Improving Performance of Multiple Sequence
Alignment through Maximal Exact Match
Identification

Tim Wehning*
BSc Advanced Technology
University of Twente
Enschede, The Netherlands

Abstract—Maultiple sequence alignment is an integral part in
the field of DNA analysis and genomics, and it is necessary
in order to properly identify evolutionary patterns as well as
functional motifs. However, one of its biggest drawbacks is
scalability. Execution times increase rapidly with larger numbers
of sequences to be aligned. In this paper a new approach is
presented, that takes the concept of seed-and-extend algorithms
from pairwise sequence alignment and applies it to multiple
sequences. The result is an alignment tool called MEMSA (MEM
Extracting Multiple Sequence Aligner), which applies multiple
pre-processing steps in order to reduce the search space of
alignment. It shows promising results for data sets with a high
homology but struggles with genomic sequences that are too
divergent. For a data set of 500 MERS genomes, the tool of
this paper was able to reduce the execution time for alignment
by a factor of 27 while even improving alignment quality slightly.

The source code of the developed tool is available online at
https://github.com/timweh/MEMSA
Keywords—genomics, maximal
exact matches

multiple sequence alignment,

I. INTRODUCTION
A. Motivation

The analysis of biological sequences plays a crucial role in
various domains of bioinformatics, aiding in the understanding
of genetic information. Multiple sequence alignment (MSA)
is a fundamental technique used for aligning and compar-
ing multiple sequences simultaneously, revealing conserved
regions, evolutionary patterns, and functional motifs. However,
one of the MSA limitations is its high computational demand
when processing large sequence databases. Efficiently aligning
large sets of sequences remains a significant challenge due
to the non-linear asymptotic time complexity of traditional
alignment algorithms like MAFFT [1] or MUSCLE [2]. These
algorithms exhaustively compare every possible combination
of characters, resulting in computational bottlenecks when
dealing with extensive datasets. Consequently, the need for
novel approaches to enhance the computational efficiency of
MSA algorithms has become increasingly apparent.

This paper aims to address the computational inefficiencies
of MSA by proposing a methodology that uses the power of
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maximal exact match (MEM) identification. MEMs are de-
fined as subsequences that appear across different sequences,
representing conserved regions. By identifying these seeds and
only selectively aligning the subsequences between them, the
search space for alignments can be reduced significantly and
computational efforts focussed. Thus, redundant comparisons
are minimized and the overall scalability of MSA algorithms
is enhanced, enabling more effective analysis of large-scale
sequence data sets. In this paper, we focused on the imple-
mentation of this suggested method, which will be presented
under the name MEM Extracting Multiple Sequence Aligner,
or MEMSA.

B. Purpose of the Research

The key objective of this research is to develop an innovative
approach that incorporates MEM identification into the MSA
process, aiming to achieve substantial computational efficiency
improvements without compromising the quality of sequence
alignments.

To achieve this objective, there are two main goals that will
be targeted in this paper:

o Firstly, we will explore existing algorithms for seed
identification, investigate their strengths and limitations,
and propose modifications or novel strategies to optimize
their utility in the context of MSA.

¢ Secondly, we will also evaluate the impact of the ap-
proach proposed in this paper on computational efficiency
by comparing it to an existing state-of-the-art MSA
algorithm using real-world sequence data sets.

By improving the computational efficiency of MSA, this re-
search has the potential to accelerate the analysis of biological
sequences, allowing researchers to more efficiently compare
large quantities of genomes. This can lead to a better un-
derstanding of evolutionary relationships and identification of
functional motifs, which are key parts of biological research.

In summary, this paper aims to present a comprehensive
investigation into the integration of MEM identification tech-
niques within the MSA framework with the goal of increasing
computational efficiency while maintaining alignment accu-
racy and preserving valuable biological insights.



II. BACKGROUND
A. DNA Analysis

A key part of the field of bioinformatics is genomics, which
deals with the analysis of the genomic sequences of DNA. In
bioinformatics, genomic sequences are represented by strings
of characters that correspond to the four different nucleobases
that make up the DNA: A for adenine, T for thymine, G for
guanine, and C for cytosine. A few more characters exist that
are ambiguous and may represent two or more nucleobases.

When DNA is sequenced, the machines can only read small
parts of the genome. Due to inaccuracies, these reads may
have errors. When trying to read a whole genome, a lot of
these reads will therefore be collected and then one can try to
reconstruct the full genome by correctly putting these reads
together. This can be achieved by using different sequence
alignment techniques.

Sequence alignment techniques are not only used to arrange
small reads but also used to align whole genomes, in order to
allow them to be compared. By aligning whole sequences,
similar and dissimilar regions can be identified easily and it
can be seen how these sequences are related by evolution.
From some well-conserved regions that are called motifs, one
can even deduce information about the characteristics and
functionality of different species.

There are a lot of different alignment algorithms that tackle
this problem in different ways. The most fundamental method
is pairwise sequence alignment.

B. PFairwise Sequence Alignment

Pairwise sequence alignment describes the alignment of one
sequence with another. The standard for pairwise sequence
alignment was set with the Needleman-Wunsch [3] algorithm
in 1970. It is a dynamic programming algorithm that is used
for global (also end-to-end) alignments. This method was de-
veloped further and made more universal by Smith-Waterman
[4] which allows local alignments. Both algorithms use a so-
called scoring matrix that assigns scores to potential align-
ments by positively considering matches between characters
and negatively accounting for mismatches and the insertion
of gaps. The highest score in the matrix will be determined
in order to create the optimal alignment by tracing back.
These dynamic programming algorithms produce very exact
alignments but run very slowly due to their computational
complexity.

A faster alternative method called BLAST [5] was published
in 1990 that uses an approximation to create alignments.
The algorithm decreases the search space by taking small
segments from the sequence, so-called seeds, and finding
matches in the reference sequence that serve as anchors for
the alignments. This concept serves as the foundation for
more modern alignment algorithms of the seed-and-extend
principle, such as BWA-MEM [6] and Bowtie2 [7] which are
commonly used for the alignment of reads [8]. The backbone
of this method is a heuristic that identifies seeds in both
sequences, which are usually exact matches of a certain size.
These seeds are then used to reduce the alignment to an
extension phase between the seeds. The identification of exact
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Fig. 1: Example of an MSA, created with MView [10]. Gaps
(represented by a ”—" dash) are inserted to maximize matching
columns.

matches varies between different algorithms but is usually
either maximum exact matches (MEMs) or k-mers, that have a
fixed size. MEMs are seeds that cannot be further extended to
either side, meaning they are adjacent to mismatches on both
sides. These alignment algorithms are a lot faster than the
aforementioned traditional approaches, however they cannot
guarantee an optimal alignment. One of the most commonly
used tools for pairwise alignment, MUMmer [9], also uses this
principle. Its alignment generator for nucleotides, NUCmer, is
optimized for globally aligning large-scale sequences.

C. Multiple Sequence Alignment

In order to properly draw conclusions about the evolutionary
relationship between sequences and to find motifs in order
to predict biological function, multiple sequences need to be
aligned at once. Multiple Sequence Alignment (MSA), thus,
was developed for this purpose. It is a bioinformatics technique
that is able to align three or more biological sequences, such
as DNA, RNA, or protein sequences, in order to identify
similarities and differences among them. By aligning multiple
sequences, MSA provides valuable insights into evolution-
ary relationships, functional motifs, conserved regions, and
structural properties. Conserved regions often correspond to
functional elements, such as protein domains or regulatory
motifs. Because MSA enables the detection of evolutionary
relationships, it provides a framework for understanding the
evolutionary history of organisms. MSA also plays a crucial
role in comparative genomics, as it enables for the identi-
fication of genetic variations and the detection of mutations
associated with certain diseases or phenotypic traits.

MSA aligns sequences in a manner that maximizes the
overall similarity while considering gaps and insertions. The
alignment is typically represented as a matrix, where each
row corresponds to a sequence and each column represents a
position in the alignment (see Figure 1). The alignment process
involves identifying conserved residues across sequences and
optimizing their alignment based on a scoring scheme that
considers sequence similarity and gap penalties.

Several computational algorithms have been developed to
perform MSA. Some of the most prominent ones are ClustalW
[11] and T-Coffee [12], which are progressive alignment meth-
ods. Progressive alignment algorithms construct the alignment
progressively by building a guide tree based on pairwise
sequence similarities and then aligning sequences accordingly.
Other methods that combine this progressive technique with
an iterative method are MAFFT [13] and MUSCLE [2].
Iterative methods refine the alignment iteratively by employing
profile-based strategies, where a profile of previously aligned
sequences is used to align new sequences.



III. RELATED WORK

There has been a lot of development in the past to identify
seeds. The most popular tool currently is MUMmer [9], a
method identifying maximal unique matches (MUMs) which
are MEMs that are unique in both sequences. Another notable
open-source tool is slaMEM [14]. While both tools make use
of variable-size seeds, A. Kutzner et al. [15] proposed a com-
bination of fixed-size and variable-size seeding, which showed
promising results in the context of PacBio reads. Furthermore,
there have been attempts to accelerate the seeding process,
specifically for supramaximal exact matches (SMEMs) [16]
and for very large genomes [17].

For MSA, MAFFT [13] is a progressive tool that uses a
fast Fourier transform approximation. Its FFT-NS-2 algorithm
consistently performs as one of the best in benchmark studies
[18]. Due to its fast execution and still accurate alignment,
it is therefore one of the best tools available. One weakness
of MAFFT and most other MSA tools, however, is that they
do not recognize homologies within the input sequences that
could simplify the alignment.

B. Morgenstern et al. [19] made use of the ability to
give user-defined anchor points as constraints for MSA with
DIALIGN [20]. This requires some knowledge or assumptions
about the homology of the sequences. The results were mixed:
for some sets of input sequences, they were able to enforce
getting meaningful alignments, whereas, for some other inputs,
the anchors had a negative impact. The requirement of meta
knowledge about the sequences is a major drawback because
obtaining this information requires additional steps so it would
negatively impact alignment speed.

F. Pitschi et al. [21] further developed the idea of using
anchor points in sequences to put restrictions on the alignment
algorithm. The detection of anchor points was automatized
so this method does not require any prior knowledge about
homologies in the data set anymore. The proposed method
managed to achieve improved accuracy when applying these
anchors to ClustalW. For T-Coffe and DIALIGN, it did not
achieve any improvements. Its MS4 column partial detection
scheme purely aims to maximize alignment quality, which hap-
pens at the expense of alignment speed due to the complexity
of the scheme.

IV. METHODOLOGY
A. Approach

This new method takes the concept of seed-and-extend
alignment and applies it to MSA. When aligning multiple
sequences we expect that there will be certain motifs that
are well-conserved across all the sequences. After identifying
all these matching regions, they can be used as anchors, and
only the parts in between need to be aligned. Therefore, this
approach should be viewed as an improvement to established
MSA algorithms through preprocessing and applying an addi-
tional heuristic, rather than a full MSA itself.

In the first step, an arbitrary sequence from the input
sequences is chosen and used as a reference to find all pairwise
MEMs between that reference and the rest of the sequences. In
the second step, these pairwise generated seeds are compared

Seq 1: TGCCGTGACGACTGTACGCTTACTGCATGCGCGG
Seq_2: GGTGCTCGTGACGCTGCTTCTGCATGCGCGAT
Seq 3: CTCGTGACGACTGGCTGCATGCGAGTT

Fig. 2: Example sequences with MEMs (colored) of minimum
size 5 identified

Seq 1: --TGC-CGTGACGACTGTACGCTTACTGCATGCGCGG-
Seq 2: GGTGCTCGTGACG-CTG----CTT-CTGCATGCGCGAT
Seq_3: ----CTCGTGACGACTG---G----CTGCATGCGAGTT

Fig. 3: Example sequences after aligning subsequences not
contained in seeds

to each other in order to find the intersections between them.
This is done in a pairwise recursive fashion until only seeds
that are present in every sequence are left.

Due to the nature of genomic mutations, a lot of mismatches
that bound seeds consist of only a single character as a result
of a point mutation. The resulting gaps between the seeds
are trivial to align because they are of the same length and
optimally aligned already, so they do not require any gap
insertions. Therefore, in order to avoid unnecessary calls of
the MSA algorithms, gaps between the seeds will be merged
in the third step. Since there might be multiple consecutive
point mutations within a distance less than the minimum seed
size chosen for the MEM identification, these gaps in between
seeds, which are trivial to align, might be longer than just one
character. Therefore, the maximum size of gaps to be merged
can be set as an input parameter.

After the previous step, all the subsequences that are not
contained in the seeds (example shown in Figure 2) get
extracted and MSA is performed on them (the result can be
seen in Figure 3). This results in n+1 executions of MSA,
where n is the number of seeds. However, the sequences
that need to be aligned are significantly smaller than the full
sequence and because traditional MSA algorithms have a non-
linear time complexity, that means that execution will be faster.

In the last step, the results of all the individual alignments
are recombined with the seeds, and the full alignment is
recreated. The general procedure is shown in Figure 4.

B. Implementation

A C++ tool for this study was created which takes a FASTA
file as input and produces an aligned FASTA file with inserted
gaps as output. These files contain the strings that represent
the nucleobases of the genome. This tool is integrated with
slaMEM for the MEM identification and MAFFT, and its FFT-
NS-2 algorithm, for the MSA process due to these algorithms’
public accessibility. The default minimum seed size is 20 when
calling slaMEM, which is the default value for most seed-
and-extend algorithms. The index file generated by slaMEM
is read by the tool and converted into an internal seed data
structure. The seeds will be checked to see if they are in
the wrong order or redundant, and if either is the case,
the program terminates. This implies that either the chosen
minimum seed size was too small or that the input sequences
are too divergent. In the former case, the code can be run
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Fig. 4: MEMSA pipeline with n seeds

again with a higher minimum seed size to check if this fixes
the issue. If the latter is the case, the input data set has to be
chosen more carefully or sequences that are too divergent need
to be removed manually. In case seeds overlap, the overlapping
part is excluded from both seeds. For every MAFFT call
on the resulting subsequences, a FASTA file, which contains
the subsequences, is created and the output FASTA file from
MAFFT is read. The partial alignments are then recombined
into a single output FASTA file containing the final alignment.
The name of our developed tool is called MEMSA, a recursive
acronym for MEM Extracting Multiple Sequence Aligner.

C. Evaluation

In order to evaluate the performance of this method and to
compare it to a simple MSA without any preprocessing, multi-
ple tests are being performed. Since the main goal of this new
approach is to improve execution time, this is the first metric
that is being measured and the main point for comparison.
The second metric is the quality of the alignment, because
improved speed only matters if the quality of the alignment
does not suffer too much. There are a lot of different ways for
assessing the quality of an alignment, such as sum of pairs (SP)
and column score (CS), but they can only be used if there is
a reference alignment of the same sequences available [22].
The most common reference for alignments is BAIiBASE [23].
However, there have recently been some criticisms regarding
their non-transparent benchmark calculations [24].

Since we want to be able to test our tool with any input
sequences, we do not use reference alignments but instead,
introduce our own two indicators. Both of them range from
0 (completely misaligned) to 1 (perfectly aligned), thus a
high score is desirable. The first one is the mismatching-
to-matching columns ratio (MMCR). A column counts as a
match if and only if the whole column matches across all input
sequences. A mismatched column occurs as soon as there is
at least one mismatching character (gaps are ignored).

This quality indicator is defined as

MMCR — matches 0

matches + mismatches

and ranges from O (not a single matching column) to 1 (not
a single mismatch). If there are only matching columns that
contain gaps it will not be defined, but that is an unrealistic
situation because a gap insertion usually has a higher penalty
than a mismatch.

The other metric is average matches per column (AMPC)
and measures how many characters are matching in each
column. In order to do that, it counts how many occurrences
of each character there are in each column and takes the
maximum value, so the number of occurrences of the character
that occurs the most in said column. This value is being
calculated for all columns and then reduced by one. After
that, the average between all columns is taken and normalized
(divided by the amount of sequences that were aligned minus
one).

It is defined as

Zi:o max(#aq, #ci, #9i, #ti) —

AMPC = n—1)

2

with [ being the length of the alignment and n being the
amount of sequences. It ranges from 0 (no column contains 2
or more same characters) to 1 (every columns contains only
identical characters). These metrics are used in combination
because they focus on slightly different aspects of the align-
ment. The drawback of MMCR is that it assigns the same
score to all columns that contain a mismatch or a gap, no
matter how many matches or mismatches they contain. AMPC
takes these into account. The drawback of AMPC, however,
is that it is sensitive to gap insertions, which can lower its
score. Therefore, both metrics are considered to make sure
that certain alignment tendencies are not favoured over the
other.

To evaluate the performance of this program, it will be
tested with a collection of genomes from different SARS-CoV-
2 and MERS strains obtained from the National Center for
Biotechnology Information (NCBI) Virus Variation Resource.
[25]

V. RESULTS
A. MERS Virus

The first tests were performed with a set of 500 MERS
genomes. For these runs, the default parameters (minimum
seed length = 20, maximum merge gap = 1) were used and
the execution time and quality of alignment were measured as
a function of the number of input sequences. The results were
compared to the equivalent alignment performed by MAFFT
FFT-NS-2.

As can be seen in Figure 5, the execution time takes a lot
longer with just MAFFT than the preprocessed one for larger
numbers of sequences. At n = 500 MAFFT took 34:11 minutes
whereas MEMSA took only 1:15 minute. That corresponds to
a factor of 27.
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Fig. 6: MMCR indicator of alignment quality

When it comes to alignment accuracy (see Figure 6), the
amount of matching columns decreases with more input se-
quence in similar fashion for both MEMSA and MAFFT. The
MMCR of the alignments performed by MAFFT decreases
just slightly faster.

In terms of matches per column (see Figure 7), they again
follow a similar trajectory, however, the AMPC increases with
a larger amount of sequences. Also, the MAFFT alignment
performs slightly better in this regard.

B. SARS-CoV-2

For the next tests, we switched to a larger data set of 2000
random SARS-CoV-2 genomes from the NCBI database [25].
In order to see the effect of the input parameters for the
seeding process (minimum seed length and maximum merge
gap), 500 of those genomes were picked and the execution
time of MEMSA was measured for different combinations of
parameters. As can be seen in Figure 8, not merging any seeds
significantly slows down the process compared to the default
parameter of 1. The higher the limit for merging, the faster the
alignment, meaning that the execution is the fastest if all gaps
of equal size get merged (no upper limit). As for the minimum
seed length, decreasing it below the default value 20 also slows
down the alignment, however, alignment speed peaks at the
default value and then gets slower again for larger minimum

MERS Alignment Comparison
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Fig. 7: AMPC indicator of alignment quality
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seed sizes. The quality of alignment in terms of MMCR was
the highest for seed size 20. For merging gaps less or equal
to 1 it was MMCR = 92.8% and for 5 and higher it dropped
to 92.4%. The AMPC increased continuously from 97.8% to
99.3% with increasing minimum seed sizes and maximum
merge gaps (see Table I).

In the next step, MAFFT and MEMSA are compared once
more but this time using the new data set of SARS-CoV-2
genomes. For MEMSA the optimal minimum seed size of 20
that we determined in the prior step and that coincides with
the default value is being used. Both small values and no limit
at all are being considered for the maximum merge gap and
compared in order to quantify the trade-off between alignment
speed and quality.

In Figure 9 and Figure 10 we can see a clear trade-
off between accuracy and execution time for the different
parameter settings. MAFFT and the MEMSA alignment with 1
as the maximum merge gap take a lot longer than the ones with
higher maximum merge gaps. However, they have a higher
MMCR instead. Figure 11 shows that there is a drop-off of
the AMPC for a maximum merge gap of 1 whereas it remains
approximately constant for the other alignments.

An overview of the exact values for the most important
results can be seen in Table L.



input seed parameters MEMSA output MAFFT output

virus | sequences | min_seed [ max_gap [ time [s] [ MMCR | AMPC | time [s] | MMCR [ AMPC

MERS 500 20 1 75 0.9079 0.9908 2051 0.9030 0.9941
SARS-CoV-2 500 15 0 119 0.9243 0.9780 T4 0.9286 0.9928
SARS-CoV-2 500 20 0 308 0.9278 0.9901 T4 0.9286 0.9928
SARS-CoV-2 500 200 0 115 0.9241 0.9929 74 0.9286 0.9928
SARS-CoV-2 500 15 e 62 0.9237 0.9784 T4 0.9286 0.9928
SARS-CoV-2 500 20 e 9 0.9240 0.9928 T4 0.9286 0.9928
SARS-CoV-2 500 200 e 29 0.9240 0.9930 T4 0.9286 0.9928
SARS-CoV-2 2000 20 1 667 0.8235 0.9847 520 0.8239 0.9924
SARS-CoV-2 2000 20 2 297 0.8166 0.9908 520 0.8239 0.9924
SARS-CoV-2 2000 20 3 209 0.8156 0.9915 520 0.8239 0.9924
SARS-CoV-2 2000 20 o) 83 0.8151 0.9919 520 0.8239 0.9924

TABLE I: Most important results from test runs
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MEMSA with different maximum merge gaps
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Fig. 10: Comparison of MMCR indicator for alignment quality
with different maximum merge gaps

VI. DISCUSSION
A. Input Data

The first requirement for MEMSA to work properly is that
there is at least one well-conserved region across all input
sequences. Besides that, the seeds identified in the pairwise
MEM search must be in the same order as in the reference.
This means that this method requires a data set that is
homologous. If the sequences of the data set are too divergent,
this approach will not yield better results than just MAFFT. In
case these assumptions are violated, the MSA algorithm has

SARS-CoV-2 Alignment Comparison
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Fig. 11: Comparison of AMPC indicator for alignment quality
with different maximum merge gaps

to be called on the whole sequence, thus making this approach
slightly slower due to the additional preprocessing.

All the sequences from the NCBI database [25] that were
used showed a high homology. Therefore, these results should
be considered as the optimal conditions for the method.
Aligning a pandoravirus data set was also considered to see
how well MEMSA scales with longer genome sequences.
However, the available sequences on NCBI were too divergent
(see Figure 12) and could not be aligned using our heuristic.
As can be seen, the pairwise seeds of the different genomes
are not in order and thus cannot be used.

B. Seeding Parameters

The seeding parameters (minimum seed size and maximum
gap merge) have a great impact on both the speed and accuracy
of the alignment. Generally, having larger, merged seeds
reduces the amount of MSA calls that need to be performed.
This has a direct effect on the execution time. However, the
larger the gaps between the seeds are, the more likely it is
that the subsequences in these gaps are not trivial anymore
but instead misaligned. This risk increases with larger gaps,
so it is a trade-off between execution time and accuracy. As for
the minimum seed size, the optimal length is around 20, which
is the value used by all common seed-and-extend aligners. If
it gets increased more, fewer seeds will be found and thus the
search space will be bigger. If a minimum seed size smaller
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Fig. 12: Pairwise seed visualization for pandoravirus data set, generated with slaMEM [14]

than 20 is chosen, more and more “random” seeds will be
found just by pure chance, which might disturb the alignment
process. Furthermore, choosing a smaller minimum seed size
slows down the MEM identification drastically.

C. Quality Metrics

Assessing the quality of an MSA is a complicated prob-
lem and there are many different approaches. Both metrics
introduced in Section IV-C are heavily dependent on the
homology of the sequences and thus only suited for comparing
two alignments of the same sequences with each other. If
used in absolute terms, they do not just show how well the
alignment tool worked but even more so, how similar and thus
“alignable” these sequences are. The results of the alignments
show that MEMSA tends to insert more gaps than MAFFT.
This is due to the fact that MAFFT automatically applies some
heuristics when the input data becomes too large. However,
for the alignment of the shorter subsequences between the
seeds, the heuristics are not in place, which tends to favor
gap insertions over mismatches. Since the AMPC is heavily
affected by these excessive insertions, it tends to be lower for
the results of MEMSA than those of MAFFT. Due to this bias
towards gap insertion, AMPC is not as effective as MMCR
for comparing the alignment quality of the two tools. These
insertions of gaps should neither have a positive nor a negative
impact on the alignment quality factor, which is why MMCR
is suited a lot better for this comparison.

VII. CONCLUSIONS

A tool for MSA has been developed and some first tests have
been performed to assess its execution time and alignment
quality in comparison to MAFFT.

It has been shown that the input sequences need to show
a certain amount of homology in order to see an improved
execution time. However, since just one single seed across all
sequences suffices in order to be able to apply the heuristic,
it can be viewed as a low-risk-high-reward situation. If the
sequences generate usable seeds, the alignment process will
be significantly faster (27 times faster for 500 sequences of

MERS genomes) whereas if the method fails it will only be
slightly slower than traditional alignment because the MEM
identification just takes a fraction of the actual alignment time.
There are still some challenges to overcome, in order to make
this procedure feasible for broader applications, but it has
shown some promising first results. One of these limitations,
that could be addressed in further research, is to find a method
that eliminates identified seeds that hinder the alignment
procedure because they for example do not occur in the same
order across different sequences.

Future research could also investigate the feasibility of using
MEMSA for side-channel trace alignment since those traces
by nature have well-conserved regions between them, which
correspond to specific CPU operations.
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