3,6 and 10 are given minor importance. Further explanation 
of how the model interprets the results could not be provided spatially. Further analysis was performed 
using saliency maps generated by running the CNN models. Two CNN models were trained with the 
same hyperparameters but different datasets. The mask layer of soybean classified regions was provided 
along with the sentinel bands for one model, whereas only the sentinel bands were given to the second 
model. Upon evaluation, the model with the mask layer demonstrated an excellent accuracy of 98%, while 
the model with just the sentinel bands had 70% accuracy. This implied a perfect correlation with the 
features in the mask layer. Those pixels were the regions where soybean was being cultivated. This was 
further supported by analysing the saliency maps of the patches. Higher importance was placed on the 
mask region, which indicates that the CNN model utilised the classified pixels of soybean to estimate the 
yield effectively. Different explainable methods were then compared by performing a perturbation 
analysis. LRP, Deep Taylor and gradCAM were identified as the better explainable methods, with LRP 
giving the lowest AUC score. Further analysis of the explainable methods was performed by comparing 
them with cropland cover maps. This indicated a bias in the CNN model that trained with only the 
sentinel-2 bands, focusing on corn and other crop types rather than soybeans. Further analysis may be 
required, but this showed the value of explainability in Earth Observation. 
 

6.1. Answers to the research questions 

 
 

 What is the level of accuracy for the CNN model compared to the linear regression model? 

The linear regression model has a lower accuracy than both CNN models. For this research, the CNN 
model without the mask layer had a 12% higher accuracy than the linear regression model. In contrast, the 
CNN model, including the mask layer, had a 37% higher accuracy (Refer to Table 8). This indicates that 
the CNN model performs better since it detects the spatial features from the input data. 

 
 Which characteristics are essential for estimating crop yield?   

The mask layer representing the Soybean fields highly influences the model’s capability to estimate the 
yield, giving an almost perfect accuracy of 98%. We also find that without the mask layer, the model 
focuses on the crops having higher vegetation indices. This implies that a combination of the mask layer 
and the bands are essential to compute vegetation indices like WDRVI, EVI, NDMI, NDVI and SAVI. 
These include Bands 2, 4, 8 and 11 (Refer to Section 3.6). 

 
 What differences can be observed between the explainable methods regarding their 

performance and accuracy? 
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Every explainable method gives a different heatmap/saliency map. As discussed in Section 4.7, we can 
identify which method performs better through perturbation analysis. In Figure 23, a steeper curve 
indicates better performance since important information is lost, resulting in a dip in accuracy. Also, the 
explainability for the CNN model with the mask layer is generally better as it mainly highlights the 
soybean fields. In contrast, the model with only the sentinel-2 bands has less clarity in its saliency maps 
(Refer to Figure 19). 

 
 Which explainable methods are ideal for crop yield estimation? 

It is noticed that explainable methods like LRP, Deep Taylor and gradCAM provide better results while 
others like smoothGrad and the Gradient methods are less suitable for crop yield estimation (Refer to 
Section 4.7). 

 
 How is explainability valuable in the case of crop yield estimation? 

Explainability provides insight into how the model has arrived at the estimated yield. In this research, the 
explanation is done via saliency maps. Landuse maps are compared with saliency maps to assess the 
relationship with crop yield. When the model is trained without the mask layer, a bias is seen through the 
saliency maps where corn fields are given higher importance (Refer to Figure 28). This emphasises the 
need for explainability to analyse the model’s performance and bias in Earth Observation, not just crop 
yield estimation.   

6.2. Recommendations 

 
Utilising explainable methods provided insight that the mask layer is also essential. This can be further 
extended into improving the model to train for the classification of soybean fields initially and then 
estimating their yield. This will lead to development of a multi-model CNN that performs both 
classification and regression.  
 
Implementing a 3D CNN model to predict and forecast the yield will also be helpful. The current model is 
only explored spatially. 3D CNN would also pave the road for temporal analysis using XAI. The existing 
CNN model is built from scratch. It could be extended and compared with existing CNN model 
architectures like Inceptionv3 and ResNet for a better assessment. 
 
Also, enhancing the model to be transferable to another study region and datasets could be explored. This 
will provide a flexible model that could be implemented for any region with different datasets. 
 
Vision Transformers has also gained popularity recently, and extensive research is being conducted in 
Computer Vision. Explainability using self-attention maps could provide additional insights into the 
model’s behaviour and relation between the datasets that could be worth exploring. 
 
Finding correlations with other datasets like weather variables and soil moisture would also provide new 
insights into the interpretation and better yield estimation. These could be provided as additional datasets 
when developing the model. It could be compared with statistical methods like multi-scale GWR 
(Geographical Weighted Regression) as a baseline since several parameters will influence the yield 
estimation. 
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