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Abstract

The amount of data is growing faster than ever, yet the crucial task of comprehending and de-
riving meaning from this information persists. This seemingly insatiable demand for inference is
to be met within an obviously bounded energy budget, that must be made to stretch as far as
possible. Consequently, alternative computing paradigms are being investigated with the aspira-
tion of surpassing current energy-efficiency standards and achieving higher performance. Among
these paradigms are the Dopant Network Processing Units (DNPUs), a class of high-dimensionally
tunable non-linear silicon-based devices that have recently been shown to be capable of energy-
and footprint-efficient compute. Oscillatory Neural Networks (ONNs) form a less recent comput-
ing paradigm aiming at raising efficiency by exploiting the synchronization phenomena found in
oscillator networks to compute in phase and frequency instead of amplitude. In this BSc As-
signment, we investigate ways of utilizing DNPUs to create an enhanced ONN architecture. A
phase-computing DNPU-based ONN architecture is described. Then, an ONN simulator is de-
veloped and used to demonstrate that the described architecture can perform associative memory
and classification tasks. It is shown that these tasks can also be performed when the coupling
between oscillators is nonlinear, especially if the network complexity is low. The set of tasks shown
in this work leave the computational capabilities of the DNPUs in the ONN underutilized, leaving
room for further investigation.
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Glossary

DNPU Dopant Network Processing Unit
ONN Oscillatory Neural Network
HNN Hopfield Neural Network
MHNN Modern HNN
DAM Dense Associative Memory
PRC Phase Response Curve
NDR Negative Differential Resistance
SNR Signal to Noise Ratio
AAM Auto-Associative Memory
HAM Hetero-Associative Memory
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Chapter 1

Introduction

As today’s data processing requirements grow, an increasing amount of inspiration is being drawn
from the most efficient processor available thus far: the brain. This neuromorphic inspiration
has led to the development of many different computing paradigms, many of which are aimed at
approaching the brain’s energy efficiency. Oscillatory neural networks (ONNs) take inspiration
from oscillatory phenomena found in the brain to perform computations using oscillator networks.
Traditionally, analog computing is performed using signal amplitude, but this inexorably links the
computation’s precision to the analog computer’s energy usage via its Signal to Noise Ratio (SNR).
By computing in phase and frequency, ONNs can mitigate this problem if they are implemented
well. ONNs are not without problems. They scale poorly and require the connections between
oscillators to be programmable (see section 2.1).
Dopant Network Processing Units (DNPUs) are nanoelectronic devices that leverage hopping
conduction between dopant atoms to produce highly tuneable input (voltage)-output (current/-
voltage) curves. These devices are capable of efficient compute for classification and other tasks
(See section 2.2). Their substantial amount of configurability makes them a prime candidate to
alleviate the problems found in today’s ONN architectures, either by increasing their capabilities
or by decreasing the complexity of their hardware.

These problems lead to the following research questions:

• What could a DNPU-based ONN architecture look like?

• What could this architecture be used for?

To answer these questions this report will first provide an overview of some of the required theory,
then a DNPU-based ONN architecture will be described. This ONN architecture will be simulated
according to the methodology outlined in chapter 4. The simulated architecture will then be used
to perform some tasks in chapter 5.

An Oscillatory Neural-Network architecture based on Dopant Network Processing Units 1



Chapter 2

Theory

This chapter covers the preliminary knowledge that is required to understand the work done for
this assignment. First, ONNs will be explained. Then, a brief explanation of the DNPU is given.

2.1 Oscillatory Neural Networks

ONNs are networks of weakly connected oscillators. This means that the oscillators in an ONN
are connected, and will affect each other, but those connections do not significantly influence the
magnitude of the oscillator’s signals. Instead, these connections affect the temporal characteristics
of the produced signals, altering their frequencies and phases [1]. The constraints on what can be
used as an oscillator in a system like this are very loose. The oscillator can produce any kind of
signal, as long as it is periodic, and the oscillator can be weakly coupled.

2.1.1 Synchronization

In ONNs, information is carried by the relative phases of the oscillators, and processing is done
using the synchronization dynamics of the system. The synchronization dynamics of a non-linear
system are non-trivial to derive and use, therefore it is common to approximate a system using only
the dominant harmonics of the connection functions [1]. This approximation forms the basis of the
Kuramoto model for synchronization phenomena. The Kuramoto model describes the dynamics
of a fully interconnected ONN with N oscillators with coupling strengths Kij with:

θ̇i = ωi +

N∑
j=1

Kijsin(θj − θi), (2.1)

wherein ω is the frequency of an oscillator, and θ is the phase of an oscillator [3]. This model
is somewhat simplistic, but its implications are important to understand when working with
ONNs. From equation 2.1 follows that if the differences in oscillator frequencies ωi are small, and
the phase differences between oscillators i and j are not exactly 0◦ or 180◦, a positive coupling
strength between them will cause them to synchronize to a phase difference of 0◦. While a negative
coupling strength will cause them to synchronize to a phase of 180◦ in this situation. It is this
basic principle that is most commonly applied to make ONNs compute in phase, as it effectively
turns an oscillator into a threshold unit. Examples of ONNs using this principle can be found in
[4][5][6][7]. The process of mapping the coupling coefficient matrix Kij to hardware parameters
depends on how, and what type of, oscillators are coupled.

2.1.2 Coupling techniques

Many different ONN architectures have been developed, using many different methods to couple
oscillators. We can categorize these architectures into two main categories:

2 An Oscillatory Neural-Network architecture based on Dopant Network Processing Units



CHAPTER 2. THEORY 2.1. OSCILLATORY NEURAL NETWORKS

Figure 2.1: ONN architectures for (a) fully connected auto-associative memory, (b) bidirectional
two-layer hetero-associative memory, and (c) feedforward two-layer classification. Figure is from
[2].

1. Direct current injection: Requires a coupling element for every connection. A coupling
element injects a current into one or both of the oscillators it couples. The most simple
example of this is a resistor connecting the outputs of two oscillators. Some types of coupling
elements are not programmable, and bigger networks require more coupling elements per
oscillator. [4][8][9].

2. Frequency multiplexing: Runs sinusoidal oscillators at different frequencies and connects
a number of them to a common medium. The required dynamic coupling behaviour is then
introduced by applying a carefully chosen quasi-periodic signal to the common medium.
If this signal contains the appropriate frequency components, the system will behave ac-
cording to the principles described earlier [5][10]. Larger networks require more frequency
precision.[6][10].

2.1.3 Connection to Hopfield Neural Networks

Before elaborating on the details of ONNs, it is important to grasp the basics of the computational
model that forms the theoretical basis for most ONN workloads: the Hopfield neural networks
(HNNs). This model, popularised in 1982 by J.J. Hopfield [11], is used to describe associative
memories. An associative memory stores a number of patterns, and when given input will output
the pattern that is most closely associated with it. Broadly speaking, there are two ways of using
associative memory:

1. Auto-Associative Memory (AAM): Output has the same dimensions and meaning as
the input. When given an input, the output will be the pattern that is most similar to the

An Oscillatory Neural-Network architecture based on Dopant Network Processing Units 3



2.1. OSCILLATORY NEURAL NETWORKS CHAPTER 2. THEORY

input. This type of system is also known as content-addressable memory.

2. Hetero-Associative Memory (HAM): Output has different dimensions than the input.
This is used to associate one piece of data with another. This mode of operation is used for
tasks like classification.

An HNN is a single-layer fully interconnected Recurrent Neural Network (RNN), where the nodes
consist of binary threshold units (so output = sgn(

∑
input)). The behaviours of many ONNs are

close approximations of this type of network, to the point that most ONN architectures are tested
for their associative memory capabilities.
To use an associative memory, one needs to be able to teach it what patterns to store. This
is done by applying a learning rule to the set of patterns to be stored. This yields a matrix of
weights that can be directly used in an HNN, but can also be used in an ONN if the correct
hardware-dependent transformations are applied. Defining ξµi as the ith element of pattern µ, wµ

ij

as the matrix of weights after learning pattern µ, and N as the number of nodes in the network,
the Hebbian learning rule is as follows:

w0
ij = 0 and wµ

ij = wµ−1 +
1

N
ξµi ξ

µ
j . (2.2)

This learning rule is trivial to implement but sub-optimal. In 1999, A. Storkey formulated an
improved learning rule:

w0
ij = 0 and wµ

ij = wµ−1 +
1

N
ξµi ξ

µ
j − 1

N
ξµi h

µ
ji −

1

N
ξµi h

µ
ji −

1

N
ξµj h

µ
ij , where (2.3)

hµ
ij =

N∑
k=1,k ̸=i,j

wµ−1
ik ξµk (2.4)

This learning rule significantly improves on the storage capacity (the number of patterns that can
be retrieved with low error rates) that could be achieved using the Hebbian learning rule [12]. The
storage capacities that are normally achieved using the Hebbian learning rule are around 0.14N .
The Storkey learning rule outperforms this significantly but still scales linearly with N .
In more recent years, starting with the 2016 paper from Krotov and Hopfield [13], denser versions
of HNNs have been developed. These exploit additional non-linearity to make the memory capacity
of HNNs scale super-linearly, or even exponentially [14]. These newer HNNs are known as Modern
HNNs (MHNNs) or Dense Associative Memories (DAMs). MHNNs have been generalized to
work with continuous states, at which point their functionality is interchangeable with that of the
attention mechanism in transformers [15]. These newer developments do not appear to have been
carried over to the field of ONNs.

2.1.4 ONN scaling

One of the biggest problems with ONNs is that their capabilities (memory capacity) grow linearly,
while the hardware becomes quadratically harder to realize. For ONNs that require coupling ele-
ments, the number of coupling elements scales according to N2. For frequency multiplexed ONNs,
the required frequency precision increases with N2 (for the system in [6]) or N1.58 (for the system
in [10]). To improve this situation, it would be good if the architecture designed in this assignment
could either alleviate these super-linear hardware requirements or improve the memory capacity
scaling.
The maximum size of Current injection-based ONNs is also limited by the quantity of disturbing
signals each coupling element produces. How strict this limit is depends on several factors, among
which are the nature of the disturbance, and the Signal to Noise Ratio (SNR) of the oscillator
unit [4].
There have also been investigations into using different network topologies to cut down the hard-
ware complexity. For HAM tasks, feedforward topologies can be used instead of the traditional
fully connected one [2]. This significantly reduces the number of connections, replacing the N2

scaling with NK, where K is the size of the output.
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CHAPTER 2. THEORY 2.2. DOPANT NETWORK PROCESSING UNIT

Figure 2.2: Diagram (a) of the DNPU with one input electrode Vin, six control electrodes V0−5,
and one output electrode Iout. Graph (b) shows the output current Iout when Vin is swept from
-0.5V to 0.5V while control voltages V0−5 are kept constant.

2.2 Dopant Network Processing Unit

The DNPU is a nanoelectronic device that has been the subject of research at the NanoElectron-
ics (NE) group at the University of Twente (UT). In this section, the device and its operating
principles will be described.
The DNPU was first described in a 2020 paper by Chen et al [16]. In a bulk of doped silicon,
a DNPU consists of an area ( 300 nm of diameter) of silicon with a low doping concentration
(using arsenic or boron dopants) surrounded by multiple electrodes. Through the phenomenon
of hopping conduction, this device is capable of emulating the behaviour of a simple ANN whose
complexity exceeds that of a single perceptron. It has been shown that DNPUs can be used to
implement basic logic gates, feature filters for handwritten digit classification, and more[17].
The behaviour of the device can be tuned by changing the voltages applied to its control elec-
trodes. There are multiple ways of finding what control voltages are needed to produce the desired
behaviour. It can be done on-chip by using a genetic algorithm, or by using an off-chip surrogate
model based on measurements from the device[18].
The device is also capable of exhibiting Negative Differential Resistance (NDR) (as can be seen
in [19]). NDR can be used to apply positive feedback to a resonator to build an oscillator. The
fact that the DNPUs NDR is tuneable was the initial reason for investigating its utility in ONNs.
The aim of this assignment has since moved in the direction of more broadly utilizing the DNPU’s
tuneability.
The response of a DNPU can exhibit some hysteresis, which may place an upper bound on the
operating frequency of the ONN architecture it is used in. The hysteresis has been ignored in this
assignment, based on the assumption that the operating frequency of the ONN can be decreased
far enough that the effects of the DNPU’s hysteresis vanish.

An Oscillatory Neural-Network architecture based on Dopant Network Processing Units 5



Chapter 3

Design process

To design an ONN that utilizes DNPUs, different types of ONNs were examined to see if some of
their problems could be solved by introducing DNPUs. In general, the problem that occurs in most
of today’s ONN architectures is that their capabilities scale poorly with their complexity. In some
of these architectures, this complexity is encountered in the form of a large number of coupling
elements. While in others, this complexity manifests itself as increasingly stringent frequency
precision requirements. There are several ways one could try to loosen these restrictions, some of
which have been investigated in this chapter. First, the main architecture used in this assignment
will be described. Then, some alternative ideas that were also considered will be mentioned.

3.1 A DNPU-coupled ONN

As described in section 2.1, phase-computing ONNs that are coupled using differential current
injection suffer from the fact that their hardware requirements scale with N2. Replacing the
coupling elements with an array of DNPUs introduces an unprecedented amount of configurability
into the system. The idea is that by harnessing this enhanced configurability one can increase
the capabilities of the network. From a high-level perspective, this makes sense. Adding more
dimensions of configurability should allow one to encode more information into the network. How-
ever, it is not obvious how to use these additional degrees of freedom in a useful way. Krotov and
Hopfield’s work from 2016 [13] may provide some good hints.

3.1.1 Towards an Oscillatory Dense Associative Memory Network

Considering the close relationship between ONNs and HNNs in literature and principle of opera-
tion, it makes sense to try to apply the more recent developments in the field of HNNs to an ONN.
Since the differences between an old-fashioned HNN and a DAM follow from the change in its
energy function, and ONN behaviour can also be described using an energy function[1, p. 285][8]
based on the coupling behaviour, it may be possible to construct an Oscillatory Dense Associative
Memory Network (ODAMN) by introducing the right kind of non-linearity into the system. The
general ONN energy function is:

U(ϕ0, ..., ϕN ) =
1

2

∑
i

∑
j

Rij(ϕj − ϕi), (3.1)

where

Rij(χ) =

∫ χ

0

Hij(t)dt, (3.2)

and Hij describes the effect of oscillator j on oscillator i via their coupling as described by

ϕ̇i =
∑
j

Hij(ϕj − ϕi). (3.3)

6 An Oscillatory Neural-Network architecture based on Dopant Network Processing Units



CHAPTER 3. DESIGN PROCESS 3.1. A DNPU-COUPLED ONN

These definitions are from [1], and hold as long as the oscillators in the network have the same
frequency and Hij exhibits odd symmetry.
Since Hij describes the change in phase caused by some difference in phase between two oscillators,
for differential current injection-based architectures it can also be described using the following
equation:

Hij(ϕ∆) = Γ(ϕi) · Iini (ϕ∆), (3.4)

where Γ(ϕi) is the phase-dependent phase sensitivity of the oscillator, and Iini (ϕ∆) is the current
injected into the oscillator’s hysteresis provider (usually a resonator) based on the phase difference
between the two oscillators. This equation was based on work in [8]. In an architecture where
DNPUs are used for coupling, Iini (ϕ∆) is defined by the response of the DNPUs. Γ(ϕi) depends
on the hysteresis provider that is used to sustain the oscillation.
To make an ODAMN work, the shape of the energy function U would need to look like the
following energy function, given that ξµi represents element i of pattern µ (consisting of values of
-1 and 1), there are K patterns, and σi represents element i of the state of the network:

E = −
K∑

µ=1

F (
∑
i

ξµi σi), (3.5)

where F (x) can be a rectified polynomial (as used in [13]), or ex (as used in [14]). It is unclear if
there is a valid combination of Iini (ϕ∆) and Γ(ϕi) that would approximate E sufficiently well to
be able to function like an ODAMN.

3.1.2 The architecture

Since the investigation of the ODAMN remained inconclusive, it also did not add any new re-
quirements the ONN should meet. All that is needed for an ONN to be coupled using DNPUs is
a structure that connects an array of DNPUs to different oscillators, sums their output currents,
and uses that signal to drive a resonator. The DNPUs should be connected in such a way that
their behaviour will be similar to the behaviours seen in earlier research such as in [16]. The cir-
cuit displayed in figure 3.1 should meet these requirements. The designed oscillator unit has one
DNPU for each other oscillator in the network. Each of these DNPUs is connected to one other
oscillator and its own oscillator. The outputs of the DNPUs are summed by an op amp-based
current adder. The output of this adder is fed into a resonator. The role of this resonator can
be fulfilled by anything that has a high peak in its frequency response. The height of this peak
determines the resonator’s ability to filter out unwanted frequencies, which is one of the factors
determining the upper limit of the number of oscillators that can be connected to form a usable
network. In practice, this means that many resonators are suitable for use in this architecture.
The network should contain two additional oscillators that can be unidirectionally coupled to the
rest of the network: One reference oscillator, and one neutral oscillator that always has a 90◦

phase shift from the reference. These added oscillators add two extra DNPUs to the DNPU array
of every oscillator unit. This defines the following relation between the number of required DNPUs
and the network size:

N(N − 1) + 2N = N(N + 1). (3.6)

This only applies when the network is fully interconnected, for feedforward configurations the
following expression is used:

NK +K +N, (3.7)

Where NK represents the feedforward connections, the K term is for the connections from the
neutral oscillator to the output layer, and the N term is for the connections from the reference
oscillator to the input layer. Note that for the feedforward network, the couplings to the reference
and neutral oscillators probably do not need to be implemented using DNPUs.

An Oscillatory Neural-Network architecture based on Dopant Network Processing Units 7



3.1. A DNPU-COUPLED ONN CHAPTER 3. DESIGN PROCESS

Figure 3.1: Schematic of the oscillator unit n in the designed architecture with N total oscillators.
DNPU control electrodes are not depicted.

8 An Oscillatory Neural-Network architecture based on Dopant Network Processing Units



Chapter 4

Simulation methodology

To validate and analyze the designed architecture, a simulation setup was created, which consists
of two main parts:

• A circuit simulator, in this case, LTSpice

• A program controlling the circuit simulator, in this case, a Python script

An overview of how these components fit together can be seen in figure 4.1. These components
will be described in detail in sections 4.2 and 4.3. The next section will describe the questions this
simulation setup is - and is not - required to answer.

4.1 Requirements

The simulator is supposed to shed light on the computational capabilities of the system being
simulated. In practice, this means that the magnitudes of many quantities in the simulation can
be arbitrarily chosen as long as the phase behaviour of the system is not affected. Among the
quantities that can be arbitrarily chosen are the amplitudes of the signals, and the operating
frequency.

4.2 Circuit Simulator

The process of assembling the simulation setup began with some very basic experimentation in a
circuit simulator. LTSpice was used for the circuit simulations.

4.2.1 Resonator

The designed architecture does not place many constraints on the resonator that is used to sustain
the oscillations. The resonator frequency was arbitrarily chosen to be 159Kz. The Q factor of the
resonator was chosen to be from the lower end of what could be realistically expected, resulting
in a Q factor of 10.

4.2.2 Oscillator Unit

The array of DNPUs feeding into the current adder (as seen in 3.1) can be simplified into a single
arbitrary controlled current source for the purposes of this simulation. This current source is
combined with the previously described resonator, and a source of white noise, to form a basic
oscillator unit that can be replicated as many times as needed. This results in a network where
all the coupling effects influencing an oscillator are encoded in the function that is set to its
corresponding controlled current source. These functions must be reformulated for every different

An Oscillatory Neural-Network architecture based on Dopant Network Processing Units 9



4.3. SIMULATOR CONTROL SCRIPT CHAPTER 4. SIMULATION METHODOLOGY

ONN computation that is simulated. Doing this by hand takes a lot of time, and is error-prone.
This problem can be avoided by automating this process, which is done using the system described
in the next section.

Figure 4.1: Overview of the simulation setup. The noise source has been left out for readability.

4.3 Simulator control script

The simulator is controlled by a Python script that utilizes the PyLTSpice [20] library to set the
formulas in the programmable current sources such that the network is coupled exactly as the user
has specified. The script contains two main classes, these being:

• ONNArch: Describes an ONN configuration that exists for some amount of time.

• ONNSim: Programmes and runs simulations described by a sequence of ONNArchs.

4.3.1 ONNArch

An ONNArch contains all the information needed to program the simulation for some amount of
time. It stores a matrix of coupling coefficients. These coefficients can be supplied by the user,
or calculated using a selection of algorithms. These include the Hebbian and Storkey learning
rules. It also contains a factor that is applied to the coefficients resulting from these learning
rules to allow the user to tweak the network to make sure the couplings are weak enough to
not cause problematic changes in oscillator amplitude. To allow for experimentation beyond the
standard linear coupling functions, the ONNArch contains a matrix defining the type of coupling
that corresponds with each entry in the coupling coefficient matrix. The available coupling types
are described in table 4.1. The patterns supplied to the learning rule functions can be 1-or-2
dimensional collections of elements that quantize to 0 or 1 when cast to an integer. The ONNArch
also keeps track of what oscillators should be coupled to the neutral oscillator.

4.3.2 ONNSim

ONNSims run sequences of ONNArchs. The ONNSim generates all the current source functions
and coordinates the running of simulations. The functions that are generated for each ONNArch

10 An Oscillatory Neural-Network architecture based on Dopant Network Processing Units



CHAPTER 4. SIMULATION METHODOLOGY 4.3. SIMULATOR CONTROL SCRIPT

Name Description
Uncoupled 0
Linear c · x
Polynomial c · xk

Exponential c · ex
Symmetric Exponential c · sgn(x) · (e|x| − 1)
NDR Changes NDR by c · x

Table 4.1: Different coupling types supported by the ONNArch. Where x = Vi − Vself , and c is
the coupling coefficient. k is the order of the polynomial coupling function.

are multiplied by u(t−tstart)−u(t−tend), where u(t) is the unit step function, tstart is the starting
time of the ONNArch, and tend is the end time of the ONNArch. This is done to make sure that
only the correct ONNArch is active at any given time.

Output extraction

To extract the output phases of the simulation, the ONNSim takes all the waveforms of the
oscillators that were part of the final ONNArch, and then determines their phase-coded value
according to the following logic:∫ T

T (1−p)

v0(t)vi(t)dt > 0 ⇒ 1, otherwise 0 (4.1)

where T is the total run time of the simulation, and p is the fraction of the simulation time in
which the system is in its output state (usually p ≤ 0.1). Assuming that the oscillator amplitudes
are similar, this determines and quantizes the phase of each non-reference oscillator to be either 0
or 180 degrees, and encodes this phase into a 1 (for 0◦) or 0 (for 180◦). This binary sequence can
then be extracted from the ONNSim as an array, string, or 2-dimensional array.

An Oscillatory Neural-Network architecture based on Dopant Network Processing Units 11



Chapter 5

Results

To ascertain the functionality of the architecture described in chapter 3, the simulation setup is
utilized to make the architecture perform standard associative memory tasks.

5.1 Auto-associative memory

Figure 5.1: Results of the associative memory task performed with linear and symmetric exponen-
tial coupling functions. The number of ’flips’ indicates the hamming distance between the taught
pattern and the input.

A standard way of demonstrating the functionalities of an ONN is to make it perform an
associative memory task. To make the simulated system perform this task, two patterns were
taught to it by means of the Storkey learning rule. Modified versions of these patterns were
then presented to it as input. If the system works, it should then converge to the pattern that
most closely resembles the presented input. This task was performed on ONNs of two different
sizes: an 8-oscillator ONN, and a 64-oscillator ONN. On each of these, the task was performed for
each of the following coupling types: linear, exponential, symmetric exponential, and 3rd-order
polynomial (see table 4.1 for coupling type definitions).
According to equation 3.6, the 8-oscillator ONN would require 72 DNPUs to be implemented in

12 An Oscillatory Neural-Network architecture based on Dopant Network Processing Units



CHAPTER 5. RESULTS 5.2. CLASSIFICATION

hardware. The 64-oscillator system would require 4160 DNPUs, which is more than could be
reasonably justified for a system performing a task like this. Despite this, testing the 64-oscillator
ONN provides a good stress test.
The taught patterns were modified by flipping a predetermined number of randomly selected
pixels. For most combinations of ONN size and coupling function, simulations were run with 0%,
12.5%, and 25% of pixels flipped. In cases where the 64 oscillator ONN produced bad results, the
run with 12.5% of pixels flipped was replaced by a run with only one pixel flipped, to confirm that
the network is fully incapable of performing an associative memory task in that configuration. The
results for the cases with linear and symmetric exponential coupling can be found in figure 5.1.
The 8-oscillator system could successfully complete the task in both configurations, while the 64-
oscillator system failed when it was configured to use the symmetric exponential coupling function.
This failure may have been caused by the simulation setup, which failed to produce results for the
8 by 8 symmetric exponential configuration when the coupling strength was at normal levels. The
results shown for this configuration were produced with a very low coupling strength. This made
the system either completely synchronize, or leave the input pattern unaltered. The results for
the configurations with polynomial and exponential coupling are in figure 5.2. All configurations
utilizing the 3rd-order polynomial coupling function completed the task successfully, despite their
asymmetric responses to different phase-states. The 8 by 8 configuration with exponential coupling
failed, but the outputs it produced still resemble some patterns that could plausibly be derived
from the patterns that were taught it. This shows that this configuration is still capable of storing
some information. Perhaps it would be capable of performing this task if a different learning rule
is used, but it could also be the case that using this coupling function inherently decreases the
memory capacity at larger network sizes. The exponential coupling causes no problems in the 2
by 4 network.

Figure 5.2: Results of the associative memory task performed with 3rd order polynomial, and
exponential coupling functions. The number of ’flips’ indicates the hamming distance between the
learnt pattern and the input.

5.2 Classification

A simulated 66 oscillator (8 by 8 image with 2 output oscillators) ONN was made to perform a
classification task. The first 64 oscillators were initialized to the input image, and the 2 output
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Hamming distance:
coupling: 0 8 16

linear ✓ ✓ ✓
symm. exp. ✓ ✓ X
exponential ✓ ✓ X
polynomial ✓ ✓ ✓

Table 5.1: Results of the classification task. A ✓ indicates a lack of errors after classifying at least
3 modified versions of each pattern.

oscillators were initialized to a phase of 90◦. Each output oscillator corresponds to the detection
of one class of image, so the possible outputs also include cases wherein both or none of the classes
were detected. The coupling coefficients for classification were obtained according to the following
steps:

1. Label each image that should be recognised by appending to it the desired output.

2. Teach these patterns to the network using the Storkey learning rule.

3. Remove all connections that do not directly affect the output oscillators.

The move from a single-layer fully connected network to a two-layer feedforward network occurs
in the last step of this process and makes it so that this system requires at most 194 DNPUs
according to equation 3.7.
The classification task was performed with the same set of different coupling functions as the
associative memory task. Because the two-layer feedforward network is much less complex than
the fully interconnected network used for the associative memory task, the classification task
was only performed on the 8 by 8 images. The results from the task can be found in table 5.1.
The system was able to perform classification using each coupling function. The error rate became
noticeably higher when the systems with (symmetric) exponential coupling attempted to recognise
images with a Hamming distance of 16 from the original patterns.
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Chapter 6

Discussion and conclusions

The results show that the proposed architecture is capable of performing basic ONN tasks, but
there are many things these results do not show well. The results do not necessarily justify using
a DNPU in this architecture. In a way, the results show that an ONN can function despite the
presence of some types of non-linearity (specifically 3rd polynomial coupling), but not that it
benefits from them at all. It does not help that these results can only serve as a proof of principle,
and not an evaluation of performance.

6.1 Improving task performance measurements

Evaluating the performance of the system using a few statistically relevant metrics could shed
more light on the effects of the non-linear coupling. For example, It would be very interesting to
see if the system’s memory capacity was affected. Measuring the system’s memory capacity could
be done by running numerous simulations using different sets of patterns (of different sizes too),
and plotting its error rates.
In the testing done for the results, many of the input images were randomly altered versions of the
patterns taught to the ONN. The ideal way to test using randomly generated inputs is to test a
representative sample of them, and then report the success or failure rate. This was not done for
these tests, which limits the generalizability of the results, but it nevertheless constitutes a proof
of principle.

6.2 Improving the simulation setup

The possible improvements mentioned in the previous section all have one thing in common: they
require a much larger sample size than has been produced for the results thus far. This requirement
is the reason why they are listed as possible improvements, instead of being implemented in the
results. The current simulation setup is too slow, and too unreliable, to provide the data that
would be needed. Simulating the 8 by 8 fully connected associative memory task fully saturates a
modern CPU for several minutes (tested on AMD Ryzen 7 2700X and Intel i7-10750H) to produce
just one sample of data. This could still be fast enough if the process was properly automated,
but this was not done in this case. For some combinations of configuration and coupling strength,
the simulator would run as normal, but not produce any output. This problem could be avoided
by turning down the coupling strength a little and running it again, but this process had not been
automated.
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6.3 Improving DNPU utilization

The set of tasks that were tested on the DNPU fundamentally requires only a single dimension
of tuneability. This is due to these kinds of tasks being originally conceived to run in a network
where the coupling elements can only change unidimensionally. These tasks still make sense to
test to have a simple proof of principle but do not utilize the full computational capabilities a
DNPU could provide. To justify the use of DNPUs in this architecture, more complicated tasks
need to be found and tested.
One way to start exploring more complicated tasks is by eliminating the restrictions on the input
and output of the system. Currently, input and output patterns are binary. This greatly limits
the range of operations the ONN could perform and also limits the utility of non-linear coupling
functions. Considering that the DNPU has some capability to select from the sub-harmonics in
the signal it produces, it would not be inconceivable that by cleverly exploiting this one could
make a network that operates with multilevel, or even continuous, phase states (See [21] for an
example of a multilevel ONN).

6.4 Conclusions

In this BSc. assignment, an ONN architecture using DNPUs was described. This architecture was
simulated, and a demonstration of its basic functionality as an ONN was provided. These results
do not fully characterise the performance of the ONN and severely underutilize the computational
capabilities of the DNPUs in the system. To further utilize the capabilities of this architecture,
there is a need to look beyond the canonical ONN workloads. Some possible starting points for
follow-up research have also been provided, in the form of the ODAMN.
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