
Log Parsing in Software-Defined Networking to generate DyNetKAT
models
GOOR, J.G.L., University of Twente, The Netherlands

Much like there is a need for validation within software engineering, a

growing need is discovered within the networking world. This need comes

from the novel research done in the software-defined networking domain,

specifically regarding the OpenFlow protocol. There are a few solutions al-

ready that allow for reasoning about computer networks, but these solutions

require hand-crafting models before one has the ability to reason about them.

Therefore, the implementation of a tool that analyses OpenFlow controllers

for DyNetKAT model generation is proposed. The symantics and operators

of DyNetKAT are discussed as well as the internal workings and the research

this tool is built on. Finally, possible future research is uncovered.

Additional Key Words and Phrases: Software-Defined, SDN, OpenFlow, POX,

MiniNet, DyNetKAT, NetKAT, Computer Networks

1 INTRODUCTION

1.1 Software-defined networking
Current networking architecture is ill-suited to the growing needs

of their users [11]. The Open Networking Foundation (ONF) spear-

headed an initiative that standardises a new method for network

architecture and maintenance: software-defined networking. In

software-defined networking, the data plane is split from the con-

trol plane. By contrast, traditional networking architecture has no

such separation. This leads to the need to manually configure each

networking device before traffic flows in the intended directions

with the correct rule-set applied.

For example, a traditional networking switch needs configuration

done on the switch to configure which VLAN is assigned to which

port. The process of controlling network flow on a device, is the

control plane. The traffic flow through the networking device itself,

is the data plane. The process of configuring each networking device

by hand is tedious and unscalable in bigger networks [11].

Software-defined networking is a term used for the ability to pro-

grammatically instruct networking devices of the intended network

flow. Therefore, a networking device becomes ’dumb’ in the sense

that all configuration is done elsewhere. The purpose of the network-

ing device has become to only relay traffic; no longer to configure

and relay. The Open Networking Foundation has further specialised

this idea into a standardised networking protocol: OpenFlow. Open-

Flow works with a controllers and switches. The controllers and

switches must be able to communicate with each other.

The process begins with a handshake of sorts. The switch is

configured to connect to a controller and tries to do so. The controller

then receives a message from the switch with their capabilities.

Now, the controller is free to configure the switch through defined

OpenFlow control messages.

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2023 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in , https://doi.org/10.1

145/nnnnnnn.nnnnnnn.

When traffic is generated behind a switch, the switch sends infor-

mation about the traffic to the controller. The controller can then

decide what to do with the traffic. The basic options come down

to sending it to a specific port or sending a flow modification. A

flow modification is sent to the switch to signify the allowance or

rejection of a certain traffic flow for a specified amount of time.

The switch can directly send the traffic to the right outgoing port,

without the need of verifying each packet with the controller. A flow

modification is sent with a time-to-live (TTL). After the TTL expires,

the flow modification is deleted and the switch communicates new

packets with the controller. Alternatively, without a flow modifica-

tion the controller handles each packet of the flow manually and

decides on an appropriate action per packet. The well-known im-

plementations of OpenFlow controllers (i.e. Pox [10], Floodlight [4],

and ONOS [9]) allow for programming the control flow. With this,

the network instrumentation happens via programmable logic. This

is arguably easier to debug than traditional networking, because

one only has to verify a program instead of configuration that could

span multiple network devices.

1.2 DyNetKAT
Within the field of Computer Science, there is a specialisation dedi-

cated to software validation [8]. Software validation can range from

writing unit tests, to system tests, to programs trying to mathemati-

cally prove the correctness. An example of the latter is VerCors. A

tool developed by the University of Twente to analyse and mathe-

matically prove the functionality of parallel programs [13].

A number of solutions have emerged in the software-defined net-

working domain also. An example of this, is NetKAT [1]. NetKAT is

an algebraic language invented to reason specifically about software-

defined networks. It does this by providing a framework for reason-

ing about networks with Kleene algebra with tests, or KAT. NetKAT

is built on a set of policies: filter predicates (or tests) and field assign-

ments (or actions). These policies can then be combined in order to

make a models of OpenFlow controller applications. The NetKAT

framework allows one to reason about the network architecture

and its correctness in an equational fashion. This is done through a

sound and complete axiomatisation, by proving or disproving cer-

tain equalities over policies. The full syntax of NetKAT is described

in the original paper [1].

A simple example of a NetKAT program is a policy for forwarding

traffic based on simple predicates [1]. The example is as follows:

𝑝 ≜ (𝑑𝑠𝑡 = 𝐻1 · 𝑝𝑡 ← 1) + (𝑑𝑠𝑡 = 𝐻2 · 𝑝𝑡 ← 2)

Here, we declare a policy 𝑝 . This policy is the composition of two

other policies. The function of the example policy, is to forward a

packet to port 1 if the destination is𝐻1, or to port 2 if the destination

is 𝐻2. From the example, a few of the NetKAT operators become

clear. The ≜ is used to define a policy. 𝑎 · 𝑏 is used to signify with

composition that policy 𝑎 and 𝑏 both apply. In the example, 𝑑𝑠𝑡 =

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TScIT 39, July 7, 2023, Enschede, The Netherlands Goor, J.G.L.

𝐻1 ·𝑝𝑡 ← 1, it is used to create a test where the destination matches

some host (𝐻1) and then apply an action (sending the packet out

of port 1). The← operator is used for actions and the + is used for

alternate policies (i.e. policy 𝑎 matches or policy 𝑏 matches).

The fact that NetKAT is built on Kleene algebra with tests, allows

for interesting modeling behaviour. Formally, policies and predicates

defined in NetKAT take a history and produces a set of histories.

These histories denote the flow of the packet. For example, if a policy

returns the empty set (∅), the packet is dropped. Alternatively, if

the policy outputs one or more histories the packet is sent to one

or more destinations respectively. Moreover, because NetKAT is

built on top of mathematical logic with predicates, theorems can be

derived. NetKAT is built with a few base theorems in mind, from

which new theorems can be proven (or disproven). A theorem here,

could be the functionality of a computer network that can then be

algebraically tested using the NetKAT axioms.

However, one of the main problems with NetKAT is that it is

stateless and does not allow for modeling concurrency within net-

works [2]. It is not possible to model a network where state changes

influence the packet flow. Moreover, NetKAT does not allow for

dynamic updates to the flow tables in a software-defined network

(SDN). To solve these problems, a dynamic extension to NetKAT

is proposed and named DyNetKAT. DyNetKAT retains the robust

core of NetKAT while adding new operators. These new operators,

semantics, and proofs can be found in the original paper [2].

Because DyNetKAT allows for the modeling of concurrency in

networks, a new construct is developed. This is called the dup
construct. It allows one to inspect the intermediate history of a

packet, during incomplete application of flow tables in the network.

Incomplete application of flow modifications can happen in the

network, due to the concurrent nature of the controller (i.e. multiple

switches requiring flow modifications, some flow modifications may

reach one switch quicker than another).

DyNetKAT can be used to reason about concurrent SDNs with

stateful behaviours. Once a model of a network is created in DyNetKAT,

one can reason about the states in the network with the use of a

labelled transition system (LTS) behavioural model. Using such an

LTS, one can verify the network for improper states and reason

where the errors come from. Therefore, DyNetKAT can be used to

verify computer network correctness, much like a system test in the

software validation domain. The verification here is that improper

network states (e.g. wrong firewall configuration or unexpected

switching behaviour) can be detected and removed.

1.3 Generating DyNetKAT models
A prototype tool for extracting DyNetKAT models from SDN log-

ging is currently under development at University of Twente. This

tool requires logs generated by an OpenFlow controller and then

generates a formal DyNetKAT model describing the network. This

tool requires the input logs to be in a specific format, akin to the

log format used in SDNRacer [6]. SDNRacer analyses SDN log files

to reason about race conditions in SDNs. The current paper builds

on top of the aforementioned prototype tool.

2 MOTIVATION
There is currently a gap between writing OpenFlow compatible

controller applications and the ability to reason about the validity of

the resulting network. The current process of generating models for

network validation is labour-intensive and time consuming. This

is because the models need to be hand-crafted before thorough

analysis can take place. There is currently no tool that automatically

generates DyNetKAT models based on real-world SDN controllers.

Because no software exists that bridges the gap between writing

OpenFlow-compatible controller applications and the ability to rea-

son about the resulting validity of these networks, this research was

authored. Using the tool described in this paper allows one to write

a simulation and then use the OpenFlow-compatible controller to

generate logs in the SDNRacer format. These logs are then further

processed to generate DyNetKAT models. Finally, these models can

be reasoned about by using a labelled transition system derived

from the DyNetKAT model.

3 RUNNING EXAMPLE
A simple running example used in the DyNetKAT paper [2], is a

stateful firewall that requires a secure connection before traffic flow

is allowed to happen. This firewall is modeled as follows:

𝐻𝑜𝑠𝑡 ≜𝑠𝑒𝑐𝐶𝑜𝑛𝑅𝑒𝑞!1;𝐻𝑜𝑠𝑡⊕
𝑠𝑒𝑐𝐶𝑜𝑛𝐸𝑛𝑑!1;𝐻𝑜𝑠𝑡

𝑆𝑤𝑖𝑡𝑐ℎ ≜((𝑝𝑜𝑟𝑡 = 𝑖𝑛𝑡) · (𝑝𝑜𝑟𝑡 ← 𝑒𝑥𝑡)); 𝑆𝑤𝑖𝑡𝑐ℎ⊕
((𝑝𝑜𝑟𝑡 = 𝑒𝑥𝑡) · 0); 𝑆𝑤𝑖𝑡𝑐ℎ⊕
𝑠𝑒𝑐𝐶𝑜𝑛𝑅𝑒𝑞?1; 𝑆𝑤𝑖𝑡𝑐ℎ′

𝑆𝑤𝑖𝑡𝑐ℎ′ ≜((𝑝𝑜𝑟𝑡 = 𝑖𝑛𝑡) · (𝑝𝑜𝑟𝑡 ← 𝑒𝑥𝑡)); 𝑆𝑤𝑖𝑡𝑐ℎ′⊕
((𝑝𝑜𝑟𝑡 = 𝑒𝑥𝑡) · (𝑝𝑜𝑟𝑡 ← 𝑖𝑛𝑡)); 𝑆𝑤𝑖𝑡𝑐ℎ′⊕
𝑠𝑒𝑐𝐶𝑜𝑛𝐸𝑛𝑑?1; 𝑆𝑤𝑖𝑡𝑐ℎ

𝐼𝑛𝑖𝑡 ≜ 𝐻𝑜𝑠𝑡 | |𝑆𝑤𝑖𝑡𝑐ℎ

(1)

This example shows new operators defined by the DyNetKAT

extension over NetKAT. In order for an intuitive sense to be gained

for DyNetKAT and its semantics, this example and the DyNetKAT

operators used will be thoroughly explained. Firstly, we have 𝑁 ;𝐷 .

This means the processing of policy 𝑁 is finished and the next

packet is processed according to policy 𝐷 . In this example, it is used

to recursively process packets over the 𝐻𝑜𝑠𝑡 policy. Additionally,

it is used for the modeling of the dynamic behaviour of the switch

according to the secure connection. The next operator used is ⊕.

This denotes a non-deterministic policy choice. In this example it is

used to model the different behaviours that can occur in the network

for both 𝐻𝑜𝑠𝑡 and 𝑆𝑤𝑖𝑡𝑐ℎ. The final extension used in this example

are the 𝑥?𝑁 ;𝐷 and 𝑥 !𝑁 ;𝐷 operators. The first part of these are

the 𝑥?𝑁 and 𝑥 !𝑁 operators. These denote sending and receiving

policies through channel 𝑥 . In other words, this means the network

configuration is updated with policy 𝑁 . Then, the second part ;𝐷

is used when the network configuration has been updated. After

the update, the next packet is processed according to policy 𝐷 . In

the stateful firewall example, the 𝑥?𝑁 ;𝐷 and 𝑥 !𝑁 ;𝐷 operators are

used to update the network configuration based on whether there

is an open secure connection. The 1 and 0 signify the state of the

2

Log Parsing in Software-Defined Networking to generate DyNetKAT models TScIT 39, July 7, 2023, Enschede, The Netherlands

secure connection, i.e. 𝑠𝑒𝑐𝐶𝑜𝑛𝑅𝑒𝑞!1 signifies the start of a secure

connection and 𝑠𝑒𝑐𝐶𝑜𝑛𝑅𝑒𝑞?1 asserts whether there is a request to

open a secure connection. Finally, the rule 𝐼𝑛𝑖𝑡 ≜ 𝐻𝑜𝑠𝑡 | |𝑆𝑤𝑖𝑡𝑐ℎ
allows for parallel composition of the two policies 𝐻𝑜𝑠𝑡 and 𝑆𝑤𝑖𝑡𝑐ℎ.

This denotes that both 𝐻𝑜𝑠𝑡 and 𝑆𝑤𝑖𝑡𝑐ℎ process packets at the same

time.

The result of the stateful firewall model is simple. The host either

sends a secConReq, requesting a secure connection, or a secConEnd,

indicating a secure connection will be closed. Then, the switch is

modeled to allow outgoing traffic and drop incoming traffic. How-

ever, if the switch receives a secure connection request, it starts

operating differently. After the secure connection request, the switch

now allows incoming traffic to flow to the host until the secure con-

nection is closed. After closing, the switch goes back to the original

behaviour.

This model is extensively worked out in the DyNetKAT paper.

Therefore, this is the example used during the development of this

tool. Because there is already a hand-crafted model of this running

example in the DyNetKAT paper, verification of the output of this

tool is made trivial.

4 METHODOLOGY

4.1 Approach
In order to build this tool, extensive research into software-defined

networking was done. Then, the design of the tool could be split

into multiple parts. The parts are as follows:

(1) Build an OpenFlow-compatible controller implementation of

the stateful firewall described in the DyNetKAT paper.

(2) Design and architect a tool which takes the controller imple-

mentation, outputs the right logging format, and generates a

DyNetKAT model.

(3) Use the controller implementation of the stateful firewall

example to generate a DyNetKAT model for it.

(4) Validate the generated model against the hand-crafted model.

Specific reasons for certain design decisions are discussed in the

corresponding sections below.

4.1.1 Building an OpenFlow-compatible controller implementation
of the stateful firewall. Building an OpenFlow-compatible controller

implementation of a stateful firewall first requires a choice for the

controller software. For this research, Pox was chosen [10]. Be-

cause software-defined networking is usually done with large-scale

networks, a network simulation tool is needed also. For this pur-

pose, MiniNet was chosen [7]. Both Pox and MiniNet are pieces

of software widely used in the SDN research domain. They are

well-documented and can be easily integrated with one another.

The DyNetKAT paper discusses a host which sends a secure

connection request and which can end a secure connection. Since

no specific packet predicates are included in the example, a choice

was made to model the secure connection with TCP connections

to specific ports. Thus, the implementation is as follows. If a host

in the network connects to an IP address on a certain TCP port,

a secure connection opens. To end a secure connection, the host

must connect to a different TCP port with the same destination IP

address.

This was specifically chosen as this mimics behaviour to the

hole-punching technique [5]. With hole-punching, hosts connect

to an unrestricted host that then allows information exchange to

build a session. In this case, the ’unrestricted host’ is the OpenFlow

controller noticing an attempt for session initiation (i.e. the opening

of a secure connection).

4.1.2 Design of the tool. The main problem identified in the design

of a tool that takes an OpenFlow controller and outputs a DyNetKAT

model with the purpose of network validation, is how to run the

controller as-is in a way where logging output is consistent and the

controller function remains the same. After literature analysis on

the required logging format, a solution was found. A software stack

that supports the three major OpenFlow controller frameworks

(i.e. Pox, Floodlight, and ONOS) and outputs logging in the format

required by the DyNetKAT model generator tool.

This solution is named STS [12], or the SDN Troubleshooting

System. STS allows one to run their controller, along with a trou-

bleshooting system. It runs a pre-configured simulation against the

controller and generates the required logging format used in the

generation of DyNetKAT models.

4.2 Use of MiniNet
In the early stages of familiarising with the inner workings of Open-

Flow, MiniNet was used. This is because MiniNet allows for complex

network simulations that run on top of OpenFlow. Within MiniNet,

one can then analyse how and which traffic flows. This is an essential

tool for verifying the workings of the in-development controller.

Throughout this research, MiniNet is always connected to a ’re-

mote’ controller running on the same machine. This means MiniNet

does not use an internally simulated OpenFlow controller. Rather,

it uses the Pox controller already running on the same machine.

Even when running interactive simulations with STS, MiniNet is

ran alongside to assist the understanding of traffic flow.

MiniNet has proved to be an invaluable diagnostic tool with this

research.

5 RESULTS
The final tool can be found on the University of Twente GitLab

environment. The link to the tool is

https://gitlab.utwente.nl/s2311720/sdn2dynetkat.

5.1 Requirements and execution
The requirements for running the tool and generating a DyNetKAT

model of a network are:

(1) There must be a controller implementation in Pox, Floodlight

or ONOS.

(2) A simulation has to be written as configuration for STS.

Once these requirements are fulfilled, the tool can successfully

be used to generate a DyNetKAT model. The final tool can be run

in Docker according to the repository instructions.

5.2 High level description of the workings
The first steps of the tool are software installation and configuration.

The tool then takes the simulation details configured by the user

3

https://gitlab.utwente.nl/s2311720/sdn2dynetkat

TScIT 39, July 7, 2023, Enschede, The Netherlands Goor, J.G.L.

and runs the user-made OpenFlow controller. After the simulation

has ended, the logs are collected in a specific location. Then, the tool

converts the generated log to a DyNetKAT model. This DyNetKAT

model is then saved and returned to the user.

5.3 The tool in detail
Within Pox, one can subscribe to events. The two events most rele-

vant to this tool are the ConnectionUp and PacketIn events. The full

source code for the Pox controller implementation can be found in

appendix A. The stateful firewall implementation runs an instance

of the class FirewallController which listens for incoming OpenFlow

connections (i.e. switches connecting to the controller). Then, a

special object in the controller is created to manage the switch. This

is an instance of the FirewalledLearningSwitch. The FirewalledLearn-
ingSwitch learns which MAC addresses are behind which ports and

handles the traffic flow on the switch itself. The ARP protocol is

always allowed through. Other traffic is blocked, unless a secure

connection is opened between hosts. A secure connection is opened

by connecting to another host on TCP port 6000. The resulting con-

nection can be closed by connecting to the same host on TCP port

7000.

Additionally, the learned MAC table is cleared every few seconds

to not keep stale data. As soon as a traffic flow is allowed through

with a secure connection, a flow modification is made. In this way

the controller does not need to check all packets coming through,

but can grant an accept for a few seconds at a time.

With the Pox controller implementation ready, the next step is to

run an STS experiment. In order to run such an experiment, first the

experiment details must be configured in an STS configuration. The

full STS experiment configuration for the interactive control flow

can be found in appendix A. The interactive control flow allows for

manual injection of traffic in the simulation. This manual injection

is done through a command-line interface. The STS experiment

configuration seems trivial, as the code is small. However, after

defining the trivial parts of the experiment (e.g. how to start the

controller, which topology to use and where to store the results),

one has to choose a control flow. The control flow determines how

STS examines the controller. There are a few built-in solutions to

STS, such as a Fuzzer and an Interactive controller. One can also

’play-back’ other STS experiments with a certain control flow.

The main issue here, though, is that for complex host interactions

there is no built-in control flow that suits well to advanced scenarios.

In the case of the stateful firewall, there is no control flow that allows

for opening and closing a secure connection. Therefore, generating

results from advanced experiments in STS is non-trivial. It requires

one to write a custom control flow. Due to time constraints with

this research, no such specialised control flow could be written.

As can be viewed in the STS controller configuration, there are

options called hb_logger_class and hb_logger_params. These are of

great importance to this tool. Using the HappensBeforeLogger, or

HB logger, one does not need to adapt the OpenFlow controller

implementation to generate custom logs. The HB logger is injected

into the simulation and generates the output required by the tool

that generates the resulting DyNetKAT model for a simulation. An

example of running an STS experiment with the Fuzzer control flow

with the stateful firewall controller, is given in appendix B.

As can be viewed from the output, the HB logger generates a

JSON log with the events that happen within the simulation. The

explanation of this format is beyond the scope of this research, but

can be found in the SDNRacer paper [6]. The most important events

logged by the HB logger are theHbMessageHandle andHbAsyncFlow-
Expiry. These are the main messages used by the DyNetKAT model

generator.

The DyNetKAT model generation tool takes the HB logger ouput

and generates a DyNetKAT model in JSON format. An example

of the output of the DyNetKAT model generator can be viewed in

appendix B. This example is from a hand-crafted controller that

generates a smaller output for easier viewing.

6 CONCLUSION
In conclusion, this paper outlines the developments in software-

defined networking and the importance of network validation. With

the introduction of software in networking, comes a revolution in

the approach towards network management and control. However,

the introduction of programmability also necessitates the validation

of the underlying software that now drives these networks. In other

words, there is an inherent requirement for verification of network

correctness within the domain of software-defined networking.

While existing domain-specific languages already allow for model

generation, and thus network validation, the process of creating

these models is meticulous and time-intensive. This is because the

models currently need to be hand-crafted. This labour-intensive

process poses a significant challenge for network engineers and

hinders efficient development.

To address this challenge, this paper introduces a novel tool which,

when implemented, streamlines the process of network validation

by eliminating the need for manual model generation. The models

can now be generated by using the already written software to drive

the network along with a simulation configuration. The generated

models can then undergo thorough network analysis to ensure

correctness.

7 DISCUSSION
This section highlights some of the problems encountered during

the research and possible flaws with the methodology.

7.1 Initial design problems
During the development of this tool, many problems were encoun-

tered. The first of which is the complexity of the source code of

the dependencies used. Pox is noticeably a research-oriented tool.

There is limited source code documentation and examples on how to

produce a real-world SDN controller application are lacking. With

some experimentation using Pox and MiniNet to see how the traffic

flows, a controller implementation was built.

Another problem not anticipated is the handling of ARP packets

throughout the network. Address Resolution Protocol (ARP) is a

protocol used to locate MAC addresses by IP addresses. In the OSI

networking model, the different network layers are stacked [3]. This

is because higher layers depend on lower layers. For example, if a

4

Log Parsing in Software-Defined Networking to generate DyNetKAT models TScIT 39, July 7, 2023, Enschede, The Netherlands

host sends an ICMP Echo Request packet to another, it must first

find the MAC address to send the packet to. The resolution of IP

addresses to MAC addresses, is what the ARP protocol is used for.

However, the proper handling of ARP packets without prior expe-

rience in software-defined networking is non-trivial. ARP packets

are usually handled by low-level mechanisms in most network-

ing stacks and one often has no requirement to manually handle

them. The solution to disallowing some packets without a secure

connection, but still allowing traffic to flow as soon as a secure

connection has been made, is to always handle and forward ARP

packets throughout the local network. The local network for this

paper, is the communication between host, switch and external host.

7.2 Software dependencies
The current tool requires a number of software components. Because

of the dependencies between these different components, there is

a struggle when single components receive updates. For example,

STS depends on Pox. When Pox receives an update, STS must first

be adapted in order for the Pox updates to become usable. Moreover,

there is a difference in required Python version between STS and

Pox. Pox runs on a newer version of Python (version 3), while

STS remains on an outdated version (python 2.7). This makes the

integration between these tools complex and debugging even more

so.

In my opinion, the best solution here is to reduce the software

dependency requirement and develop a tool which unites the func-

tions of the currently separate components. However, this is an

enormous task and labour-intensive.

7.3 Maintainability
Because of the use of multiple different components in the open-

source community, there is a risk of projects becoming unmain-

tained. It seems this is already the case for a few of the widely used

SDN controllers: Pox and Floodlight. Moreover, STS is a tool de-

veloped specifically for the SDNRacer paper, not a tool born from

real-world necessity. Due to the lack of maintainers, STS is also no

longer under active development.

Because these tools are built recently and software-defined net-

working is a novel domain, this is no issue for this tool currently.

However, as time passes and software components evolve, this tool

will also become unusable. The ONF is still working on new drafts

for the OpenFlow specification at the time of writing. The current

tool can only support OpenFlow 1.0 because of component depen-

dencies and the complex nature of the project. However, OpenFlow

1.0 will not always stay relevant.

7.4 The simulation configuration requirement
This tool works by simulating the network and building a DyNetKAT

model based on a simulation given. However, this poses a few chal-

lenges. This means the correctness of the network is only as good

as the given simulation. It could be the case that a simulation is

too simple to register any faults with the network, which could be

later discovered when the network is operational. One could argue

here that writing unit tests has the same flaw. A unit test is only as

good as the strictness of the written test and the original code may

contain issues despite passing the test.

Simulations in the SDN Troubleshooting System have to be writ-

ten by hand. However, at the time of writing the website where STS

is explained in detail is not accessible. Moreover, the documentation

in the published repository on GitHub and within the code itself is

lacking. Therefore, writing a simulation with STS is a complex and

arduous procedure that takes quite a time investment. Especially

the requirement for custom control flows to simulate complicated

network functions.

Due to the complicated nature of STS simulation control flows

combined with time constraint, stateful experiments could not be

included in this paper. However, stateless experiments have been ex-

ecuted by adapting the ’Fuzzer’ configuration. Due to the irrelevant

nature of stateless examples compared with the running example,

these are not included in this paper.

The solution here could be hidden in the software validation

world. Static code analysis, or the analysis of the source code itself,

could also be a solution in the software-defined networking domain.

It could be useful to perform analysis on the source code of the

controllers and perform the checks for validation there.

Another issue with the simulation configuration requirement, is

that it is complex to write as STS contains many undocumented

parts. There are few high level description of components within STS

and documentation of code components is also lacking. Therefore,

the use of the tool described in the paper is complex due to the

simulation configuration requirement.

8 FUTURE WORK
With this tool, further research can be done into network validation.

A possible next step could be to automatically validate the LTS

that can be made using the DyNetKAT model. There is also an

automation opportunity for automatically generating an LTS based

on the DyNetKAT model.

Much like the developments in the software validation domain,

perhaps it could be useful to look into static code analysis of con-

trollers within software-defined networks. This could provide a

novel field within software-defined network validation and pave

the way for wide adoption.

ACKNOWLEDGMENTS
I would like to thank Georgiana Caltais for supervising this project.

She has been a great help for the duration of the process and I value

our collaboration. Additionally, I would like to thank Can Olmezoglu

for his assistance with the model generation and for being there as

general support. Finally, I would like to thank Peter Lammich for

chairing the Software Technology and Formal Methods track.

REFERENCES
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: semantic foundations

for networks. en. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, San Diego California USA, (Jan.

2014), 113–126. isbn: 978-1-4503-2544-8. doi: 10.1145/2535838.2535862.

[2] Georgiana Caltais, Hossein Hojjat, Mohammad Mousavi, and Hunkar Can Tunc.

2021. DyNetKAT: An Algebra of Dynamic Networks. arXiv:2102.10035 [cs].

(May 2021). doi: 10.48550/arXiv.2102.10035.

5

https://doi.org/10.1145/2535838.2535862
https://doi.org/10.48550/arXiv.2102.10035

TScIT 39, July 7, 2023, Enschede, The Netherlands Goor, J.G.L.

[3] J.D. Day and H. Zimmermann. 1983. The OSI reference model. Proceedings of
the IEEE, 71, 12, (Dec. 1983), 1334–1340. Conference Name: Proceedings of the

IEEE. doi: 10.1109/PROC.1983.12775.

[4] [SW], Floodlight OpenFlow Controller (OSS) June 20, 2023. url: https://github

.com/floodlight/floodlightRetrieved June 20, 2023 from.

[5] Bryan Ford, Pyda Srisuresh, and Dan Kegel. 2006. Peer-to-peer communication

across network address translators. (Mar. 18, 2006). arXiv: cs/0603074. doi:

10.48550/arXiv.cs/0603074.

[6] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin

Vechev. 2016. SDNRacer: concurrency analysis for software-defined networks.

en. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. ACM, Santa Barbara CA USA, (June 2016),

402–415. isbn: 978-1-4503-4261-2. doi: 10.1145/2908080.2908124.

[7] [SW], Mininet: Rapid Prototyping for Software Defined Networks June 21, 2023.

url: https://github.com/mininet/mininetRetrieved June 21, 2023 from.

[8] Atica Mohammed, Rasha Alsarraj, and Asmaa Albayati. 2020. VERIFICATION

AND VALIDATION OF a SOFTWARE: a REVIEW OF THE LITERATURE. Iraqi
Journal for Computers and Informatics, 46, (June 30, 2020), 40–47. doi: 10.25195

/ijci.v46i1.249.

[9] [SW], ONOS : Open Network Operating System June 16, 2023. url: https://git

hub.com/opennetworkinglab/onosRetrieved June 20, 2023 from.

[10] [SW] N. O. X. Repo, POX June 20, 2023. url: https://github.com/noxrepo/pox

Retrieved June 20, 2023 from.

[11] Timon Sloane. 2013. Software-defined networking: the new norm for networks.

Open Networking Foundation. (May 2, 2013). Retrieved June 20, 2023 from

https://opennetworking.org/sdn-resources/whitepapers/software-defined-ne

tworking-the-new-norm-for-networks/.

[12] [SW], ucb-sts/sts Nov. 16, 2021. url: https://github.com/ucb-sts/stsRetrieved

June 20, 2023 from.

[13] [SW], VerCors Verification Toolset June 21, 2023. url: https://github.com/utwe

nte-fmt/vercorsRetrieved June 21, 2023 from.

6

https://doi.org/10.1109/PROC.1983.12775
https://github.com/floodlight/floodlight
https://github.com/floodlight/floodlight
https://arxiv.org/abs/cs/0603074
https://doi.org/10.48550/arXiv.cs/0603074
https://doi.org/10.1145/2908080.2908124
https://github.com/mininet/mininet
https://doi.org/10.25195/ijci.v46i1.249
https://doi.org/10.25195/ijci.v46i1.249
https://github.com/opennetworkinglab/onos
https://github.com/opennetworkinglab/onos
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox
https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/
https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/
https://github.com/ucb-sts/sts
https://github.com/utwente-fmt/vercors
https://github.com/utwente-fmt/vercors

Log Parsing in Software-Defined Networking to generate DyNetKAT models TScIT 39, July 7, 2023, Enschede, The Netherlands

A SOURCE CODE

A.1 POX Stateful Firewall implementation

import pox . openf low . l i b o p e n f l o w _ 0 1 as o f

import pox . l i b . p a c k e t as pkt

from pox . c o r e import c o r e

from pox . l i b . r e v e n t import EventMix in

from pox . openf low import P a c k e t I n , Connect ionUp

l o g = c o r e . g e t L o g g e r ()

c l a s s F i r e w a l l e d L e a r n i n g S w i t c h (EventMix in) :

def _ _ i n i t _ _ (s e l f , c o n n e c t i o n) :

s e l f . m a c _ t a b l e = { }

s e l f . open_secure_conns = { }

s e l f . c o n n e c t i o n = c o n n e c t i o n

s e l f . c o n n e c t i o n . a d d L i s t e n e r s (s e l f)

s e l f . i d l e _ t i m e o u t = 10

s e l f . h a r d _ t i m e o u t = 30

s e l f . m a c _ c l e a r _ t i m e o u t = 60

def c l e a r _ m a c _ t a b l e (s e l f) :

s e l f . m a c _ t a b l e . c l e a r ()

def s c h e d u l e _ c l e a r _ m a c _ t a b l e (s e l f) :

s e l f . c l e a r _ m a c _ t a b l e ()

c o r e . c a l l D e l a y e d (s e l f . m a c _ c l e a r _ t i m e o u t , s e l f . s c h e d u l e _ c l e a r _ m a c _ t a b l e)

def _ h a n d l e _ P a c k e t I n (s e l f , eve n t) :

p a c k e t = even t . p a r s e d

def f l o o d () :

msg = o f . o f p _ p a c k e t _ o u t ()

msg . a c t i o n s . append (o f . o f p _ a c t i o n _ o u t p u t (p o r t = o f . OFPP_FLOOD))

msg . d a t a = ev en t . d a t a

msg . i n _ p o r t = ev en t . p o r t

s e l f . c o n n e c t i o n . send (msg)

def drop () :

msg = o f . ofp_flow_mod ()

msg . match = o f . ofp_match . f rom_packe t (p a c k e t)

msg . i d l e _ t i m e o u t = s e l f . i d l e _ t i m e o u t

msg . h a r d _ t i m e o u t = s e l f . h a r d _ t i m e o u t

msg . b u f f e r _ i d = ev en t . o fp . b u f f e r _ i d

s e l f . c o n n e c t i o n . send (msg)

def a c c e p t () :

7

TScIT 39, July 7, 2023, Enschede, The Netherlands Goor, J.G.L.

msg = o f . ofp_flow_mod ()

msg . match = o f . ofp_match . f rom_packe t (p a c k e t)

msg . i d l e _ t i m e o u t = s e l f . i d l e _ t i m e o u t

msg . h a r d _ t i m e o u t = s e l f . h a r d _ t i m e o u t

msg . b u f f e r _ i d = ev en t . o fp . b u f f e r _ i d

msg . d a t a = ev en t . o fp

i f p a c k e t . d s t not in s e l f . m a c _ t a b l e :

f l o o d ()

return

p o r t = s e l f . m a c _ t a b l e [p a c k e t . d s t]

i f p o r t == e ven t . p o r t :

drop ()

msg . a c t i o n s . append (o f . o f p _ a c t i o n _ o u t p u t (p o r t = p o r t))

Always a c c e p t ARP .
i f p a c k e t . type == p a c k e t . ARP_TYPE :

f l o o d ()

return

C r e a t e a match o b j e c t s o we can e x t r a c t d e t a i l s from th e p a c k e t .
match = o f . ofp_match . f rom_packe t (p a c k e t)

s e l f . open_secure_conns . s e t d e f a u l t (p a c k e t . s r c , [])

s e l f . open_secure_conns . s e t d e f a u l t (p a c k e t . ds t , [])

Check i f t h i s i s an I P p a c k e t w i th TCP
i f match . d l _ t y p e == 0 x800 and match . nw_proto == 0 x6 :

P o r t 6000 op en s t h e s e c u r e c o n n e c t i o n .
i f match . t p _ d s t == 6 0 0 0 :

s e l f . open_secure_conns [p a c k e t . s r c] . append (p a c k e t . d s t)

s e l f . open_secure_conns [p a c k e t . d s t] . append (p a c k e t . s r c)

l o g . i n f o ("%s ␣ opened ␣ a ␣ s e c u r e ␣ c o n n e c t i o n . " % (p a c k e t . s r c))

7000 c l o s e s i t .
e l i f match . t p _ d s t == 7 0 0 0 :

s e l f . open_secure_conns [p a c k e t . s r c] . remove (p a c k e t . d s t)

s e l f . open_secure_conns [p a c k e t . d s t] . remove (p a c k e t . s r c)

l o g . i n f o ("%s ␣ c l o s e d ␣ the ␣ s e c u r e ␣ c o n n e c t i o n . " % (p a c k e t . d s t))

Check i f t h e d e s t i n a t i o n i s an a l l ow e d d e s t i n a t i o n .
a l l o w e d _ d e s t i n a t i o n s = s e l f . open_secure_conns [p a c k e t . s r c]

i f p a c k e t . d s t in a l l o w e d _ d e s t i n a t i o n s :

a c c e p t ()

e l se :

drop ()

c l a s s F i r e w a l l C o n t r o l l e r (EventMix in) :

def _ _ i n i t _ _ (s e l f , t r a n s p a r e n t) :

s e l f . l i s t e n T o (c o r e . openf low)

8

Log Parsing in Software-Defined Networking to generate DyNetKAT models TScIT 39, July 7, 2023, Enschede, The Netherlands

s e l f . t r a n s p a r e n t = t r a n s p a r e n t

c o r e . openf low . a d d L i s t e n e r s (s e l f , " a l l ")

def _handle_Connect ionUp (s e l f , ev en t) :

D e l e t e a l l mods
eve n t . c o n n e c t i o n . send (o f . ofp_f low_mod (command= o f . OFPFC_DELETE))

C r e a t e a l e a r n i n g f i r e w a l l e d sw i t c h from th e c o n n e c t i o n .
F i r e w a l l e d L e a r n i n g S w i t c h (even t . c o n n e c t i o n)

def l aunch (t r a n s p a r e n t = F a l s e) :

c o r e . r e g i s t e r N e w (F i r e w a l l C o n t r o l l e r , t r a n s p a r e n t)

A.2 STS experiment configuration

from c o n f i g . e x p e r i m e n t _ c o n f i g _ l i b import C o n t r o l l e r C o n f i g

from s t s . t o p o l o g y import S t a r T o p o l o g y

from s t s . c o n t r o l _ f l o w . i n t e r a c t i v e import I n t e r a c t i v e

from s t s . i n p u t _ t r a c e s . i n p u t _ l o g g e r import I n p u t L o g g e r

from s t s . s i m u l a t i o n _ s t a t e import S i m u l a t i o n C o n f i g

from s t s . h a p p e n s b e f o r e . h b _ l o g g e r import HappensBeforeLogger

Use POX as our c o n t r o l l e r
s t a r t _ c m d = (' ' ' . / pox . py ' ' '

' ' ' op en f l ow . o f _ 0 1 −− a d d r e s s = _ _add r e s s _ _ −− p o r t = __po r t _ _ ' ' '
' ' ' e y e d e v e l o p . s t a t e f u l _ f i r e w a l l ' ' ')

c o n t r o l l e r s = [C o n t r o l l e r C o n f i g (s t a r t_cmd , cwd= " pox / " , a d d r e s s = " 0 . 0 . 0 . 0 ")]

t o p o l o g y _ c l a s s = S t a r T o p o l o g y

topo logy_params = " num_hosts =2 "

r e s u l t s _ d i r = " e x p e r i m e n t s / e y e d e v e l o p _ s t a t e f u l _ f i r e w a l l "

s i m u l a t i o n _ c o n f i g = S i m u l a t i o n C o n f i g (c o n t r o l l e r _ c o n f i g s = c o n t r o l l e r s ,

t o p o l o g y _ c l a s s = t o p o l o g y _ c l a s s ,

topo logy_params = topology_params ,

h b _ l o g g e r _ c l a s s = HappensBeforeLogger ,

hb_ logger_params = r e s u l t s _ d i r)

c o n t r o l _ f l o w = I n t e r a c t i v e (s i m u l a t i o n _ c o n f i g ,

i n p u t _ l o g g e r = I n p u t L o g g e r ())

B GENERATED FILES

B.1 HappensBefore logging output

{ " e i d " : 1 , " type " : " HbMessageSend " , " mid_in " : 1 , " mid_out " : [2] , " msg_type " : " OFPT_HELLO " , "

dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " msg " : "AQAACAAAAAE= " }

{ " e i d " : 4 , " type " : " HbMessageHandle " , " p i d _ i n " : n u l l , " p i d _ o u t " : [] , " mid_in " : 3 , " mid_out " :

[] , " msg_type " : " OFPT_HELLO " , " o p e r a t i o n s " : [" { \ " e i d \ " : 5 , \ " type \ " : \ " TraceSwitchNoOp \ " ,

\ " dp id \ " : 1 , \ " t \ " : \ " 1 6 8 8 2 0 8 8 8 0 . 3 1 2 5 6 5 \ " } "] , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " ,

6 6 3 3] , " p a c k e t " : n u l l , " i n _ p o r t " : " None " , " msg " : "AQAACAAAAAE= " }

9

TScIT 39, July 7, 2023, Enschede, The Netherlands Goor, J.G.L.

{ " e i d " : 1 0 , " type " : " HbMessageHandle " , " p i d _ i n " : n u l l , " p i d _ o u t " : [] , " mid_in " : 4 , " mid_out " :

[5] , " msg_type " : " OFPT_FEATURES_REQUEST " , " o p e r a t i o n s " : [" { \ " e i d \ " : 1 1 , \ " type \ " : \ "

TraceSwitchNoOp \ " , \ " dp id \ " : 1 , \ " t \ " : \ " 1 6 8 8 2 0 8 8 8 0 . 4 1 3 4 7 \ " } "] , " dp id " : 1 , " c o n t r o l l e r _ i d

" : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " p a c k e t " : n u l l , " i n _ p o r t " : " None " , " msg " : "AQUACAAAAAM= " }

{ " e i d " : 1 3 , " type " : " HbMessageSend " , " mid_in " : 5 , " mid_out " : [6] , " msg_type " : "

OFPT_FEATURES_REPLY " , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " msg " : "

AQYAgAAAAAMAAAAAAAAAAQAAAGQBAAAAAAAA7wAAB/ 8

AAQAAAAABAWV0aDEAAgAAAAABAmV0aDIAA

= " }

{ " e i d " : 2 0 , " type " : " HbMessageHandle " , " p i d _ i n " : n u l l , " p i d _ o u t " : [] , " mid_in " : 7 , " mid_out " :

[] , " msg_type " : " OFPT_SET_CONFIG " , " o p e r a t i o n s " : [" { \ " e i d \ " : 2 1 , \ " type \ " : \ "

TraceSwitchNoOp \ " , \ " dp id \ " : 1 , \ " t \ " : \ " 1 6 8 8 2 0 8 8 8 0 . 5 1 4 5 8 6 \ " } "] , " dp id " : 1 , " c o n t r o l l e r _ i d

" : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " p a c k e t " : n u l l , " i n _ p o r t " : " None " , " msg " : "AQkADAAAAAUAAACA" }

{ " e i d " : 2 4 , " type " : " HbMessageHandle " , " p i d _ i n " : n u l l , " p i d _ o u t " : [] , " mid_in " : 8 , " mid_out " :

[] , " msg_type " : "OFPT_FLOW_MOD " , " o p e r a t i o n s " : [" { \ " e i d \ " : 2 6 , \ " type \ " : \ "

T r a c e S w i t c h F l o w T a b l e W r i t e \ " , \ " dp id \ " : 1 , \ " f l o w _ t a b l e \ " : [] , \ " flow_mod \ " : \ "

AQ4ASAAAAAcAEAAfAAAwAAAACAAP

/ / / / / / / wAA\ " , \ " t \ " : \ " 1 6 8 8 2 0 8 8 8 0 . 5 1 5 2 1 \ " } "] , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " ,

6 6 3 3] , " p a c k e t " : n u l l , " i n _ p o r t " : " None " , " msg " : "

AQ4ASAAAAAcAEAAfAAAwAAAACAAP

/ / / / / / / wAA" }

{ " e i d " : 2 9 , " type " : " HbMessageHandle " , " p i d _ i n " : n u l l , " p i d _ o u t " : [] , " mid_in " : 9 , " mid_out " :

[1 0] , " msg_type " : " OFPT_BARRIER_REQUEST " , " o p e r a t i o n s " : [" { \ " e i d \ " : 3 0 , \ " type \ " : \ "

T r a c e S w i t c h B a r r i e r \ " , \ " dp id \ " : 1 , \ " t \ " : \ " 1 6 8 8 2 0 8 8 8 0 . 5 1 5 5 3 1 \ " } "] , " dp id " : 1 , "

c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " p a c k e t " : n u l l , " i n _ p o r t " : " None " , " msg " : "

ARIACAAAAAk = " }

{ " e i d " : 3 2 , " type " : " HbMessageSend " , " mid_in " : 1 0 , " mid_out " : [1 1] , " msg_type " : "

OFPT_BARRIER_REPLY " , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " msg " : "ARMACAAAAAk

= " }

{ " e i d " : 3 5 , " type " : " H b C o n t r o l l e r H a n d l e " , " mid_in " : 1 1 , " mid_out " : [1 2] }

{ " e i d " : 4 0 , " type " : " H b C o n t r o l l e r S e n d " , " mid_in " : 1 2 , " mid_out " : [1 3] }

{ " e i d " : 3 8 , " type " : " HbMessageHandle " , " p i d _ i n " : n u l l , " p i d _ o u t " : [] , " mid_in " : 1 3 , " mid_out " :

[] , " msg_type " : "OFPT_FLOW_MOD " , " o p e r a t i o n s " : [" { \ " e i d \ " : 4 1 , \ " type \ " : \ "

T r a c e S w i t c h F l o w T a b l e W r i t e \ " , \ " dp id \ " : 1 , \ " f l o w _ t a b l e \ " : [] , \ " flow_mod \ " : \ "

AQ4ASAAAAAsAEAAfAAAwAAAACAAP

/ / / / / / / wAA\ " , \ " t \ " : \ " 1 6 8 8 2 0 8 8 8 0 . 6 1 7 2 0 2 \ " } "] , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " ,

6 6 3 3] , " p a c k e t " : n u l l , " i n _ p o r t " : " None " , " msg " : "

AQ4ASAAAAAsAEAAfAAAwAAAACAAP

/ / / / / / / wAA" }

{ " e i d " : 4 4 , " type " : " HbHostSend " , " p i d _ i n " : 1 4 , " p i d _ o u t " : [1 5] , " h id " : 1 , " p a c k e t " : "

EjRWeAECEjRWeAEBCABFAAAcBfAAAEABe / h7ewEBe3sBAggArFNLrAAA " , " o u t _ p o r t " :

" 1 2 : 3 4 : 5 6 : 7 8 : 0 1 : 0 1 " }

{ " e i d " : 4 6 , " type " : " HbPacketHandle " , " p i d _ i n " : 1 5 , " p i d _ o u t " : [1 6] , " mid_out " : [1 7] , "

o p e r a t i o n s " : [" { \ " e i d \ " : 4 9 , \ " type \ " : \ " TraceSwi t chF lowTab leRead \ " , \ " dp id \ " : 1 , \ " p a c k e t

\ " : \ " EjRWeAECEjRWeAEBCABFAAAcBfAAAEABe / h7ewEBe3sBAggArFNLrAAA \ " , \ " i n _ p o r t \ " : 1 , \ "

f l o w _ t a b l e \ " : [] , \ " flow_mod \ " : n u l l , \ " t o u c h e d _ f l o w _ b y t e s \ " : n u l l , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 8 4 . 2 3 4 9 0 6 \ " } " , " { \ " e i d \ " : 5 0 , \ " type \ " : \ " T r a c e S w i t c h B u f f e r P u t \ " , \ " dp id \ " : 1 ,

\ " p a c k e t \ " : \ " EjRWeAECEjRWeAEBCABFAAAcBfAAAEABe / h7ewEBe3sBAggArFNLrAAA \ " , \ " i n _ p o r t \ " : 1 ,

\ " b u f f e r _ i d \ " : 1 , \ " t \ " : \ " 1 6 8 8 2 0 8 8 8 4 . 2 3 4 9 3 5 \ " } "] , " dp id " : 1 , " p a c k e t " : "

EjRWeAECEjRWeAEBCABFAAAcBfAAAEABe / h7ewEBe3sBAggArFNLrAAA " , " i n _ p o r t " : 1 }

10

Log Parsing in Software-Defined Networking to generate DyNetKAT models TScIT 39, July 7, 2023, Enschede, The Netherlands

{ " e i d " : 5 2 , " type " : " HbMessageSend " , " mid_in " : 1 7 , " mid_out " : [1 8] , " msg_type " : "

OFPT_PACKET_IN " , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " msg " : "

AQoAPAAAAAEAAAABADwAAQAAEjRWeAECEjRWeAEBCABFAAAcBfAAAEABe/ h7ewEBe3sBAggArFNLrAAA " }

{ " e i d " : 5 5 , " type " : " H b C o n t r o l l e r H a n d l e " , " mid_in " : 1 8 , " mid_out " : [1 9] }

{ " e i d " : 6 0 , " type " : " H b C o n t r o l l e r S e n d " , " mid_in " : 1 9 , " mid_out " : [2 0] }

{ " e i d " : 5 8 , " type " : " HbMessageHandle " , " p i d _ i n " : 1 6 , " p i d _ o u t " : [] , " mid_in " : 2 0 , " mid_out " :

[] , " msg_type " : "OFPT_FLOW_MOD " , " o p e r a t i o n s " : [" { \ " e i d \ " : 6 1 , \ " type \ " : \ "

T r a c e S w i t c h F l o w T a b l e W r i t e \ " , \ " dp id \ " : 1 , \ " f l o w _ t a b l e \ " : [] , \ " flow_mod \ " : \ "

AQ4ASAAAAA0AAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ " , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 8 4 . 3 3 6 8 9 3 \ " } " , " { \ " e i d \ " : 6 2 , \ " type \ " : \ " T r a c e S w i t c h B u f f e r G e t \ " , \ " dp id \ " : 1 ,

\ " p a c k e t \ " : \ " EjRWeAECEjRWeAEBCABFAAAcBfAAAEABe / h7ewEBe3sBAggArFNLrAAA \ " , \ " i n _ p o r t \ " : 1 ,

\ " b u f f e r _ i d \ " : 1 , \ " t \ " : \ " 1 6 8 8 2 0 8 8 8 4 . 3 3 7 0 2 8 \ " } " , " { \ " e i d \ " : 6 3 , \ " type \ " : \ "

TraceSwi t chPacke tDrop \ " , \ " dp id \ " : 1 , \ " p a c k e t \ " : \ " EjRWeAECEjRWeAEBCABFAAAcBfAAAEABe /

h7ewEBe3sBAggArFNLrAAA \ " , \ " i n _ p o r t \ " : 1 , \ " f l o w _ t a b l e \ " : [\ "

AQ4ASAAAAAMAAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ "] , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 8 4 . 3 3 7 0 5 1 \ " } "] , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " p a c k e t " : "

EjRWeAECEjRWeAEBCABFAAAcBfAAAEABe / h7ewEBe3sBAggArFNLrAAA " , " i n _ p o r t " : 1 , " msg " : "

AQ4ASAAAAA0AAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA" }

{ " e i d " : 6 6 , " type " : " HbHostSend " , " p i d _ i n " : 2 1 , " p i d _ o u t " : [2 2] , " h id " : 1 , " p a c k e t " : "

EjRWeAECEjRWeAEBCABFAAAcBfIAAEABe / Z7ewEBe3sBAggAKnXNiQAB " , " o u t _ p o r t " :

" 1 2 : 3 4 : 5 6 : 7 8 : 0 1 : 0 1 " }

{ " e i d " : 7 2 , " type " : " HbAsyncFlowExpiry " , " mid_in " : n u l l , " mid_out " : [] , " o p e r a t i o n s " : [" { \ " e i d

\ " : 7 3 , \ " type \ " : \ " T r a c e S w i t c h F l o w T a b l e E n t r y E x p i r y \ " , \ " dp id \ " : 1 , \ " f l o w _ t a b l e \ " : [\ "

AQ4ASAAAAAUAAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ "] , \ " flow_mod \ " : \ "

AQ4ASAAAAAAAAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ " , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 9 4 . 8 6 5 7 8 9 \ " , \ " d u r a t i o n _ s e c \ " : 1 0 , \ " d u r a t i o n _ n s e c \ " : 5 2 8 7 2 2 0 4 7 , \ " r e a s o n \ " : \ "

OFPRR_IDLE_TIMEOUT \ " } "] , " dp id " : 1 }

{ " e i d " : 6 8 , " type " : " HbPacketHandle " , " p i d _ i n " : 2 2 , " p i d _ o u t " : [2 3] , " mid_out " : [2 4] , "

o p e r a t i o n s " : [" { \ " e i d \ " : 7 5 , \ " type \ " : \ " TraceSwi t chF lowTab leRead \ " , \ " dp id \ " : 1 , \ " p a c k e t

\ " : \ " EjRWeAECEjRWeAEBCABFAAAcBfIAAEABe / Z7ewEBe3sBAggAKnXNiQAB \ " , \ " i n _ p o r t \ " : 1 , \ "

f l o w _ t a b l e \ " : [] , \ " flow_mod \ " : n u l l , \ " t o u c h e d _ f l o w _ b y t e s \ " : n u l l , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 9 4 . 8 6 6 2 2 2 \ " } " , " { \ " e i d \ " : 7 6 , \ " type \ " : \ " T r a c e S w i t c h B u f f e r P u t \ " , \ " dp id \ " : 1 ,

\ " p a c k e t \ " : \ " EjRWeAECEjRWeAEBCABFAAAcBfIAAEABe / Z7ewEBe3sBAggAKnXNiQAB \ " , \ " i n _ p o r t \ " : 1 ,

\ " b u f f e r _ i d \ " : 1 , \ " t \ " : \ " 1 6 8 8 2 0 8 8 9 4 . 8 6 6 2 4 4 \ " } "] , " dp id " : 1 , " p a c k e t " : "

EjRWeAECEjRWeAEBCABFAAAcBfIAAEABe / Z7ewEBe3sBAggAKnXNiQAB " , " i n _ p o r t " : 1 }

{ " e i d " : 7 8 , " type " : " HbMessageSend " , " mid_in " : 2 4 , " mid_out " : [2 5] , " msg_type " : "

OFPT_PACKET_IN " , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " msg " : "

AQoAPAAAAAIAAAABADwAAQAAEjRWeAECEjRWeAEBCABFAAAcBfIAAEABe/ Z7ewEBe3sBAggAKnXNiQAB " }

{ " e i d " : 8 1 , " type " : " H b C o n t r o l l e r H a n d l e " , " mid_in " : 2 5 , " mid_out " : [2 6] }

{ " e i d " : 8 6 , " type " : " H b C o n t r o l l e r S e n d " , " mid_in " : 2 6 , " mid_out " : [2 7] }

11

TScIT 39, July 7, 2023, Enschede, The Netherlands Goor, J.G.L.

{ " e i d " : 8 4 , " type " : " HbMessageHandle " , " p i d _ i n " : 2 3 , " p i d _ o u t " : [] , " mid_in " : 2 7 , " mid_out " :

[] , " msg_type " : "OFPT_FLOW_MOD " , " o p e r a t i o n s " : [" { \ " e i d \ " : 8 7 , \ " type \ " : \ "

T r a c e S w i t c h F l o w T a b l e W r i t e \ " , \ " dp id \ " : 1 , \ " f l o w _ t a b l e \ " : [] , \ " flow_mod \ " : \ "

AQ4ASAAAAA8AAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ " , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 9 4 . 8 6 8 6 6 \ " } " , " { \ " e i d \ " : 8 8 , \ " type \ " : \ " T r a c e S w i t c h B u f f e r G e t \ " , \ " dp id \ " : 1 , \ "

p a c k e t \ " : \ " EjRWeAECEjRWeAEBCABFAAAcBfIAAEABe / Z7ewEBe3sBAggAKnXNiQAB \ " , \ " i n _ p o r t \ " : 1 , \ "

b u f f e r _ i d \ " : 1 , \ " t \ " : \ " 1 6 8 8 2 0 8 8 9 4 . 8 6 8 7 6 6 \ " } " , " { \ " e i d \ " : 8 9 , \ " type \ " : \ "

TraceSwi t chPacke tDrop \ " , \ " dp id \ " : 1 , \ " p a c k e t \ " : \ " EjRWeAECEjRWeAEBCABFAAAcBfIAAEABe /

Z7ewEBe3sBAggAKnXNiQAB \ " , \ " i n _ p o r t \ " : 1 , \ " f l o w _ t a b l e \ " : [\ "

AQ4ASAAAAAcAAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ "] , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 9 4 . 8 6 8 7 8 8 \ " } "] , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " p a c k e t " : "

EjRWeAECEjRWeAEBCABFAAAcBfIAAEABe / Z7ewEBe3sBAggAKnXNiQAB " , " i n _ p o r t " : 1 , " msg " : "

AQ4ASAAAAA8AAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA" }

{ " e i d " : 9 2 , " type " : " HbHostSend " , " p i d _ i n " : 2 8 , " p i d _ o u t " : [2 9] , " h id " : 2 , " p a c k e t " : "

EjRWeAEBEjRWeAECCABFAAAcBfQAAEABe / R7ewECe3sBAQgApbBSTQAC " , " o u t _ p o r t " :

" 1 2 : 3 4 : 5 6 : 7 8 : 0 1 : 0 2 " }

{ " e i d " : 9 4 , " type " : " HbPacketHandle " , " p i d _ i n " : 2 9 , " p i d _ o u t " : [3 0] , " mid_out " : [3 1] , "

o p e r a t i o n s " : [" { \ " e i d \ " : 9 7 , \ " type \ " : \ " TraceSwi t chF lowTab leRead \ " , \ " dp id \ " : 1 , \ " p a c k e t

\ " : \ " EjRWeAEBEjRWeAECCABFAAAcBfQAAEABe / R7ewECe3sBAQgApbBSTQAC \ " , \ " i n _ p o r t \ " : 2 , \ "

f l o w _ t a b l e \ " : [\ " AQ4ASAAAAAkAAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ "] , \ " flow_mod \ " : n u l l , \ "

t o u c h e d _ f l o w _ b y t e s \ " : n u l l , \ " t \ " : \ " 1 6 8 8 2 0 8 8 9 5 . 0 6 8 1 \ " } " , " { \ " e i d \ " : 9 8 , \ " type \ " : \ "

T r a c e S w i t c h B u f f e r P u t \ " , \ " dp id \ " : 1 , \ " p a c k e t \ " : \ " EjRWeAEBEjRWeAECCABFAAAcBfQAAEABe /

R7ewECe3sBAQgApbBSTQAC \ " , \ " i n _ p o r t \ " : 2 , \ " b u f f e r _ i d \ " : 1 , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 9 5 . 0 6 8 2 5 5 \ " } "] , " dp id " : 1 , " p a c k e t " : " EjRWeAEBEjRWeAECCABFAAAcBfQAAEABe /

R7ewECe3sBAQgApbBSTQAC " , " i n _ p o r t " : 2 }

{ " e i d " : 1 0 0 , " type " : " HbMessageSend " , " mid_in " : 3 1 , " mid_out " : [3 2] , " msg_type " : "

OFPT_PACKET_IN " , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " msg " : "

AQoAPAAAAAMAAAABADwAAgAAEjRWeAEBEjRWeAECCABFAAAcBfQAAEABe/ R7ewECe3sBAQgApbBSTQAC " }

{ " e i d " : 1 0 3 , " type " : " H b C o n t r o l l e r H a n d l e " , " mid_in " : 3 2 , " mid_out " : [3 3] }

{ " e i d " : 1 0 8 , " type " : " H b C o n t r o l l e r S e n d " , " mid_in " : 3 3 , " mid_out " : [3 4] }

12

Log Parsing in Software-Defined Networking to generate DyNetKAT models TScIT 39, July 7, 2023, Enschede, The Netherlands

{ " e i d " : 1 0 6 , " type " : " HbMessageHandle " , " p i d _ i n " : 3 0 , " p i d _ o u t " : [] , " mid_in " : 3 4 , " mid_out " :

[] , " msg_type " : "OFPT_FLOW_MOD " , " o p e r a t i o n s " : [" { \ " e i d \ " : 1 0 9 , \ " type \ " : \ "

T r a c e S w i t c h F l o w T a b l e W r i t e \ " , \ " dp id \ " : 1 , \ " f l o w _ t a b l e \ " : [\ "

AQ4ASAAAAAsAAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ "] , \ " flow_mod \ " : \ "

AQ4ASAAAABEAAAABAAASNFZ4AQISNFZ4AQH / /

wAACAAAAQAAe3sBAnt7AQEACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ " , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 9 5 . 0 7 0 8 9 2 \ " } " , " { \ " e i d \ " : 1 1 0 , \ " type \ " : \ " T r a c e S w i t c h B u f f e r G e t \ " , \ " dp id \ " : 1 ,

\ " p a c k e t \ " : \ " EjRWeAEBEjRWeAECCABFAAAcBfQAAEABe / R7ewECe3sBAQgApbBSTQAC \ " , \ " i n _ p o r t \ " : 2 ,

\ " b u f f e r _ i d \ " : 1 , \ " t \ " : \ " 1 6 8 8 2 0 8 8 9 5 . 0 7 1 0 7 7 \ " } " , " { \ " e i d \ " : 1 1 1 , \ " type \ " : \ "

TraceSwi t chPacke tDrop \ " , \ " dp id \ " : 1 , \ " p a c k e t \ " : \ " EjRWeAEBEjRWeAECCABFAAAcBfQAAEABe /

R7ewECe3sBAQgApbBSTQAC \ " , \ " i n _ p o r t \ " : 2 , \ " f l o w _ t a b l e \ " : [\ "

AQ4ASAAAAA0AAAABAAASNFZ4AQESNFZ4AQL / /

wAACAAAAQAAe3sBAXt7AQIACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ " , \ "

AQ4ASAAAAA8AAAABAAASNFZ4AQISNFZ4AQH / /

wAACAAAAQAAe3sBAnt7AQEACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA\ "] , \ " t \ " :

\ " 1 6 8 8 2 0 8 8 9 5 . 0 7 1 0 9 7 \ " } "] , " dp id " : 1 , " c o n t r o l l e r _ i d " : [" 1 2 7 . 0 . 0 . 1 " , 6 6 3 3] , " p a c k e t " : "

EjRWeAEBEjRWeAECCABFAAAcBfQAAEABe / R7ewECe3sBAQgApbBSTQAC " , " i n _ p o r t " : 2 , " msg " : "

AQ4ASAAAABEAAAABAAASNFZ4AQISNFZ4AQH / /

wAACAAAAQAAe3sBAnt7AQEACAAAAAAAAAAAAAAAAAAKAB6AAAAAAAH / /wAA" }

B.2 DyNetKAT model

{

" c h a n n e l s " : [

" e s c a l a t e S w i t c h 2 " ,

" e s c a l a t e S w i t c h 1 "

] ,

" program " : " C o n t r o l l e r 6 6 3 3 | | S w i t c h 1 I t e r a t i o n 0 | | S w i t c h 2 I t e r a t i o n 0 " ,

" r e c u r s i v e _ v a r i a b l e s " : {

" C o n t r o l l e r 6 6 3 3 " : " (e s c a l a t e S w i t c h 1 ! 1 ; C o n t r o l l e r 6 6 3 3) +o (e s c a l a t e S w i t c h 2 ! 1 ;

C o n t r o l l e r 6 6 3 3) " ,

" S w i t c h 1 I t e r a t i o n 0 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 .

_nw_src = 33651579 . _ d l _ v l a n = 65535 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8)) \ " ; S w i t c h 1 I t e r a t i o n 0 +o (e s c a l a t e S w i t c h 1 ? 1 ;

S w i t c h 1 I t e r a t i o n 1) " ,

" S w i t c h 1 I t e r a t i o n 1 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 .

_nw_src = 33651579 . _ d l _ v l a n = 65535 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33651579 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2)) \ " ;

S w i t c h 1 I t e r a t i o n 1 +o (e s c a l a t e S w i t c h 1 ? 1 ; S w i t c h 1 I t e r a t i o n 2) " ,

" S w i t c h 1 I t e r a t i o n 2 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 .

_nw_src = 33651579 . _ d l _ v l a n = 65535 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33651579 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (

_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2)) \ " ; S w i t c h 1 I t e r a t i o n 2 +o (

e s c a l a t e S w i t c h 1 ? 1 ; S w i t c h 1 I t e r a t i o n 3) " ,

13

TScIT 39, July 7, 2023, Enschede, The Netherlands Goor, J.G.L.

" S w i t c h 1 I t e r a t i o n 3 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 .

_nw_src = 33651579 . _ d l _ v l a n = 65535 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33651579 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (

_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e = 2048 .

_ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 .

_nw_dst = 33717115 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 1)) \ " ;

S w i t c h 1 I t e r a t i o n 3 +o (e s c a l a t e S w i t c h 1 ? 1 ; S w i t c h 1 I t e r a t i o n 4) " ,

" S w i t c h 1 I t e r a t i o n 4 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 .

_nw_src = 33651579 . _ d l _ v l a n = 65535 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33651579 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (

_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e = 2048 .

_ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 .

_nw_dst = 33717115 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 1) + (_nw_proto =

1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n =

65535 . _ i n _ p o r t = 2 . _nw_dst = 33717115 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t

<− 1)) \ " ; S w i t c h 1 I t e r a t i o n 4 +o (e s c a l a t e S w i t c h 1 ? 1 ; S w i t c h 1 I t e r a t i o n 5) " ,

" S w i t c h 1 I t e r a t i o n 5 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 .

_nw_src = 33651579 . _ d l _ v l a n = 65535 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33651579 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (

_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e = 2048 .

_ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 .

_nw_dst = 33717115 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 1) + (_nw_proto =

1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n =

65535 . _ i n _ p o r t = 2 . _nw_dst = 33717115 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t

<− 1) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src =

33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 . _nw_dst = 33717115 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8 . p o r t <− 1)) \ " ; S w i t c h 1 I t e r a t i o n 5 +o (

e s c a l a t e S w i t c h 1 ? 1 ; S w i t c h 1 I t e r a t i o n 6) " ,

14

Log Parsing in Software-Defined Networking to generate DyNetKAT models TScIT 39, July 7, 2023, Enschede, The Netherlands

" S w i t c h 1 I t e r a t i o n 6 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 .

_nw_src = 33651579 . _ d l _ v l a n = 65535 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33651579 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (

_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e = 2048 .

_ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 .

_nw_dst = 33717115 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 1) + (_nw_proto =

1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n =

65535 . _ i n _ p o r t = 2 . _nw_dst = 33717115 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t

<− 1) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src =

33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 . _nw_dst = 33717115 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8 . p o r t <− 1) + (_nw_proto = 1 . _ d l _ t y p e = 2048 .

_ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 .

_nw_dst = 33651579 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . p o r t <− 2)) \ " ;

S w i t c h 1 I t e r a t i o n 6 +o (e s c a l a t e S w i t c h 1 ? 1 ; S w i t c h 1 I t e r a t i o n 7) " ,

" S w i t c h 1 I t e r a t i o n 7 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 .

_nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33651579 . dp id = 1 .

_ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e =

2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1

. _nw_dst = 33651579 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 2

) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579

. _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 . _nw_dst = 33717115 . dp id = 1 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 1) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 . _nw_dst =

33717115 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 1) + (_nw_proto = 1 .

_ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 .

_ i n _ p o r t = 2 . _nw_dst = 33717115 . dp id = 1 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8

. p o r t <− 1) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src

= 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33651579 . dp id = 1 .

_ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . p o r t <− 2)) \ " ; S w i t c h 1 I t e r a t i o n 7 " ,

" S w i t c h 2 I t e r a t i o n 0 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 .

_nw_src = 33717115 . _ d l _ v l a n = 65535 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8)) \ " ; S w i t c h 2 I t e r a t i o n 0 +o (e s c a l a t e S w i t c h 2 ? 1 ;

S w i t c h 2 I t e r a t i o n 1) " ,

" S w i t c h 2 I t e r a t i o n 1 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 .

_nw_src = 33717115 . _ d l _ v l a n = 65535 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2)) \ " ; S w i t c h 2 I t e r a t i o n 1 +

o (e s c a l a t e S w i t c h 2 ? 1 ; S w i t c h 2 I t e r a t i o n 2) " ,

" S w i t c h 2 I t e r a t i o n 2 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 .

_nw_src = 33717115 . _ d l _ v l a n = 65535 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 .

_ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 .

_ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2)

) \ " ; S w i t c h 2 I t e r a t i o n 2 +o (e s c a l a t e S w i t c h 2 ? 1 ; S w i t c h 2 I t e r a t i o n 3) " ,

15

TScIT 39, July 7, 2023, Enschede, The Netherlands Goor, J.G.L.

" S w i t c h 2 I t e r a t i o n 3 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 .

_nw_src = 33717115 . _ d l _ v l a n = 65535 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 .

_ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 .

_ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2)

+ (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2)) \ " ; S w i t c h 2 I t e r a t i o n 3 +o (e s c a l a t e S w i t c h 2 ? 1 ;

S w i t c h 2 I t e r a t i o n 4) " ,

" S w i t c h 2 I t e r a t i o n 4 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 .

_nw_src = 33717115 . _ d l _ v l a n = 65535 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 .

_ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 .

_ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2)

+ (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 . _nw_dst =

33651579 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 1)) \ " ;

S w i t c h 2 I t e r a t i o n 4 +o (e s c a l a t e S w i t c h 2 ? 1 ; S w i t c h 2 I t e r a t i o n 5) " ,

" S w i t c h 2 I t e r a t i o n 5 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 .

_nw_src = 33717115 . _ d l _ v l a n = 65535 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 .

_ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 .

_ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2)

+ (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 . _nw_dst =

33651579 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 1) + (

_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8 . p o r t <− 2)) \ " ; S w i t c h 2 I t e r a t i o n 5 +o (

e s c a l a t e S w i t c h 2 ? 1 ; S w i t c h 2 I t e r a t i o n 6) " ,

16

Log Parsing in Software-Defined Networking to generate DyNetKAT models TScIT 39, July 7, 2023, Enschede, The Netherlands

" S w i t c h 2 I t e r a t i o n 6 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 .

_nw_src = 33717115 . _ d l _ v l a n = 65535 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 .

_ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 .

_ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2)

+ (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 . _nw_dst =

33651579 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 1) + (

_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e = 2048 .

_ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 2 .

_nw_dst = 33651579 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . p o r t <− 1)) \ " ;

S w i t c h 2 I t e r a t i o n 6 +o (e s c a l a t e S w i t c h 2 ? 1 ; S w i t c h 2 I t e r a t i o n 7) " ,

" S w i t c h 2 I t e r a t i o n 7 " : " \ " ((_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 .

_nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 .

_ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t

= 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 . _nw_dst =

33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2) + (_nw_proto = 1 .

_ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 .

_ i n _ p o r t = 1 . _nw_dst = 33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . p o r t <− 2)

+ (_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 2 . _nw_dst = 33651579 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _ t p _ s r c = 8 . p o r t <− 1) + (_nw_proto = 1 . _ d l _ t y p e = 2048 .

_ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 7 7 0 . _nw_src = 33651579 . _ d l _ v l a n = 65535 . _ i n _ p o r t = 1 .

_nw_dst = 33717115 . dp id = 2 . _ d l _ s r c = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _ t p _ s r c = 8 . p o r t <− 2) +

(_nw_proto = 1 . _ d l _ t y p e = 2048 . _ d l _ d s t = 2 0 0 1 5 9 9 8 3 0 4 5 1 4 . _nw_src = 33717115 .

_ d l _ v l a n = 65535 . _ i n _ p o r t = 2 . _nw_dst = 33651579 . dp id = 2 . _ d l _ s r c =

2 0 0 1 5 9 9 8 3 0 4 7 7 0 . p o r t <− 1)) \ " ; S w i t c h 2 I t e r a t i o n 7 "

}

}

17

	Abstract
	1 Introduction
	1.1 Software-defined networking
	1.2 DyNetKAT
	1.3 Generating DyNetKAT models

	2 Motivation
	3 Running example
	4 Methodology
	4.1 Approach
	4.2 Use of MiniNet

	5 Results
	5.1 Requirements and execution
	5.2 High level description of the workings
	5.3 The tool in detail

	6 Conclusion
	7 Discussion
	7.1 Initial design problems
	7.2 Software dependencies
	7.3 Maintainability
	7.4 The simulation configuration requirement

	8 Future work
	Acknowledgments
	A Source code
	A.1 POX Stateful Firewall implementation
	A.2 STS experiment configuration

	B Generated files
	B.1 HappensBefore logging output
	B.2 DyNetKAT model

